A Tokenizer for REXX and OOREXX

35th International Rexx Language Symposium
Brisbane, Australia, March 3-6 2024

Josep Maria Blasco

jose.maria.blasco@gmail.com

EPBCN — ESPACIO PSICOANALITICO DE BARCELONA

C/ BALMES, 32, 2° 1° — 08007 BARCELONA

March the 4th, 2024

A Tokenizer for REXX and OOREXX

Part |

Introduction: General concepts

Introduction: General concepts
Natural languages and formal languages
Lexers, tokenizers and parsers
Clauses, tokens and items
“Tokenized"” programs
What is a tokenizer good for?

[Introduction] Natural and formal languages (1/3)

 Natural languages have... | Programming languages have... |

An alphabet An alphabet

Lexical elements: Lexical elements:
Words, Identifiers,
numerals, numbers,
acronyms, strings,
spaces, comments,
punctuation, whitespace,
punctuation,

[Introduction] Natural and formal languages (2/3)

’ Natural languages have... \ Programming languages have... ‘

An alphabet An alphabet
Lexical elements Lexical elements
Syntax rules Syntax rules
Non-rigid. Especially Rigid
in certain contexts: Not optional
Poetry Can not be bended
Marketing
News headlines
Jokes

[Introduction] Natural and formal languages (3/3)

Rigid rules: when we operate with a formal language (logic,
physics, chemistry, mathematics, music, programming languages,
...) we want to be completely sure of

» What we are saying.
» The meaning of what we are saying.

That is, we want to eliminate the ambiguity that is inherent to
natural languages, by means of clear, unambiguous, definitions of
the syntax and the semantics of the formal language.

[Introduction] Lexers, tokenizers and parsers

An application that reads programs written in a certain
programming language and returns the sequence of its lexical
elements is called a lexer or a tokenizer.

= Beware: “Token" has two special, different, meanings in the
Rexx language.

An application that reads programs written in a certain
programming language and returns a representation of its syntax
tree is called a parser.

[Introduction] Clauses, tokens and items (1/2)

A REXX clause: a sequence of whitespace, comments and tokens,
ended by a (in many cases implied) semicolon. A token may be:

» A literal string (including hexadecimal and binary strings).
» A symbol (Chair, t., t.i.j, 25AB, .Soup, ...).

» A number (= a special form of literal string ["-12.3",
"4e-2", ...] or symbol [12.34, BE+12, ..]).

» An operator character ("+", "=" k"),
» A special character (":", "(", ")", "),

[Introduction] Clauses, tokens and items (2/2)

A desirable property of a lexical analyser is to return all the
components of a clause, including whitespace and comments,
instead of only its tokens.

» Our tokenizer will return all the components (“items”), not
only the tokens.

» This allows to reconstruct the source program by collating
these items in order.

= Qur tokenizer returns more than only tokens.

[Introduction] “Tokenized" programs

Colloquially, one refers to a program distributed without source as
a tokenized program. Although this denomination has stuck,

it is inexact, since “tokenized” programs are indeed full abstract
syntax trees, not a mere sequence of tokens.

= In this presentation, we will use “token” in its proper sense.

[Introduction] What is a tokenizer good for?

» A language processor (i.e., an interpreter or a compiler) has to
“understand” a program before running it. To that purpose, it
has to first break it into its constituent elements.

» Other purposes: a tokenizer is ideally suited to introduce
transformations into the sequence of lexical elements that
compose a program [Examples: a prettyprinter, a preprocessor
(like RXU, see below)],

» and also to compile data about that sequence [Example: a
cross-referencer].

A Tokenizer for REXX and OOREXX

Part 1l

Tokenizer features

Tokenizer features
The specificity of Rexx
Simple and full tokenizing
Tokenizing several dialects
Experimental support for Unicode

[Features| The specificity of Rexx (1/4)

The syntax of Rexx is peculiar in several aspects. One of the main
ideas behind its design is to make life easy for users, not for
language processor implementers.

Example 1: Rexx has no reserved words.

while = 4

Do while = 1 To (while) While (while < 7)
Say while
End while

= Parsing may be more difficult than with less peculiar languages.

[Features| The specificity of Rexx (2/4)

The syntax of Rexx is peculiar in several aspects.

Example 2: The concept of token is counterintuitive:

>

>

Whitespace is not a token, but, when significant, it may be an
operator.

Some basic constructs like "xx" "+="or '::' are not a
single token but a sequence of several tokens (and may have
whitespace and/or comments in between, not that it is a great
idea).
al = a2 | /* That was a */ - /* (continued) */

| a3 /* concatenation, after all */

[Features| The specificity of Rexx (3/4)

The syntax of Rexx is peculiar in several aspects.

Example 3: The concept of symbol is highly unusual:

» It encompasses variable symbols (simple,compound or stems),
environment symbols,
constant symbols,

vyy

and numbers (= syntax rules are bended to accommodate
signs in numbers with an exponent).

More “classical” languages have identifiers and numbers (as distinct
syntactical constructs), but no constant symbols or environment
synbols.

[Features| The specificity of Rexx (4/4)

The syntax of Rexx is peculiar in several aspects.

Example 1: Rexx has no reserved words.
Example 2: The concept of token is counterintuitive.
Example 3: The concept of symbol is highly unusual.

= Qur tokenizer will have to take into account all these
peculiarities.

[Features] Simple and full tokenizing (1/2)

Simple tokenizing: we want the sequence of tokens and separators

exactly as they occur in the source file.

For example, if we tokenize “a += 1", we want to get:

1.

SO0k wn

"a" (a variable symbol),

" " (whitespace, a blank),

"+" (an operator character),

"=" (another operator character),
" ' (another blank), and

"1" (an integer number symbol).

[Features| Simple and full tokenizing (2/2)

Full tokenizing: we want that some tokens are combined into higher
level constructs, and that non-significant separators are discarded.

Tokenizing “a += 1" once more, but now with full tokenizing, we
would get:
1. "a" (a variable symbol, with an indication that this is the start
of an [extended] assignment),
2. "+=" (an extended assignment operator),
3. "1" (an integer number symbol).

[Features| Tokenizing several dialects

We want to be able to recognize several variants of REXX:

» Open Object REXX (OOREXX)

» REGINA REXX

» ANSI REXX (implemented by REGINA)
» ... (in the future?)

Every dialect has its own, slightly different definitions. For example,
whitespace in OOREXX includes only HT as other _blank charac-
ters, but under REGINA we also accept VT and FF.

[Features| Experimental support for Unicode (1/5)

When activated, we accept five new string suffixes.

Low-level Unicode strings, "String"U, composed of any number of
» Blank-separated hexadecimal code points (with or without a

"U+" or "u+" prefix: "g1"y == uau' "u+0061"U == nan'
"{F680"U == " 0"1 "U+1F680"U == " an)_
» Parenthesized names, alias or labels (" (Rocket)"U == " <"
"(End-of-1line)"U == "OA"X, "(<Control-000A>)"U
== "0A"X).

Names, alias and labels are case-insensitive, and blanks, dashes and
underscores are ignored.

[Features| Experimental support for Unicode (2/5)

Low-level BYTES strings, "String"Y, composed of bytes.

BYTES strings are explicitly declared to be equivalent to Classic
Rexx strings. The "Y" suffix is useful when unsuffixed strings have
been assigned non-classical semantics.

Options DefaultString Codepoints
/* —=> Now a string is a CODEPOINTS string by default */

a = "fﬁJf /* A CODEPOINTS string, 1 code point */
b="% W"Y /* A4 BYTES string, 8 bytes */

[Features| Experimental support for Unicode (3/5)

CODEPOINTS strings, "String"P, composed of Unicode code
points.

"String" has to be valid UTF-8, or a syntax error will be raised.

0o = "5 ' tm P
Say Length(zoo) /* 3 (3 code points) */
Say zoo[2] /* */

[Features| Experimental support for Unicode (4/5)

GRAPHEMES strings, "String"G, composed of Unicode extended
grapheme clusters.

"String" has to be valid UTF-8, or a syntax error will be raised.

Options Coercions Promote

glue = "(Zero Width Joiner)"U
family = n = ||glue|| A IIgluell £ llgluell e IIG /* <—= Note the /IGII */
Say Length(family) /* 1 (1 grapheme cluster) */

Say family /* */

[Features| Experimental support for Unicode (5/5)

TEXT strings, "String"T, composed of Unicode extended
grapheme clusters automatically normalised to NFC.

jose = "Jose'"T
joseacute = jose"301"U /* "301"U is the acute accent */
Say C2X(joseacute[4]) /* 3949 (not 65CC81) */

Say Reverse(joseacute) /* ésoJ */

A Tokenizer for REXX and OOREXX

Part Il

Using the tokenizer

Using the tokenizer
Installation
Choosing the right tokenizer
Creating a tokenizer instance
Load the tokenizer constants
Choosing simple or full tokenizing
Choosing detailed or undetailed tokenizing

Structure of the returned items
Returned items are REXX stems
Class and subclass
Location
Value
Other attributes
Error handling

[Usage| Installation

» To use the tokenizer in conjunction with all the
TUTOR-defined Unicode REXX features, follow the TUTOR
installation instructions, and load the Unicode libraries using:

::Requires "Unicode.cls"

» If you do not need Unicode features, you can
load a standalone version of the tokenizer:

::Requires "Rexx.Tokenizer.cls"

[Usage| Choosing the right tokenizer

Choose the class that represents the tokenizer variant you want to
run:

» ooRexx.Tokenizer, for programs written in OOREXX.
» Regina.Tokenizer, for programs written in REGINA.
» ANSI.Rexx.Tokenizer, for programs written in ANSI REXX.

If you need Unicode features, choose one of

» ooRexx.Unicode.Tokenizer,
» Regina.Unicode.Tokenizer or
» ANST.Rexx.Unicode.Tokenizer.

[Usage| Creating a tokenizer instance

To create a tokenizer instance, you will first need to construct a
REXX array containing the source program to tokenize.

/* Assume the source program resides in a file */
/* Read the whole file into an array */
source = CharIn(inFile,,Chars(inFile))~makeArray

This array will then be passed as an argument to the new method
of the corresponding tokenizer class, to get an instance of the
tokenizer for this particular program source.

/* Now create a tokenizer instance */
tokenizer = .ooRexx.Tokenizer~new(source)
/* Or .Regina.Tokenizer, etc. */

[Usage| Load the tokenizer constants

You should load the tokenizer symbolic constants contained in the
tokenizer tokenClasses constant by using the following code
fragment:

Do constant over tokenizer~tokenClasses
Call Value constant[1], constant[2]
End

This will allow you to identify the token classes and subclasses
returned by the tokenizer, like END_OF SOURCE, SYNTAX ERROR,
VAR _SYMBOL or ASSIGNMENT INSTRUCTION.

All constants have one byte values.

[Usage| Choosing simple or full tokenizing

Depending on the characteristics of your program, you may want to
choose simple tokenizing (using the getSimpleToken method), or
full tokenizing (using getFullToken):

/* Two possible reasons to exit the loop */
exit_conditions = END_OF SOURCE || SYNTAX ERROR
Do Forever

item = tokenizer~getSimpleToken /* Or getFullToken */

/* Ezit on error or end of source */
If Pos(item[class], exit_conditions) > O Then Leave
/* ==> Do things with the itemn */

End

[Usage| Choosing detailed or undetailed tokenizing

If you have chosen to use the full tokenizer, you will also have to
decide if you want to get detailed or undetailed results from your
getFullToken method calls. You can do that when creating your
tokenizer instance, by using a second, optional, argument of the
new class method:

/* A second, boolean and optional, argument of */
/* the 'new' method determines if tokenizing */
/* will be detailed or not. */

tokenizer = .ooRexx.Tokenizer~new(source, .true)

[Usage] Returned items are REXX stems

The result of a call to getSimpleToken (or getFullToken) is a
REXX stem:

token. = tokenizer~getSimpleToken

Each stem has a number of predefined indexes (we sometimes call
them “properties” or “attributes”), like token.class,
token.subclass, token.location and token.value. Results of
full tokenizing and special tokens like SYNTAX ERROR may have
additional properties.

[Usage| Class and subclass

Token.class and token.subclass describe the nature of the
returned token. Examples:

» token.class == VAR SYMBOL & token.subclass ==
SIMPLE VAR: a variable symbol which is not a stem or a
compound symbol.

» token.class == KEYWORD_INSTRUCTION &
token.subclass == CALL_INSTRUCTION: a Call instruction
(full tokenizing only).

» token.class == BLANK: whitespace.

» token.class == STRING & token.subclass ==
TEXT_STRING: a TEXT string, specified with the "T" suffix.

[Usage| Location

Token.location is a string containing four integers separated by
blanks which describe the location and extent of the returned
token:

"startLine startCol endlLine endCol"

The token starts at line startLine, column startCol, and
extends until line endLine, column endCol - 1. StartLine and
endLine always have the same value, except for multi-line
comments and OOREXX resources.

[Usage| Value

In most cases, token.value is the value of the token as it appears
in the source program.

Comments and OOREXX resources return a placeholder (but you
can reconstruct the original token value by resorting to
token.location and inspecting the source code).

Some few token classes return values which are interpreted. For
example, hexadecimal and binary strings are converted to character
strings, and Unicode strings are replaced by their UTF-8
representations.

[Usage| Other attributes

Some few item classes return stems with additional attributes.

As we have seen, SYNTAX ERROR returns a number of additional
attributes to fully describe the error.

Additionally, detailed full tokenizing may return “ignored” (or
“absorbed”) tokens in the token.absorbed array (more about
that below).

[Usage| Error handling (1/2)

When an error is encountered, tokenizing stops, and a special item
is returned. lts class and subclass will be SYNTAX ERROR, and a
number of special attributes will be included, so that the error
information is as complete as possible

item.class SYNTAX_ERROR
item.subclass SYNTAX_ERROR
item.location = location of the error in the source file

item.value = main error message

/* Additional attributes, specific to SYNTAX_ERROR */
item.number = the error number, in the format major.minor
item.message = the main error message (same as item.value)

item.secondaryMessage = secondary error message
item.line = line number where the error occurred

[Usage| Error handling (2/2)

If you want to print error messages that are identical to the ones
printed by OOREXX, you can use the following code snippet:

If item.class == SYNTAX_ERROR Then Do
line = item.line
Parse Value item.number With major".'"minor
Say
/* inFile is the input file mame, and array contains the source */
Say Right(line,6) "x-x" array[line]
Say "Error" major "running" inFile "line" line":" item.message
Say "Error" major"."minor": " item.secondaryMessage
/* -major should be returned when a syntax error is encountered */
Return -major
End

A Tokenizer for REXX and OOREXX

Part IV

Testing the tokenizer

The InspectTokens program
The InspectTokens program
Simple tokenizing: an example
Undetailed full tokenizing: an example
Detailed full tokenizing: an example

[Testing] The InspectTokens program

InspectTokens.rex resides in the parser subdirectory.

C:\Unicode>InspectTokens
InspectTokens.rex -- Tokenize and inspect a .rex source file

[rexx] InspectTokens[.rex] [options] [filenamel]
Options (starred descriptions are the default):

-help Print this information

-detail, -detailed Perform a detailed tokenization (*)
-nodetail, -nodetailed Perform an undetailed tokenization
-full Use the full tokenizer (x*)

-simple Use the simple tokenizer

-unicode Allow Unicode extensions (%)
-nounicode Do not allow Unicode extensions
-oorexx Use the Open Object Rexx tokenizer (x)
-regina Use the Regina Rexx tokenizer

—ansi Use the ANSI Rexx tokenizer

C:\Unicode>

[Testing] Simple tokenizing: an example
Assume that test.rex contains a single line, 1 = 1 + 1.

C:\Unicode>InspectTokens -simple test.rex

[f 1 1 1] END_OF_CLAUSE (BEGIN_OF_SOURCE): "'

[1 2] VAR_SYMBOL (SIMPLE_VAR): 'i'

[1 3] BLANK: ' '

[1 4] OPERATOR: '='

[1 5] BLANK: ' '

[1 6] VAR_SYMBOL (SIMPLE_VAR): 'i'

[1 7] BLANK: ' '

[1 8] OPERATOR: '+'

[1 1 9] BLANK: '

[f 9 1 10] NUMBER (INTEGER): '1'

[1{ 10 1 10] END_OF_CLAUSE (END_OF_LINE): "'
Took 0.002000 seconds.

1
2
K]
4
5
6
7
8

C:\Unicode>

[Testing] Undetailed full tokenizing: an example

C:\Unicode>InspectTokens -full -nodetailed test.rex
1 [1 1 1] END_OF_CLAUSE (BEGIN_OF_SOURCE): "'
2] ASSIGNMENT_INSTRUCTION (SIMPLE_VAR): 'i' B

[1 1
[1 1 5] OPERATOR (ASSIGNMENT_OPERATOR): '=' B
[1 1 6] VAR_SYMBOL (SIMPLE_VAR): 'i'
[1 1 9] OPERATOR (ADDITIVE_OPERATOR): '+' B
[1 1 10] NUMBER (INTEGER): '1'

[1 10 1 10] END_OF_CLAUSE (END_OF_LINE): ''
Took 0.002000 seconds.

C:\Unicode>

Lines that have changed are marked with a emoji.

[Testing] Detailed full tokenizing: an example

C:\Unicode>InspectTokens -full -detailed test.rex
1 [1 11 1] END_OF_CLAUSE (BEGIN_OF_SOURCE): ''
2 [1 11 2] ASSIGNMENT_INSTRUCTION (SIMPLE_VAR): 'i'
3 [1 21 5] OPERATOR (ASSIGNMENT_OPERATOR): '='
---> Absorbed:
1 [1 2 1 3] BLANK: ' '
2 [1 3 1 4] OPERATOR:
3 [1 4 1 5] BLANK: ' '
4 [1 51 6] VAR_SYMBOL (SIMPLE_VAR): 'i'
5 [1 6 1 9] OPERATOR (ADDITIVE_OPERATOR): '+'
---> Absorbed:
1 [1 6 1 7] BLANK: ' '
2 [1 7 1 8] OPERATOR: '+' <==
3 [1 8 1 9] BLANK: ' '
6 [1 9 1 10] NUMBER (INTEGER): '1'
7 [1 10 1 10] END_OF_CLAUSE (END_OF_LINE): ''

Lines that are new are marked with a emoji.

A Tokenizer for REXX and OOREXX

Part V

RXU, the REXX Preprocessor for
Unicode

RXU, the REXX Preprocessor for Unicode
An example run of RXU
How does the preprocessor work?

[RXU] An example run of RXU (1/3)

)

Let us create a test2.rxu file with the following content:

Options DefaultString Text

var = "$&" || "(Lobster)"U

Say '"'var'" is a' StringType(var) "string of length" Length(var)
If we now run the preprocessor against this file, we will get the
following output:

C:\Unicode>rxu test2
" " is a TEXT string of length 2

C:\Unicode>
This worked as expected!

But how, and why?

[RXU] An example run of RXU (2/3)

Let us now run the preprocessor with the ~keep option: this keeps
a copy of the generated .rex file (instead of deleting it):

Do; !Options = DefaultString Text; Call !Options !Options; Options !Options; End

var = (IDS("$@ ")) || (Bytes("¥")
Say (IDS('"'))var||(!DS('" is a')) StringType(var) (!DS("string of length")) !Length(var)

Ul W N =

::Requires 'Unicode.cls'

» A line-by-line translation

» A blank line and : :Requires 'Unicode.cls' are added at
the end of the translated program.

» The Options instruction gets a complex translation. [../..]

[RXU] An example run of RXU (3/3)

Do; !Options = DefaultString Text; Call !Options !Options; Options !Options; End

var = (IDSC"®&")) || (Bytes("¥")
Say (!DS('"'))var||(!DS('" is a')) StringType(var) (!DS("string of length")) !Length(var)

TR W N =

::Requires 'Unicode.cls'

» Unsuffixed "string" = ! (DS("string")). !DS implements
Options DefaultString.

» "(Lobster)"U = (Bytes("¥"))
» New built-in functions, like StringType (), appear as-is.

» Existing built-in functions, like Length(), have a "!"
character prepended to their name.

[RXU] How does the preprocessor work? (1/3)

Example 1: Translating Length ().

» We should translate function and procedure calls only,
including

Call Length

instructions, but not variable names, method calls or internal
routines.

» We can do (most of) that with only a few symbols of context.
» (But we can not handle internal routines called Length).

[RXU] How does the preprocessor work? (2/3)

Example 2: Translating strings [1/2]. An unsuffixed string

"string" gets translated to ! (DS("string)). When an
Options DefaultString instruction is found, the setting is
stored in .local~Unicode.DefaultString (default is "TEXT").

::Routine !DS Public
Use Strict Arg string

Select Case Upper(.Unicode.DefaultString)
When "BYTES" Then Return Bytes(string)
When "CODEPOINTS" Then Return Codepoints(string)
When "GRAPHEMES" Then Return Graphemes(string)
When "TEXT" Then Return Text(string)
Otherwise Return String

End

[RXU] How does the preprocessor work? (3/3)

Example 2: Translating strings [2/2]. P, G, and T strings have to be
checked for UTF-8 well-formedness, and T strings have to be
additionally normalised to NFC, if needed.

The translation of a Unicode U string has to be enclosed in a call to
Bytes (), but only in certain contexts:

"(Duck)"U: Say "(Duck)"U

/* If we translate to */
BYTES(" &»"): Say BYTES("&» ") /* —-> Syntaz error */
/* We should instead translate to */

"¢ ": Say BYTES("¢s") /* OK */

A Tokenizer for REXX and OOREXX

Part VI

Conclusions

Conclusions
Further work
Acknowledgements
Resources
Questions?

[Conclusions| Further work

» Evolve the tokenizer into a full abstract syntax tree parser.

» Improve RXU, the REXX preprocessor for Unicode, to take
advantage of the tokenizer enhancements (for example, calls
to internal functions with the same name as built-in functions
will not be translated).

» Explore the development of new tools, like a cross-referencer
for REXX and OOREXX.

» Possibility of new, most probably more powerful, language
extensions.

[Conclusions| Acknowledgements

TUTOR, and the REXX tokenizer, could not have been developed without the
intense debates, general creativity and overwhelming feedback of the RexxLA
Architecture Review Board (ARB), for which | am deeply indebted.

| also want to extend my gratitude to Laura Blanco, Mireia Monforte, David
Palau and Amalia Prats, students of my Psychoanalysis and Logic course at
EPBCN, where | also teach some REXX programming, for their persistence,
unwavering interest, and candid feedback.

Finally, | have to thank my colleagues at EPBCN, for being loving, caring and
supportive, and for bearing with me during the long periods where | immersed
myself in REXX matters, disappearing from the common world. Special thanks
should go to Silvina Fernandez and Olga Palomino, who have attended several
essay sessions. Silvina Fernandez has also taken care to operate our ElGato
Stream Deck during my talks.

[Conclusions| Resources

>

>

This file: https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf.

Related article: https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf.

Accompanying article: The Unicode Tools Of Rexx:
https://www.epbcn.com/pdf/josep—maria-blasco/
2024-03-04-The-Unicode-Tools-0f-Rexx.pdf. Slides:
https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-The-Unicode-Tools-0f-Rexx-slides.pdf.

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf

[Conclusions| Questions?

Thank you!

Questions?

	General concepts
	Introduction: General concepts
	Natural languages and formal languages
	Lexers, tokenizers and parsers
	Clauses, tokens and items
	``Tokenized'' programs
	What is a tokenizer good for?

	Tokenizer features
	Tokenizer features
	The specificity of Rexx
	Simple and full tokenizing
	Tokenizing several dialects
	Experimental support for Unicode

	Using the tokenizer
	Using the tokenizer
	Installation
	Choosing the right tokenizer
	Creating a tokenizer instance
	Load the tokenizer constants
	Choosing simple or full tokenizing
	Choosing detailed or undetailed tokenizing

	Structure of the returned items
	Returned items are Rexx stems
	Class and subclass
	Location
	Value
	Other attributes
	Error handling

	Testing the tokenizer
	The InspectTokens program
	The InspectTokens program
	Simple tokenizing: an example
	Undetailed full tokenizing: an example
	Detailed full tokenizing: an example

	RXU, the Rexx Preprocessor for Unicode
	RXU, the Rexx Preprocessor for Unicode
	An example run of RXU
	How does the preprocessor work?

	Conclusions
	Conclusions
	Further work
	Acknowledgements
	Resources
	Questions?

