
The Unicode Tools Of Rexx
35th International Rexx Language Symposium

Brisbane, Australia, March 3-6 2024

Josep Maria Blasco
jose.maria.blasco@gmail.com

EPBCN – ESPACIO PSICOANALÍTICO DE BARCELONA
C/ BALMES, 32, 2º 1ª — 08007 BARCELONA

March the 4th, 2024

The Unicode Tools Of Rexx

Part I

Introduction
Introduction

Introduction
The Architecture Review Board (arb)
A prototype, partial implementation
An experimental implementation
A pure ooRexx implementation
A level one implementation
Other implementations
The procedural-first approach
A single, universal, string interface
Experimenting with concepts

Introduction
Tutor (The Unicode Tools Of Rexx) is a
I partial,
I prototype,
I experimental,
I pure Open Object Rexx,
I procedural-first,
I level one

implementation of Unicode for the Rexx language.

⇒ The meaning of the highlighted terms will be made clear in the
following slides.

The Architecture Review Board (arb)

The design and features of Tutor have been greatly influenced by
the debates held in the arb of the Rexx Language Association.

I am very thankful for all the input, commentaries, suggestions and
general feedback received in the course of these conversations.

In particular, I want to thank Jean Louis Faucher and
René Vincent Jansen: our interchanges in GitHub allowed me to
get up to speed in Unicode matters.

A prototype, partial implementation
Tutor is a prototype, not a finished product. It should not be
used in production environments. In particular, the package may
exhibit incoherent behaviour. Example: the stream BIFS have been
migrated to support Unicode, but the stream classes have not.

Tutor is a partial implementation of Unicode,
1. because it does not implement the totality of the Unicode

standard, and also
2. because not all of the existing features of the Rexx language

have been revised to add Unicode support.

An experimental implementation
Tutor is an experimental implementation: its purpose is to
provide a collection of proof-of-concept Rexx implementations of
several aspects of the Unicode standard, in such a way that Rexx
users can get an opportunity to play and experiment, to
self-educate (“tutor”) themselves, by immersing in the standard
and the intricacies of a possible future Unicode-enabled Rexx
implementation.

⇒ The acronym “Tutor” was suggested by Chip Davis (thanks!)
[Previously, the package was called “The Unicode Tools For
Rexx”].

A pure ooRexx implementation
Tutor does not depend on any external Unicode library, since it is
written in pure ooRexx. This has drawbacks, but it also exhibits
some advantages.

Drawbacks. The main one is that every feature has to be written
from scratch, which is very laborious.

Advantages. It offers an excellent opportunity to understand in
great depth and detail the more subtle aspects of the standard.
I ⇒ Implementations of better quality.
I ⇒ A good example for severely memory-constrained language

implementations (e.g., VM/370).

A level one implementation
An idea discussed in the arb: Implementing Unicode in Rexx in a
series of passes, stages or levels.

I Level one: string denotation and manipulation.
I Level two: Unicode variable and constant symbols, non-ansi

numerals in numbers, ...
I ...

Tutor is a level one implementation. ⇒ Level one can be
implemented with minimal modifications to the parser.

Other implementations

I Jean Louis Faucher’s Executor, a ooRexx derivative that
contains a trove of extensions to ooRexx, including a (also
partial) Unicode implementation.

I Adrian Sutherland’s CRexx project, an experimental,
Rexx-based low level language, which is designed and built to
use Unicode from the start.

Both implementations are based in sets of design decisions which
are different from the ones taken in Tutor.

The procedural-first approach

Procedural-first: concentrate on defining a set of
extensions of Classic Rexx. Object-oriented extensions will come
as a consequence of the procedural extensions.

Rationale: Once we define Unicode-enabled Rexx as an extension
of Classic Rexx, it becomes very easy to define new and modified
classes to implement Unicode in object-oriented versions of Rexx.

⇒ It is not so easy to make the travel in the reverse direction.

A single, universal, string interface

I We will need to define several new types of strings.
I All these string types will be usable in the same way: all the

Classic Rexx built-in functions (bifs) will work unaltered
(when this makes sense!) with all the new string types.

I ⇒ The experienced Rexx programmer will not have to learn
a new set of bifs specific to every new string type; to the
contrary, she will be able to leverage her experience with
Classic Rexx bifs to create new, Unicode-enabled programs.

I This also makes programming a prototype much easier.

Experimenting with concepts
We want to create a toolbox that is useful to experiment with
language concepts (not only language features).

New concepts are a way to disseminate new ideas, and an attempt
to create a shared vocabulary, to develop a collective imaginary
about a possible Unicode-enabled Rexx implementation (⇐
psychological, sociological and epistemological reasons — not only
programming reasons).

⇒ Some concepts will be promoted to a foreground position in a
way that may not necessarily be reflected in the final design of the
product.

The Unicode Tools Of Rexx

Part II

Rexx and Unicode, today

Rexx and Unicode, today
Character encoding
Unicode literal strings
Operating with Unicode strings
Unicode labels, and external programs
Stream and console I/O
Other environments
String identity in Rexx, and its effects on labels

Introduction. Character encoding

Focus on Regina and ooRexx, and on Windows and Linux.

What can be done today?

Character encoding:

Rexx alphabet (ascii (UTF-8

⇒ We need an editor that supports UTF-8.

Unicode literal strings

Using UTF-8, we can create Unicode literal strings:
croissant = "������"

We can also use the UTF-8 encoding of a string:
Say croissant == "F0 9F A5 90"X /* 1 */

⇒ Tutor defines Unicode strings: we can select characters by
hexadecimal code point, name, alias or label.

Say croissant == "1F950"U /* 1 */
Say croissant == "(Croissant)"U /* 1 */

Operating with Unicode strings

UTF-8 strings are normal strings. They can be manipulated using
the usual Rexx bifs and operators:

croissants = Copies(croissant,2)
coffee = "������"
breakfast = coffee || croissants

Some of these operations will get the desired results,
Say Copies("�������", 2) /* "��������������" */

while others will not:
Say Length("������������������") /* 12 (should be 3) */

Unicode labels, and external programs

Labels, class and method names, etc., can be Unicode:
Call ("��") /* Follow the trail */
...
"��": ...

External programs names and command names can be Unicode too:
Call "���" /* Fire the AI assistant */
/* (Calls "���.rex") */
/* Invoke a command called "����������������.exe" (Windows) */
Address Command "����������������"

Stream and console I/O
We can read and write strings containing Unicode:

Call LineOut dinner, "��������������������������������"

We can even use UTF-8 strings in file names:
Call LineOut "��������������������", "Hume's swans"

⇒ Be careful with Dropbox, though: it does not synchronize
filenames with characters that are outside the BMP.

Both Linux and Windows offer console configurations with some
support for UTF-8 (Windows setup is quite convoluted).

Other environments

Rexx cgi scripts written using the UTF-8 encoding can be easily
used
I to create html5 web pages (html5 uses the UTF-8 character

encoding by default).
I to process the contents of html5 forms.

...

String identity in Rexx, and its effects on labels
According to the standard, and assuming a UTF-8 encoding,
"a", "61"X and "0110 0001"B are the same string. This means
that, if we have a label

"�����": /* Do something */
and, since UTF-8 for "�����" is "D8 3C DF A8"X, we can

Call ("D8 3C DF A8"X)
or even

Signal "1101 1000 0011 1100 1101 1111 1010 1000"B

⇒ With Tutor, we can also Call "(Artist palette)"U.

The Unicode Tools Of Rexx

Part III

Unicode for Classic Rexx

Unicode for Classic Rexx
The compatibility conflict
Implementing types in a “typeless” language
Changing glasses: the view metaphor
What is a character, anyway?
Abstract and encoded characters
Defining the four string types
Defining the default string type
Coercions
Unicode strings

The compatibility conflict (1/2)

What is the semantics of an unsuffixed string?

I Compatibility: a string composed of bytes.
I In a Unicode world: a Unicode string.
I Different semantics ⇒ Conflict!
I A partial way out; use string suffixes to determine the type of

a string: for example, "string"Y would be a bYtes string, and
"string"T would be a Text (Unicode) string.

The compatibility conflict (2/2)
I Still: what is the type of an unsuffixed string?
I ⇒ If Bytes, Unicode strings are second-class.
I ⇒ If Unicode, we create compatibility problems.
I The semantics of an unsuffixed string should be selectable.

⇒ Tutor defines a new, experimental form of the Options
instruction:

Options DefaultString type
where type must be one of BYTES, CODEPOINTS, GRAPHEMES and
TEXT (these will be defined shortly).

Implementing types in a “typeless” language

I Classic Rexx is, in a sense, typeless: everything is a string.
I Widen the paradigm: everything is a string, yes; but there are

several types (or kinds) of string.
I ⇒ New conversion bifs to change the type of a string:

Text(string): Unicode; Bytes(string): classic string; ...
I ⇒ New StringType(string) bif to query the type of a

string: StringType(Bytes(string)) == "BYTES".

Changing glasses: the view metaphor (1/2)
Consider the following code:

/* Assume that hexadecimal strings are BYTES strings */
string = "F0 9F 91 A9"X /* "Woman" emoji (UTF-8) */
Say StringType(string) /* "BYTES" */
Say Length(string) /* 4 (4 bytes) */
string2 = Text(string) /* Promotion */
Say StringType(string2) /* "TEXT" */
Say Length(string2) /* 1 (1 Unicode codepoint) */

What happens, when we execute string2 = Text(string)? In
which sense is string2 different from string?

Changing glasses: the view metaphor (2/2)

We do not need to believe that string and string2 are different
“inside” (assuming that this makes any sense), only that
our view of these strings has changed: we have put on new glasses.

These new glasses consist of a whole new semantics for the very
same bifs we are used to. No need to learn new bifs, no need to
learn new paradigms. We have only changed the level of
abstraction we are using to look at a string.

What is a character, anyway? (1/3)
User expectations when manipulating Unicode strings:

Length("������������������") == 3
SubStr("��������������������������������",2) == "�����������������������"
Left("��������������������������������",1) == "���������"
"��������������������������������"[2] == "������������������"
Pos("������","������������������������") == 4
Upper("Paçà") == "PAÇÀ"

Also:
acute = "(Combining acute accent)"U

"Jose"acute == "José"

What is a character, anyway? (2/3)

When we say “manipulating Unicode strings”, we assume that
things like “Unicode strings” exist.

Do they? And, if they do, what are their components?

There are two different answers to this last question:
1. Unicode code points (grosso modo, numbers between zero and

”10FFFF”X).
2. Extended grapheme clusters, or “user perceived characters”.

What is a character, anyway? (3/3)
Grapheme clusters are extremely tricky:

glue = "(Zero width joiner)"U /* Glues emojis together */
family = "����������������"glue"������������������"glue"����������������"glue"������������������"
Say family /* " ���������������������������������� ����������� ", 1 grapheme cluster! */

⇒ We need methods to “disassemble” grapheme clusters into their
constituent code points (and even to “disassemble” code points, in
turn, into their constituent characters, given a certain encoding):

elements = CodePoints(family)
Do i = 1 To Length(elements)

Say i": '"elements[i]"'"
End

Abstract and encoded characters
Unicode offers several ways to express “the same” character.

a = "61"X
/* UTF-8 for "Combining acute accent": */
acute = "CC 81"X
aacute = "61 CC 81"X
Say aacute /* Prints as "á", same as "C3 A1"X */

The single character "C3 A1"X, "Latin small letter a with
acute", also prints as "á". "C3 A1"X and "61 CC 81"X are
visually indistinguishable (but not in the windows terminal! ������).
They represent the same abstract character, even if they are not
the same character.

Normalization forms and string equivalence

In Unicode parlance, they are not equal, but equivalent, according
to Normalization Form C, nfc: we say that "C3 A1"X and
"61 CC 81"X are nfc-equivalent.

If we stipulated that strings composed of graphemes were to be
automatically normalized to the nfc form, then "a" concatenated
to acute would indeed be identical to "C3 A1"X. This will be our
definition of a default Unicode string: a string composed of
extended grapheme clusters, automatically normalized to nfc.

Defining the four string types (1/2)

I A Classic Rexx string is a BYTES string, a string composed of
bytes.

I A TEXT string is a sequence of extended grapheme clusters,
automatically normalized to nfc.

I A GRAPHEMES string is a sequence of extended grapheme
clusters, not automatically normalized to nfc (sometimes we
need to work with string as-is, with no automatic
modifications).

I A CODEPOINTS string is a sequence of Unicode code points.

Defining the four string types (2/2)
Classic Rexx defines Binary strings, with a "B" suffix, and
heXadecimal strings, with a "X" suffix. New suffixes for the new
types of string are:
I "String"Y is a BYTES string, composed of bYtes.
I "String"P is a CODEPOINTS string, composed of code Points.
I "String"G is a GRAPHEMES string, composed of

Grapheme clusters.
I "String"T is a TEXT string, the default Unicode type.

The type of a unsuffixed string, "string", is determined by the
value specified in the Options DefaultString instruction
(default: TEXT).

Conversion functions. STRINGTYPE
I BYTES(string) converts string to the BYTES type.
I CODEPOINTS(string) converts string to the CODEPOINTS

type.
I ...

Converting a string to BYTES always succeeds. In all other cases,
string has to contain valid Unicode (i.e., currently, UTF-8), or a
syntax error will be raised. TEXT(string) will additionally
normalize string to nfc, if necessary.
A new bif, STRINGTYPE(string), will return the name of the
string type of a string. For example,

STRINGTYPE("string"T) == "TEXT"

Defining the default string type
The semantics of an unsuffixed string is determined by the value
specified in the Options DefaultString instruction. Its format is

Options DefaultString string_type
where string_type must be one of BYTES, CODEPOINTS,
GRAPHEMES or TEXT; the default value is TEXT.

This allows to experiment with “new” programs, where strings are
Unicode-enabled by default and “old” programs, by using

Options DefaultString BYTES
Specifying one of the other two string types may be useful in
specialized circumstances.

Coercions (1/2)
Should binary operations be allowed, when the operands are of
different types? And, if the reply to the previous question is
affirmative, what should be the result of such an operation?

a = "Löb's"T /* A TEXT string */
b = "theorem"Y /* A BYTES string */
c = a b /* Should this be allowed? */
/* If yes, what should StringType(c) be? */

Let us define an order on the four string types, as follows:
BYTES < CODEPOINTS < GRAPHEMES < TEXT.

Coercions (2/2)
Tutor implements a new instruction to determine the type of a
binary operation R = A } B:

Options Coercions form

Form must be one of:
I PROMOTE ⇒ StringType(R) = Max(StringType(A), StringType(B)).
I DEMOTE ⇒ StringType(R) = Min(StringType(A), StringType(B)).
I LEFT ⇒ StringType(R) = StringType(A).
I RIGHT ⇒ StringType(R) = StringType(B).
I NONE ⇒ raise a syntax error if StringType(A) \== StringType(B).

Unicode strings
I A new string type, with a new suffix: "U".
I Low level, similar to binary or hexadecimal strings. Always a

BYTES string (convert if needed).
I Blank-separated sequences of hexadecimal code points (with or

without a "U+" prefix), and parenthesized code point names,
alias or labels.

Examples:
I "61"U == "0061"U == "U+0061" == "a".
I "(Latin small letter a)"U == "a" /* Name */ .
I "(New line)"U == "0A"X /* Alias */ .
I "(<control-000A>)"U == "0A"X /* Label */ .
I "(Saxophone)(Guitar)"U == "��������������" /* Names */ .

The Unicode Tools Of Rexx

Part IV

Unicode for (Open) Object Rexx

Unicode for (Open) Object Rexx
The four string classes. The BYTES class
The CODEPOINTS class
The GRAPHEMES class
The TEXT class

The four string classes. The BYTES class
The four string types are implemented by four string classes.

Bytes subclasses the built-in String class. It overloads the
operator methods to support coercion selection, and it reimplements
many text manipulation bims in terms of Length() and [].

Every subclass of Bytes will only need to redefine
these two methods to get full access to all the usual bims, but now
applied to code points or to extended grapheme clusters, or
whatever the definition of ‘character” is for the new string type.

The Bytes class also extends the DataType() bim to support
Unicode, and defines some few new bims, like C2U() and U2C().

The CODEPOINTS class

Codepoints subclasses Bytes and redefines Length() and [] so
that they operate on code points. It implements some normalization
methods, and redefines non-strict equality to be nfc equivalence.

Options Coercions Promote
a = "a"P /* A CODEPOINTS string */
acute = "(Combining acute accent)"U /* BYTES */
aacute = "á"P /* A CODEPOINTS string */
Say aacute = a||acute /* 1 Equal, but not.. */
Say aacute == a||acute /* 0 ..strictly equal */
Say Length(aacute) /* 1 (one codepoint) */
Say Length(C2X(aacute)) /* 4 ("C3A1" [UTF8]) */

The GRAPHEMES class
Graphemes subclasses Codepoints, and redefines Length() and
[] so that they operate on extended grapheme clusters.

Options Coercions Promote
/* C2X output prettyprinted for readability */
jose = "Jose"G /* A GRAPHEMES string */
/* "301"U is the combining acute accent */
Say C2X("301"U) /* CC 81 */
Say jose"301"U /* José */
Say C2X(jose"301"U) /* 6A 6F 73 65CC81 */

/* j- o- s- e-´--- */
rev = Reverse(jose"301"U)
Say rev /* ésoJ */
Say C2X(rev) /* 65CC81 73 6F 6A */

/* e-´--- s- o- j- */

The TEXT class

Text subclasses Graphemes and implements automatic nfc
normalization on string creation, including operation results.

Options Coercions Promote
a = "a"T /* A TEXT string */
aacute = "á"T /* A TEXT string */
Say aacute = a"301"U /* 1 Equal, and.. */
Say aacute == a"301"U /* 1 ..strictly equal */

The Unicode Tools Of Rexx
Part V

Modifications to existing built-in
functions

String manipulation functions
Semantics of string manipulation built-in functions
bims and bifs definable in terms of LENGTH and []
Methods and functions definable in terms of the corresponding String method
Examples
Exceptions to these rules

Stream functions
Unicode-enabled streams
Error handling
Specifying the target type

Low-level functions
Low-level functions

Semantics of string manipulation built-in functions

Rexx is well-known for its extensive and powerful set of string
manipulation functions.

Classic Rexx functions operate on strings composed of bytes.

Unicode-enabled string manipulation functions should operate on
Classic Rexx strings, i.e., on BYTES strings, and also on strings of
the new types, that is, CODEPOINTS, GRAPHEMES and TEXT,
with the usual semantics.

bims and bifs definable in terms of LENGTH and []

Many of the usual string manipulation bims can be defined
in terms of LENGTH() and [] (or LENGTH() and SUBSTR()). The
same is true of the corresponding bims.

/* Works equally well with bytes, code points or graphemes */
::Method Reverse

ret = .MutableBuffer~new(, self~length : .String)
Do i = self~length To 1 By -1

ret~append(self[i])
End
Return self~class~new(ret~makeString)

Methods and functions definable in terms of the
corresponding String method

Some other string bifs and bims can be defined in terms of
the corresponding methods of the String class.

::Method Copies
Use Strict Arg n
.Validate~nonNegativeWholeNumber("n" , n)
If \self~isA(.Codepoints) Then

Return Bytes(self~copies:.String(n))
Return self~class~new(Copies(self~makeString, n))

It is now very easy to define a polymorphic COPIES() bif in terms
of this enhanced COPIES() method.

Examples
Variations over

var = "(Man)(ZWJ)(Woman)(ZWJ)(Girl)(ZWJ)(Boy)"U

I Var is a BYTES string, and therefore var[1] will be the first
byte of the (UTF8) representation of "����������������", the “Man” emoji,
that is, "F0"X.

I Codepoints(var) is a CODEPOINTS string, and therefore
Codepoints(var)[1] will be "����������������", the “Man” emoji itself.

I Text(var) is a TEXT string, and therefore Text(var)[1] will
be " ���������������������������������� ����������� " (in this case, the whole string).

Exceptions to these rules

Some few bifs are not covered by the cases just presented. For
example, one would expect that LOWER() and UPPER()
implemented the toLowercase() and toUppercase() Unicode
functions, instead of operating only on the "a".."z" and
"A".."Z" ranges, as is the case with the Classic Rexx bifs.

string = "En compañía del Barça"
Say Upper(string) /* EN COMPAÑÍA DEL BARÇA */

Unicode-enabled streams
A stream is said to be Unicode-enabled when a ENCODING is
specified in the STREAM OPEN command:

Call Stream fn, "Command", "Open Read ENCODING UTF-8"

This encoding can be queried:
Say Stream fn, "C", "QUERY ENCODING NAME" /* UTF-8 */

Error handling:
Call Stream fn, "C", "Open Read ENCODING UTF-8 REPLACE"

⇒ Ill-formed characters are substituted by the Unicode replacement
character, "FFFD"U. You can also specify

Call Stream fn, "C", "Open Read ENCODING UTF-8 SYNTAX"

in which case an ill-formed sequence will raise a syntax error.

Error handling
If you have used the SYNTAX option in the OPEN command and the
syntax condition is trapped, you will be able to access the offending
line or character sequence:

Call Stream fn, "C", "Open Read ENCODING UTF-8 SYNTAX"
...
Signal On Syntax
...
var = LineIn(filename) /* May raise a Syntax error */
...

Syntax:
offendingLine = Stream(fn, "C", "Q ENCODING LASTERROR")
/* Do something with "offendingLine" */

Specifying the target type
By default, Unicode-enabled streams return strings of type TEXT.
You may select the target type in the OPEN command:

Call Stream fn, "C", "Open Read ENCODING UTF-8 CODEPOINTS"

Note: Some operations that are easy to implement for a
CODEPOINTS target type may become impractical when switching
to a GRAPHEMES or a TEXT type. For example, UTF-32 is a
fixed-length encoding, so that with a CODEPOINTS target type,
direct-access character positioning and substitution is trivial to
implement. On the other hand, if the target type is TEXT, these
operations become very difficult to implement.

Low-level functions

I DataType(string,"C") returns 1 when the contents of
string is a valid Unicode string.

I C2X() accepts an optional second parameter,
C2X(string, encoding). Encoding defaults to UTF-8. This
definition has interesting properties: when string is a BYTES
string containing well-formed UTF-8 normalized to nfc, then

C2X(string) == C2X(CODEPOINTS(string))
C2X(string) == C2X(GRAPHEMES(string))
C2X(string) == C2X(TEXT(string))

The Unicode Tools Of Rexx
Part VI

New built-in functions
New built-in functions

Type conversion functions
Encoding and decoding functions

DECODE
ENCODE
UTF8

Low-level functions
C2U (Character to Unicode)
N2P (Name to codePoint)
P2N (codePoint to Name)
STRINGTYPE

The UNICODE general function
The UNICODE general function
Functional form
Property form

Type conversion functions

The type conversion functions are BYTES(), CODEPOINTS(),
GRAPHEMES() and TEXT(). They take an argument of any string
type, and convert it to the type denoted by its name.

CODEPOINTS(), GRAPHEMES() and TEXT() expect an argument
that contains well-formed UTF-8; otherwise, a syntax error is raised.

Additionally, TEXT() converts its argument, if necessary, to the nfc
Unicode normalization form.

DECODE (1/2)

I Encoding validation: DECODE(string, encoding) returns 1
if string is well-formed according to the encoding, and 0
otherwise.

I Decoding: DECODE(string, encoding, format) decodes
string to the a certain format ("UTF-8" or "UTF-32").

/* "string" is encoded using IBM-1047. Decode it */
/* and return its UTF-32 representation. */
string = DECODE(string, "IBM-1047", "UTF-32")

DECODE (2/2)
I A fourth argument determines the way in which ill-formed

character sequences are handled:
decoded = DECODE(string, encoding, "UTF-8", "REPLACE")

⇒ ill-formed sequences are substituted by the Unicode
replacement character, "FFFD"X.

I When the fourth argument is omitted, or specified as "" or
"NULL" (the default), a null string is returned in the event
that an ill-formed sequence is encountered.

I When the fourth argument is "SYNTAX", a syntax error is
raised in the event that an ill-formed sequence is encountered.

ENCODE (1/2)

ENCODE(string, encoding) first validates that string contains
well-formed UTF-8. Once the string is validated, encoding is
attempted using the specified encoding.

By default, ENCODE returns the encoded string, or a null string if
validation or encoding failed. You can influence the behaviour of
the function when an error is encountered by specifying the optional
error_handling argument:

ENCODE(string, encoding, error_handling)

ENCODE (2/2)

I When error_handling is not specified, is the null string or is
NULL (the default), a null string is returned if an error is
encountered.

I When error_handling has the value SYNTAX, a syntax error
is raised if an error is encountered.

/* Encode to IBM-1047, and raise a syntax error */
/* if an error is encountered. */
string = ENCODE(string, "IBM-1047", "SYNTAX")

UTF8

A version of DECODE() specialized in variants of the UTF-8 format.
It can validate and decode the UTF-8, UTF-8Z, WTF-8, CESU-8,
and MUTF-8 formats.

UTF8() does not depend on other components of Tutor, and it
can be used independently.

C2U (Character to Unicode)

Say C2U("Yes") == "0059 0065 0073" /* 1 */
Say C2U("Yes", "U+") == "U+0059 U+0065 U+0073" /* 1 */
Say C2U("Y", "Names") == "(LATIN CAPITAL LETTER Y)" /* 1 */
Say C2U("0A"X, "Names") == "(<control-000A>)" /* 1 */
Say C2U("Y", "UTF-32") == "0000 0059"X /* 1 */

N2P (Name to codePoint)
Returns the hexadecimal code point corresponding to name, or the
null string if name does not correspond to a Unicode code point.

Say N2P("LATIN CAPITAL LETTER A") /* "0041" (Name) */
Say N2P("Latin Capital Letter A") /* "0041" (Name) */
Say N2P("Latin-Capital-Letter-A") /* "0041" (Name) */
Say N2P("Latin_Capital_Letter_A") /* "0041" (Name) */
Say N2P("Bell") /* "1F514" (Name) */
Say N2P("LF") /* "000A" (Alias) */
Say N2P("form feed") /* "000C" (Alias) */
Say N2P("<control-0001>") /* "0001" (Label) */
Say N2P("<Private use-E000>") /* "E000" (Label) */
Say N2P("potatoes") /* "" (Not found) */

P2N (codePoint to Name)

Returns the name or label corresponding to the hexadecimal code
point argument.

say P2N(61) /* "LATIN SMALL LETTER A" */
Say P2N("1F957") /* "GREEN SALAD" */
Say P2N("A") /* "<control-000A>" */
Say P2N("10ffff") /* "<noncharacter-10FFFF>" */

STRINGTYPE

STRINGTYPE(string) returns BYTES, CODEPOINTS, GRAPHEMES or
TEXT, depending on the string type of string.

You can also use the boolean form of the function,
STRINGTYPE(string, type), where type is one of BYTES,
CODEPOINTS, GRAPHEMES or TEXT. The function will return 1 is the
string type of string is the same as the type indicated by type,
and 0 otherwise.

The UNICODE general function

UNICODE() is the Swiss-army knife of Unicode functions, since it
centralizes a big (and growing) collection of Unicode functions and
properties. Please refer the documentation for the UNICODE()
built-in function for details.

Functional form

UNICODE(string, function) implements a series of
Unicode-defined functions. The particular function is selected by
specifying its name as the string function argument. Currently,
isNFC, isNFD, toNFC, toNFD, toLowercase and toUppercase are
available.

Property form

The UNICODE(code, "PROPERTY", name) returns the Unicode
property identified by name applied to the code point code. Name
can be specified using the Unicode property name or any of their
alias, as defined in the UCD file PropertyAliases.txt. Code can
be a UTF-32 codepoint (i.e., a four byte binary integer), or an
hexadecimal code point (with no leading "U+").

The Unicode Tools Of Rexx

Part VII

Utilities

Utilities
The setenv utility
The Rexx preprocessor for Unicode (rxu)
The rxutry.rex utility

The setenv utility
Sets the path before using other Tutor tools.

Under Windows, use setenv.cmd :
C:\Unicode >setenv
Adding "C:\Unicode" to the PATH environment variable...

C:\Unicode >

Under Linux, use . ./setenv.sh :
user@host:/Unicode$. ./setenv.sh
Setting env
user@host:/Unicode$

The Rexx preprocessor for Unicode (rxu) (1/2)
The preprocessor is implemented by a ooRexx command,
rxu.rex .

C:\Unicode >rxu
rxu: A Rexx Preprocessor for Unicode

Syntax:
rxu [options] filename [arguments]

Default extension is ".rxu". A ".rex" file with the same name
will be created , replacing an existing one, if any.

Options (case insensitive):

-help, -h : display help for the RXU command
-keep, -k : do not delete the generated .rex file
-nokeep : delete the generated .rex file (the default)
-warnbif : warn when using not-yet-migrated to Unicode BIFs
-nowarnbif : do not warn when using not-yet-migrated -to-Unicode

BIFs (the default)

C:\Unicode >

The Rexx preprocessor for Unicode (rxu) (2/2)
Effect of rxu filename (without error handling logic):

1. Translate filename.rxu to filename.rex, a pure ooRexx
program.

2. Run filename.rex.
3. Delete filename.rex.

The translation phase makes heavy use of the Rexx tokenizer,
described in a separate presentation.

⇒ You can experiment with the -keep option to see how the
translator works.

The rxutry.rex utility (1/2)

The 0.5 release of Tutor includes a new utility called
rxutry.rex. This program is a derivative of the standard
rexxtry.rex utility, distributed with ooRexx, and it offers a
similar functionality, adapted to Tutor and to RXU, the Rexx
preprocessor for Unicode.

The rxutry utility automatically preprocesses every input line by
using RXU. RXU tokenizes and translates each line to standard
ooRexx code, and then this code is executed by using an
Interpret instruction.

The rxutry.rex utility (2/2)
C:\Unicode >rxutry
REXX-ooRexx_5.1.0(MT)_64-bit 6.05 6 Jun 2023
����rxutry.rex lets you interactively try Unicode -REXX statements.

Each string is executed when you hit Enter.
Enter 'call tell' for a description of the features.

���� Options DefaultString is Text
���� Options Coercions is Promote

Go on - try a few... Enter 'exit' to end.
say "(Guitar)(Saxophone)"U
��������������

.. rxutry.rex on WindowsNT
jose = "Jose"

.. rxutry.rex on WindowsNT
joseacute = jose"301"U

.. rxutry.rex on WindowsNT
Say Length(joseacute) "'"Reverse(joseacute)"'"
4 'ésoJ'

.. rxutry.rex on WindowsNT
exit

C:\Unicode >

The Unicode Tools Of Rexx

Part VIII

Conclusions

Conclusions
Further work
Acknowledgements
Resources
Questions?

Further work
I Implement more Unicode features. Example: the Unicode

collation algorithm.
I Adapt more language features to Unicode. Example: the

Parse instruction.
I Reimplement parts of Tutor in pure Classic Rexx. ⇒ Parts

of Tutor might be run under CMS, TSO, VM/370, etc.
I Somebody could rewrite parts of Tutor in C/C++ (not me:

I don’t do C/C++). ⇒ A growing Unicode library for many
Rexx implementations (I would think of ooRexx and
Regina as a minimum).

Acknowledgements (1/2)

I To all the members of the Architecture Review Board, for their
support and encouragement, and their invaluable discussions
and suggestions.

I To Jean Louis Faucher and René Vincent Jansen, for our
conversations in GitHub: these were somewhat chaotic, but, at
the same time, very productive. And they allowed me to get
up to speed in Unicode matters.

I To Jean Louis Faucher (again) for his pioneer Executor
extension, a real trove of ideas, and to Adrian Sutherland, for
his CRexx effort.

Acknowledgements (2/2)
I To my colleagues at EPBCN, for bearing with me during my

prolonged Rexx raptures.
I To the students of my Psychoanalysis and Logic course, where

I also happen to teach some Rexx, for their interest and
unfaltering persistence.

I To Silvina Fernández, Mireia Monforte, David Palau and Olga
Palomino, for attending several presentation rehearsals and
providing essential feedback.

I To Silvina Fernández, for deftly managing our Stream Deck,
contributing to make my presentations much more interesting
and agile.

Resources

I This file: https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf.

I Related article: https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-The-Unicode-Tools-Of-Rexx.pdf.

I Accompanying article, A Tokenizer for Rexx and ooRexx:
https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf. Slides:
https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf.

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf

Questions?

Thank you!

Questions?

	General concepts
	Introduction
	Introduction
	The Architecture Review Board (arb)
	A prototype, partial implementation
	An experimental implementation
	A pure ooRexx implementation
	A level one implementation
	Other implementations
	The procedural-first approach
	A single, universal, string interface
	Experimenting with concepts

	Rexx and Unicode, today
	Rexx and Unicode, today
	Character encoding
	Unicode literal strings
	Operating with Unicode strings
	Unicode labels, and external programs
	Stream and console I/O
	Other environments
	String identity in Rexx, and its effects on labels

	Unicode for Classic Rexx
	Unicode for Classic Rexx
	The compatibility conflict
	Implementing types in a ``typeless'' language
	Changing glasses: the view metaphor
	What is a character, anyway?
	Abstract and encoded characters
	Defining the four string types
	Defining the default string type
	Coercions
	Unicode strings

	Unicode for (Open) Object Rexx
	Unicode for (Open) Object Rexx
	The four string classes. The BYTES class
	The CODEPOINTS class
	The GRAPHEMES class
	The TEXT class

	Modifications to existing built-in functions
	String manipulation functions
	Semantics of string manipulation built-in functions
	bims and bifs definable in terms of LENGTH and []
	Methods and functions definable in terms of the corresponding String method
	Examples
	Exceptions to these rules

	Stream functions
	Unicode-enabled streams
	Error handling
	Specifying the target type

	Low-level functions
	Low-level functions

	New built-in functions
	New built-in functions
	Type conversion functions
	Encoding and decoding functions
	Low-level functions
	The UNICODE general function

	Utilities
	Utilities
	The setenv utility
	The Rexx preprocessor for Unicode (rxu)
	The rxutry.rex utility

	Conclusions
	Conclusions
	Further work
	Acknowledgements
	Resources
	Questions?

