The NetRexx Interpreter

http://www?2.hursley.ibm.com/netrexx/

RexxLA / WarpTech -- 26 May 2000

Mike Cowlishaw

IBM Fellow
mfc@uk.ibm.com

netrexxi

Overview

= Introduction to NetRexx

= Demo. -- compiling and interpreting
NetRexx programs

= The compiler/interpreter implementation

= Questions?

What Is NetRexx?

= A complete alternative to the Java
language, for writing classes for the Java
Virtual Machine

= Based on the simple syntax of Rexx, with
Rexx decimal arithmetic

= Fully exploits the Java object model,
exceptions, and binary arithmetic

= Automates type selection & declaration
= Removes many historical quirks

Java is a trademark of Sun Microsystems Inc.

The Rexx language family

'Classic' Rexx

Object Rexx NetRexx
— 0S5/2 L Java VM
— WIn32
— LInux

— AIX

NetRexx Java implementation

= Current implementation first translates
NetRexx to accessible Java source, or
Interprets it directly (or both)

= Runs on any Java platform
= Any class written in Java can be used
- GUI, TCP/IP, I/O, DataBase, etc.

= Anything you could write in Java can be
written in NetRexx

NetRexx programs

toast.nrx

/* This wishes you good health. */
say "Cheers!”

Control constructs

iIfT answer="yes®" then say "OKI*
else say "shucks”

loop 1=0 for mystring.length
say 1":" mystring|[i]

end 1

also do. .end for simple grouping, with
label for 1eave

Control constructs - select

select case 1+1
when 1, 2 then say "small”
when 3 then say "medium”

otherwise say "large*
end

(The usual Rexx select without case

IS also supported, and select may
have a label)

Strings - the base type

= Strings In NetRexx are of type Rexx
= by default, data and numbers are strings
— standard methods from Object Rexx
— conversions

= Automatic inter-conversion with Java String
class, char and char|] arrays, and numeric
primitives (optional)

Arithmetic

= Preferred arithmetic is from ANSI Rexx
= Decimal, just one type of number
— follows human rules (2 * 1.20 i1s 2.40)

= gives exact results when expected (e.g.,
for 0.1, 0.3)

— no overflow at binary boundaries
= arbitrary precision

numeric digits 300
say 1/7

numeric digits 300

0.14285714285714285714285/714285714
2857142857142857142857142857142857
1428571428571428571428571428571428
5714285714285714285/714285714285714
285714285/7142857142857142857142857
1428571428571428571428571428571428
5714285714285714285714285/714285714
2857142857142857142857142857142857
142857142857142857142857142857

Binary classes and methods

= The binary keyword instructs the compiler to use
native (binary) arithmetic types and operations
(boolean, byte, int, long, float, etc.)

= Achieves the full speed of the Java Virtual Machine
and JIT compilers

= No performance penalty for using NetRexx instead
of Java

Explicit typing

m Casting/conversions use the blank
(concatenation) operator

number=int 7*y -- number Is an iInt
number2=int —— variable declaration

= Consistently extends to method arguments

method size(xX=i1nt, y=iInt, depth=iInt 3)

Other features from Rexx

m Case-insensitivity
m Parse

m Trace (methods, all, results)

2 *=* number=1/7
>v> number '"0.142857143"
3 *=* parse number before "." after
>v> before "0
>v> after ''142857143"
4 *=* say after"."before
>>> ''142857143.0"

Exceptions

® Semantics from Java

= Generalized and simplified syntax (extends
all existing control constructs)

say "Please enter a number:”
number=ask -—- read a line
do
say "reciprocal 1s:" 1/number
catch Exception
say "Sorry, could not divide"-
"""number"" Into 1°

end

NetRexx JavaBean support

= JavaBean (indirect) properties

properties indirect
filling=Color.red

generates (or checks):

method getFilling returns java.awt.Color
return filling

method setFilling($l=java.awt.Color)
filling=%$1

NetRexx Inner Class support

= Minor and Dependent classes

class Foo
x=Bar()
y=Foo.Bar null
z="Hello"
X .Counter

class Foo.Bar dependent extends AnOther
method Counter

say parent.z

Demonstration ...

So how does 1t work?

= Unconventional organization
m Structured like an interpreter rather than a compiler
m Parsing Is not carried out 'up front', but on demand

= Parsing Is identical for translation to Java or for
direct interpretation, with full error checking at the
point of parsing

Overall translator organization

Translator — Classer Tokenizer

\

Program
— Streamer Babelizer

Y

Parse
control

Clause Term parser Expressions
parsers

Converter Variables

Overall translator organization

Translator - Classer Tokenizer

\

Program

— Streamer Babelizer

Y

Parse
control

Clause Term parser Expressions
parsers

Converter Variables

Translator

= [nternal API for NetRexxC to use

= Factory, language, and programs setup

m Cross-program pass control (3 main passes)
= Manages compilation using javac

= Manages Interpretation

= Top-level error handling

Overall translator organization

Translator — = Classer Tokenizer

\

Program
— Streamer Babelizer

Y

Parse
control

Clause Term parser Expressions
parsers

Converter Variables

Classer

= Most difficult area of translation, due to changes In
Java core over time

= |n general 'owns' the external namespace
= Manages class path, ambiguous classes, etc.
m | ocates, reads, and parses class images

m | ocates methods and properties, based on costing
algorithm

Overall translator organization

Translator — = Classer Tokenizer

\

Program
— Streamer Babelizer

Y

Parse
control

Clause Term parser Expressions
parsers

Converter Variables

Tokenizer

m One of several shared resources

= | anguage-independent tokenizing of an input
stream or array of character arrays

m Other shared resources include:
- error message editor

-—pase internal types (Tokens, Flags, Types, etc.)
-trace code generator

- Interfaces (ClauseParser, ProgramSource, etc.)

Overall translator organization

Translator — Classer

Y

Program

Streamer

Y

Parse
control

Y

Clause Term parser
parsers

Converter

Tokenizer

Babelizer

Expressions

Variables

Program

m Represents exactly one of the programs being
translated

= Each program may be in a different language, with
different syntax (and different semantics at the
statement level)

® Holds program-level objects (streamer, package
information, imports, options, etc.)

Overall translator organization

Translator e Classer Tokenizer
Program
- — Streamer Babelizer
Parse
control
Clause Term parser Expressions
parsers
- —

Converter Variables

Streamer and Babelizer

= Streamer handles input and output streams
= |ocates input files
= names and creates output files
- checks for conflicts
- reads files on demand

= Babelizer converts internal representations to
viewable strings, depending on the language
= associates file extensions with languages
—arrays shownas|[][]or[,]or(,)

- attributes spelled as appropriate for the language,
e.g., shared or Friend

Overall translator organization

Translator — Classer
Program
— Streamer

Parse

control

Clause Term parser
parsers

Converter

Tokenizer

Babelizer

Expressions

Variables

Parse control

= State machine for static parsing

® | anguage-dependent (hence one instance per
program)

= Three levels of parsing, deferred where possible:
- parseProgram
- parseClassBody
- parseMethodBody

= Parsing-related utilities (pushLevel, poplLevel, etc.)

Overall translator organization

Translator — Classer Tokenizer
Program
— Streamer Babelizer
Parse
control

Clause Term parser Expressions

parsers

Converter Variables

Clause parsers

= Each knows about a single clause in one language
(Do, Catch, End, Nop, Say, etc.)

m Each has a scan method (lexical parse)
= Each has a generate method, for Java code
= Each has an interpret method

m generate and interpret share information gleaned
during scan (which may have been multi-pass)

Overall translator organization

Translator — Classer Tokenizer
Program
— Streamer Babelizer
Parse
control
Clause Term parser Expressions

parsers
- —

Converter Variables

Term and Expression parsers

m Recursively call each other to parse terms and
expressions. For example:

(Rexx vector.get("key")).substr(i+l, j)

= Term parser iIs more complicated than Expression
parser, and Is easily the largest class in the
translator (100K characters, including comments)

= | ke clause parsers, both can emit Java code or
execute (interpret) the term or expression

Overall translator organization

Translator — = Classer Tokenizer

\

Program
— Streamer Babelizer

Y

Parse
control

Y

Clause Term parser Expressions

parsers
Converter Variables

_>

Converter and Variable manager

= Converter understands type inferences

= costs conversions (used for method finding and error
checking)

- effects conversions (emits Java code or interprets)

= Variable manager handles both class and method
variables
= All properties and local variables during scan passes

= Only static (Class) properties and local variables during
Interpretation - instance properties are held in a real
object

Interpretation

Translator —

\
Program

Y

Parse
control

Y

Clause
parsers

Interpreter —

N/

Proxy

Loader

General principle

= First, programs are parsed (to determine classes,
properties, and methods with their signatures)

= For each class, a proxy (stub) class Is created
= this has all the properties just as in a 'real' class

= for each method, it has only the definition and return

= when a method is invoked through Java reflection, it
Immediately calls the interpreter, which interprets the
method body

m Real Instances are created, so interpreted classes
are visible to the JVM for callbacks, etc.

Interpretation

Translator

\
Program

Y

Parse
control

Y

Clause
parsers

Interpreter e

N/

Proxy

Loader

Interpreter

= Primary task Is interpreting method bodies, by
finding each clause In turn and invoking its
Interpret method

= \\When class first used or instance constructed,
interprets initialization code (properties, etc.)

= Handles Java reflection (access to real properties,
Instances of objects, arrays, etc.)

Interpreter complications

= Signals - have to be wrapped, and cannot be
passed through a reflection call

m Constructors - arguments to super(x, y) call must
be interpreted, then the super(x, y) call must be
made by the proxy class, and only then can the
constructor method body be interpreted

= Protected (synchronized) blocks of code must truly
be protected to be thread-safe

Interpretation

Translator —

\
Program

Y

Parse
control

Y

Clause
parsers

Interpreter ——

NS
«<»

Loader

Proxy class

m Builds a binary class image (in a byte array) for a
class that Is to be interpreted

= Tedious but relatively straightforward - the code for
every method Is essentially the same
= collect arguments (wrapped if necessary) into an Object

array
= invoke the interpreter to interpret the method body

- get the returned Object; unwrap or cast it as required,
and return it

Interpretation

Translator —

\
Program

Y

Parse
control

Y

Clause
parsers

Proxy

Proxy class Loader

m A Java classloader is needed to actually load a
class into the JVM

= |f the built-in one were used then a class could
never be redefined; classes are only unloaded
when the object that loaded them Is unloaded

= Complication: we also have to load any external
(compiled) private classes, as otherwise they
appear to be in a different package and hence
would not be accessible when they should be

Summary

= A blend of Rexx and Java
— scripting and application development
= a truly general-purpose language
= Both decimal and binary arithmetic
= High productivity and simplicity
— Java source Is typically 35% bigger
— Interpreter greatly speeds development
= Designed for users, not compilers.

http://www?2.hursley.ilbm.com/netrexx/

NetRexx

+

Strong typing doesn’t need extra typing

