
JDOR - Java2D for ooRexx (and Other Programming Languages)

Rony G. Flatscher
 Department of Information Systems and Operations Management

 WU (Wirtschaftsuniversität)
Vienna Austria

 Rony.Flatscher@wu.ac.at

ABSTRACT
JDOR (Java2D for ooRexx) is a Rexx command handler that al-
lows using simple string commands to create Java2D graphics
and animations. The tool is part of the open source
BSF4ooRexx850 package, a bidirectional ooRexx-Java bridge, and
allows in addition for recording JDOR commands and to replay
them later one by one. This allows for creating Java2D graphics
and running simple Java2D animations from plain text files such
that programs in any programming language can take advantage
of JDOR.

The design and implementation of JDOR simplifies the interface
to the Java2D classes considerably such that even students with-
out any professional graphics background (like business admin-
istration students) can successfully take advantage of the tool to
create even complex Java2D graphics and Java2D based anima-
tions which would be otherwise impossible for them as they lack
the necessary Java programming and graphical skills.

Video: https://zenodo.org/record/8003114

CCS CONCEPTS
• Computing methodologies~Computer graphics • Computing
methodologies~Image manipulation • Computing methodolo-
gies~Procedural animation • Applied computing~Education •
Software and its engineering~Scripting languages • Software and
its engineering~Command and control languages • Software and
its engineering~Object oriented languages • Information sys-
tems~Open source software

KEYWORDS
Java2D, commands, graphics, tool, JDOR, object-oriented pro-
gramming, ooRexx, Java, BSF4ooRexx850, BSF4ooRexx

1 Introduction
Graphics can be created in Java since its first version using clas-
ses from the java.awt package, most notably java.awt.Graphics.
In Java 1.2 an improved version, the subclass ja-
va.awt.Graphics2D, got introduced with related classes, like those
implementing the java.awt.Shape interface, which are subsumed
under the name "Java2D". Java2D got exploited in order to im-
plement the javax.swing controls which were introduced with
Java 1.2 as well. [1] gives an overview of Java2D with links that

allow to get acquainted with Java2D, [2] introduces and demon-
strates many important aspects of Java2D.
ooRexx [3] is the open-source version of IBM's Object Rexx,
which was devised as the object-oriented successor to IBM's
Rexx programming language. ooRexx is released and maintained
by the non-profit "Rexx Language Association (RexxLA)" [4].
BSF4ooRexx850 [5] is an open-source package that realizes a
bidirectional ooRexx-Java bridge, making it possible to use the
Java runtime environment and take advantage of all Java classes
in it directly from ooRexx programs. Using BSF4ooRexx850 it
becomes possible to exploit Java2D from ooRexx by directly
using all Java2D classes.

The release of ooRexx 5.0 at the end of 2022 added the ability to
the interpreter to install Rexx command handlers at runtime for
the first time. BSF4ooRexx850 takes advantage of the new
ooRexx 5.0 native APIs and implemented the ability to create
Rexx command handlers in Java rather than in C++. As a proof
of concept a core version of JDOR (Java2D for ooRexx) got im-
plemented and reported in the fall of 2022 at the International
Rexx symposium [6]. This experiment showed that it is indeed
possible to define Rexx commands (strings) that will allow for
exploiting Java2D in a much simpler manner than is possible
compared to directly interacting and employing the respective
Java2D classes from ooRexx. In the months that followed JDOR
was enhanced to cover all of the functionality of the "ja-
va.awt.Graphics2D" class, and the Java classes implementing the
"java.awt.Shape" interface and named with a trailing "2D" like
"java.awt.geom.Rectangle2D" and including "java.awt.geom.
Path2D". JDOR includes the ability to log all JDOR commands
such that one can save them in a plain text file that can then be
used to recreate the graphics by rerunning these commands with
the JDOR Rexx command handler.

In addition JDOR defines commands for displaying the Java2D
graphic in a window, moving and hiding such windows, loading
from and saving to files, as well as printing them. This way
JDOR can be used to create and run Java2D macros where the
commands can be created in any programming language. Given
the ability to display the Java2D graphic in real time and the
ability to delay changes in the displayed Java2D graphic allows
for creating animation effects in a simple and easy to use man-
ner. This way JDOR can be regarded as a tool that allows for
creating and animating Java2D graphics with Rexx commands
which are plain strings.

35th International Rexx Language Symposium Rony G. Flatscher

2 ooRexx and Rexx Commands
ooRexx (open object Rexx) has been originally developed by IBM
under the name "Object Rexx" as an object-oriented successor to
IBM's Rexx language. After negotiations with the non-profit
"Rexx Language Association", IBM handed over the source code
for RexxLA to open source and maintain it. ooRexx is designed
to run Rexx programs unchanged, yet adds the ability to define
classes and implements the message paradigm which is used
exclusively for interacting with Rexx objects.

ooRexx is a dynamic language which is caseless, dynamically
typed and dispatches messages dynamically. There are no re-
served keywords and the language supports four instruction
types: assignment instructions, keyword instructions, command
instructions and directive instructions. These properties of the
language make it easy to apprehend for novices and has been
successfully used to teach the foundations of object-oriented
programming to business information system students but inter-
estingly also to interested business administration students in a
single semester [7].

Figure 1 displays an ooRexx program that demonstrates the four
instruction types, its output is given in Figure 2. ooRexx will
process programs in three phases: the loading and syntax check
phase 1, the setup phase 2 in which directive instructions get
carried out by the interpreter, and the execution phase 3 in
which a program gets executed starting with the first instruction
at the top of the program. The setup phase 2 will process the
routine directive instruction and the routine named "pp" will be
created which encloses the first argument in square brackets.
The execution phase 3 causes the assignment of the value "Hello
world" to a variable named "a", then repeats a loop three times in
which each time a string gets created using the current values of
the variables "a" and "i" and using the "say" keyword instruction
to output the string value to the console (stdout). Finally a Rexx
command instruction gets demonstrated: if an instruction is
neither an assignment, a keyword or a directive, then it is a
command instruction.

a="Hello world" /* assignment */
do i=1 to 3 /* keyword */
 say "... #" i":" a /* keyword */
end /* keyword */
cmd="echo" a "..." /* assignment */
say "cmd:" pp(cmd) /* keyword */
cmd /* command (has return code) */
say "return code:" pp(RC) /* keyword */

::routine pp /* directive */
 return "["arg(1)"]" /* keyword */

Figure 1: Four ooRexx instruction types

... # 1: Hello world

... # 2: Hello world

... # 3: Hello world
cmd: [echo Hello world ...]
Hello world ...
return code: [0]

Figure 2: Output of program in Figure 1

A Rexx command consists of a string that can be given as a lit-
eral, as an expression yielding a string or if a variable is supplied
its value gets evaluated to a string and used as the command.
The command then will by default be addressed to the operating
system environment by the interpreter. Upon return of the
command its return code will be assigned to a Rexx variable
named "RC" by the interpreter and can be immediately used in
the program. In Figure 1 the variable "cmd" gets the result of the
expression assigned to it which refers to the string "echo Hello
world ...". The command instruction "cmd" will yield its string
value which gets sent to the system' shell for execution which
will output "Hello world ..." to the console. Upon return from the
"echo" command the Rexx "say" keyword instruction displays the
value of the return code using the Rexx variable "RC" which in
this case yields "0" indicating that the command was executed
without any problems.

By default Rexx commands get used to address the operating
system for execution. However, Rexx command handlers can be
freely programmed and it is possible to define different com-
mand handlers at the same time to process command instruc-
tions. To address the appropriate command handler there is the
Rexx keyword instruction "address" that names the command
handler environment that is to execute the command.

ooRexx 5.0 implemented the optional ANSI Rexx [8] feature of
the Rexx "address" keyword instruction that allows for redirect-
ing input ("stdin"), output ("stdout") and error output ("stderr")
while a command gets executed. If a command is written as a
filter program that reads from "stdin" and writes to "stdout" or
"stderr" then it would be possible with such a redirection to feed
the command with "stdin" data supplied directly by ooRexx pro-
grams using, e.g., arrays, and output to ooRexx objects serving as
the redirection targets for "stdout" and "stderr".

Figure 3 defines three command instructions, Figure 4 shows the
output of the program on the console: the first "echo" command
gets implicitly sent to the operating system shell, the second
"echo" command uses explicitly the "address" keyword instruc-
tion to direct the command to the "system" shell. The "sort"
command will be sent to the system shell with input ("stdin")
redirected from the ooRexx array named "ua" of unsorted names
and the output (stdout) redirected to the ooRexx array named
"sa". Finally, both array objects get displayed as comma-blank
separated strings such that one can see the unsorted names fed
to the system’s shell "sort" command as input via "stdin" and the
resulting sorted names fetched into the "sa" array from "stdout".

"echo hello world 1" -- by default addresses system
say "--> echo's return code:" rc
address system "echo hello world 2" -- explicit addresss
say "--> echo's return code:" rc
ua="John", "Hans", "Alicia", "Xaver", "Josep" -- unsorted
sa=.array~new -- array to receive the sorted names
ADDRESS system "sort" WITH INPUT USING (ua) OUTPUT USING (sa)
say "--> sort's return code:" rc
say "unsorted names:" ua~makeString("L",", ")
say "sorted names: " sa~makeString("L",", ")

Figure 3: Using sort command for sorting Rexx arrays

JDOR - Java2D for ooRexx (and Other
Programming Languages)

March 3rd – March 6th 2024

Brisbane, Australia

hello world 1
--> echo's return code: 0
hello world 2
--> echo's return code: 0
--> sort's return code: 0
unsorted names: John, Hans, Alicia, Xaver, Josep
sorted names: Alicia, Hans, John, Josep, Xaver

Figure 4: Output of program in Figure 3

3 BSF4ooRexx850 and Rexx Command Han-
dlers

BSF4ooRexx850 defines external Rexx functions that are imple-
mented in native code, i.e. C++ for ooRexx' and Java's native
interface, and defines utility routines and utility classes in
ooRexx and in Java. The accompanying ooRexx program
"BSF.CLS" is an ooRexx package of routines and classes that
among other features supplies "ooRexx camouflaging support" in
the form of an ooRexx proxy class for Java classes named "BSF"
which can be used to reference any Java object as if it was an
ooRexx object. Consequently this allows for sending ooRexx
messages to Java objects.

Figure 5 uses the requires directive instruction which will be
carried out in the setup phase 2 to make all public routines and
public classes of the ooRexx package “BSF.CLS” available in the
execution phase 3 to the program.

d=.bsf~new("java.awt.Dimension",111,222)
say "d: " d -- displays object's name
say "d~toString:" d~toString -- send message to Java
say -- new line
say "... d~setSize(333,444):"
d~setSize(333,444) -- send message to Java
say "d~toString:" d~toString -- send message to Java
say -- new line
say "... Java fields as if they were Rexx attributes:"
d~width =555 -- camouflaged as Rexx attribute
d~height=666 -- camouflaged as Rexx attribute
say "d~toString:" d~toString -- send message to Java
say " d~width:" d~width "d~height:" d~height

::requires "BSF.CLS" -- get ooRexx-Java bridge

Figure 5: Communicating with Java objects

d: java.awt.Dimension@3d012ddd
d~toString: java.awt.Dimension[width=111,height=222]

... d~setSize(333,444):
d~toString: java.awt.Dimension[width=333,height=444]

... Java fields as if they were Rexx attributes:
d~toString: java.awt.Dimension[width=555,height=666]
 d~width: 555 d~height: 666

Figure 6: Output of program in Figure 5

The program uses the ooRexx proxy class "BSF" from the pack-
age "BSF.CLS" to create an instance of the Java class named "ja-
va.awt.Dimension" supplying a width of 111 and a height of 222
pixels. The ooRexx proxy object will get the Java object's default
string value assigned as its object name which as a result gets
displayed to the console (cf. "java.awt.Dimension@ 3d012ddd" in
the first line in Figure 6). The "toString" message will return the

Java string rendering of the Java object, the "setSize" message and
its arguments will change the Dimension object fields according-
ly as can be seen from the result of the next "toString" message.

The BSF4ooRexx850 Java classes allow for implementing Rexx
command handlers in Java quite easily and get demonstrated
with the programs in the subdirectories of "BSF4ooRexx850" in-
stallation directory "BSF4ooRexx850/samples/Java/handlers/ com-
mandHandlers". The subdirectories with names ending in "850"
contain the samples that demonstrate how to take advantage of
this new feature. It is possible for Java programs to implement
and define different Rexx command handlers and preconfigure
the Java Rexx engine such that Rexx scripts that get executed
can address these different Rexx command handlers directly. It
would even be possible to exploit this infrastructure and imple-
ment Rexx command handlers directly in ooRexx exploiting
BSF4ooRexx850 for this purpose which opens up new options
and possibilities.

Once a Rexx command handler has been implemented and can
be loaded using BSF4ooRexx850 the Rexx programmer needs to
create an instance of such a Rexx command handler class and
register it with the ooRexx runtime system supplying a name
that needs to be used with the "address" keyword instruction in
order to have the command directed to that particular Rexx
command handler for execution.

Figure 7 demonstrates the necessary statements at the top: first
an instance of the JDOR Rexx command handler gets created and
assigned to the variable "jdh" and then the external Rexx func-
tion named "BsfCommandHandler" gets invoked to add this Java
command handler "jdh" under the address name "JDOR" to the
ooRexx environment. The program in Figure 7 will then use the
"address" keyword statement to define the default environment
for commands to be "JDOR" such that all commands by default
will get directed at JDOR instead of the system shell. As in this
case the output redirection gets used, the JDOR handler will
output each executed JDOR command in a canonical form.

jdh=.bsf~new("org.oorexx.handlers.jdor.JavaDrawingHandler")
call BsfCommandHandler "add", "JDOR", jdh -- add handler
address JDOR with output using (.output) -- set JDOR handler

newImage 200 200 -- create image width=200, height=200
winShow -- show window
fn1='rexxla.png' -- filename
loadImage img1 fn1 -- load image, RC gets its dimension
say "--" fn1": RC=["RC"]" -- show file name and RC
parse var RC cbsW cbsH -- parse RC to get width and height
moveTo 16 25 -- set location to x=16 y=25
drawImage img1 (cbsW/7) (cbsH/7) -- resize image to 1/7
fn2='bsf4oorexx_256.png' -- filename (used also as nickname)
loadImage img2 fn2 -- load image, RC gets its dimension
say "--" fn2": RC=["RC"]" -- show file name, RC
parse var RC ptW ptH -- parse RC to get width and height
moveTo 75 145 -- set location to x=75 y=145
drawImage img2 (ptW/5) (ptH/5) -- resize image to 1/5
saveImage "20_images.png" -- save image to file
sleep 3 -- sleep a bit
parse pull . -- user needs to press <enter>

::requires "BSF.CLS" -- get ooRexx-Java bridge

Figure 7: Addressing JDOR command handler

35th International Rexx Language Symposium Rony G. Flatscher

4 JDOR - Java2D for ooRexx
"Java2D" is a term that was introduced with Java 1.2 in the con-
text of the new Java class "java.awt.Graphics2D" which extends
the original "java.awt.Graphics" class. Together with it classes
that implement "java.awt.Shape" like "java.awt.geom. Rectan-
gle2D" became part of the Java runtime environment and exist-
ing classes like "java.awt.Polygon" added the Shape interface for
Java 1.2. Controls in the "javax.swing" package introduced with
Java 1.2 use Java2D to draw the controls which among other
things allowed for adding skinnability ("pluggable look and feel
(PLAF)"), which allows for custom drawing all the swing con-
trols [9] if desired. In Java 6 Java2D got enhanced most notably
with the addition of "java.awt.geom.Path2D" allowing for creat-
ing free form shapes.

In general Java2D allows for creating 2D graphics of any com-
plexity in Java which can be exploited for different application
needs including creating Java games [10]. In order to take ad-
vantage of Java2D one needs to be aware of all the classes that
are spread over different Java packages and how these classes
play together. If color or fonts get used one needs to become
aware of the "java.awt.Color" and "java.awt.Font" classes in order
to take advantage of them, if one wishes to display the graphics
on screen and control display properties or print the Java2D
images one needs to get acquainted with all the appropriate
methods of the appropriate Java classes.

With BSF4ooRexx850 it becomes possible to take advantage of all
of the Java2D classes from ooRexx and employ them for creating
any image of any complexity in ooRexx that can also be created
with Java. However, it may be the case that one wants to take
advantage of Java2D but wishes to use a simpler interface to it
than the Java2D classes with their methods.

This is where the idea to define a set of commands comes into
play, that would simplify the creation of Java2D graphics as
much as possible. Ideally ooRexx programmers would become
able to take advantage of it to create images but would have no
need to learn the programming language Java to do so. These
commands should be realized therefore by implementing a Rexx
command handler in Java which would be able to process the
received commands and carry out the appropriate Java2D opera-
tions using the relevant Java2D classes and methods.

A first prototype got developed and named "JDOR", "Java2D for
ooRexx", and demonstrated at the International Rexx symposium
in the fall of 2022 [6] exploiting the new support for direct Rexx
command handlers in BSF4ooRexx850. The prototype has been
extended since to become a full implementation of Java2D. One
interesting design goal was to also allow for ooRexx program-
mers to get access to the Java2D objects in case they wished to
directly interact with them. This has been made possible in the
JDOR Rexx command handler implementation by returning the
Java proxies via the "RC" variable that gets set upon return of
executing commands. One notable addition in this endeavor to
complete the Java2D implementation in form of JDOR Rexx
commands has been creating new commands that supply sup-

port for "java.awt.Shape" classes and the "java.awt.geom.Path2D"
class explicitly.

Taking advantage of the redirection ability of Rexx command
handlers the JDOR command handler will take advantage of
redirection as well and if at runtime it realizes that the com-
mand's output got redirected it will write the processed JDOR
command with all arguments in a canoncial format to it. This
makes it possible to display and to record the JDOR commands
for a specific image and later use these very same commands to
recreate the image at a later time by sending these commands to
a new JDOR command handling program. This way JDOR com-
mands can be stored in text files, created manually or by pro-
grams in any programming language, and then used as a macro
to (re-)create the desired image with Java2D.

As any program can create strings it becomes possible that any
program can produce JDOR commands which then get merely
executed by any "JDOR tool" which is available whenever
ooRexx 5.0 with BSF4ooRexx850 is available.

The JDOR commands are documented in the BSF4ooRexx850
installation directory "BSF4ooRexx850/information/jdor/
jdor_doc.html" and due to their naming should be apprehensible
for anyone with a basic education in geometrics and more so for
Java programmers who know Java2D. The documentation con-
tains links that will also refer to the JavaDocs for the respective
Java2D classes such that interested readers can get directly at the
classes that get used for implementing the respective JDOR
command.

The following sections will explain and demonstrate how JDOR
commands can be used to load, draw and save images with a few
commands and without a need to know the documentation of
the Java2D classes that get used to execute the commands. The
examples should be understandable even if there is no prior
knowledge of ooRexx, BSF4ooRexx and of JDOR commands, as
they appear almost as if they were formulated in pseudo code to
communicate the structure and sequence of JDOR commands
and have line comments.

4.1 Executing JDOR Commands
Figure 7 above depicts an ooRexx program that creates and reg-
isters a JDOR command handler using "JDOR" as its environment
name. Then the "address" keyword instruction gets used to set
the JDOR command environment as the default environment
such that any commands get directed at it. The program loads
two images from the current directory, fetches their dimensions
by parsing the returned value using the "RC" variable, reduces
their width and height to 1/10th, respectively to 1/7th of their
original size and then draws them on the Java2D image at differ-
ent locations and finally saves the new image under the name
"20_images.png" in the current directory.

Due to the characteristics of the ooRexx language the code in
Figure 7 looks almost like pseudo code and it is hoped that the
name and arguments to the JDOR commands therein are self-
explanatory such that no detailed explanations beyond the sup-

JDOR - Java2D for ooRexx (and Other
Programming Languages)

March 3rd – March 6th 2024

Brisbane, Australia

plied line comments are needed to understand what the program
does. If this is the case it should serve as a proof that indeed one
can understand Java2D programs without knowing any details of
the Java2D classes that get employed in order to come up with
the resulting image in Figure 8.

Figure 8: Output and image by program in Figure 7

Figure 8 displays the output of running the program in Figure 7
together with the produced image and if redirecting this output
into a file one can use the JDOR commands as input to a JDOR
filter program like that shown in Figure 9 (“jdor.rex”). If the
commands depicted in the background of Figure 8 were saved
into a text file named "commands.txt", then one can recreate the
image by running the filter with "rexx jdor.rex < commands.txt".
Alternatively, one could use the filter in a pipe, e.g., "cat com-
mands.txt | rexx jdor.rex" which allows JDOR to become usable by
any program and application.

jdh=.bsf~new("org.oorexx.handlers.jdor.JavaDrawingHandler")
call BsfCommandHandler "add", "JDOR", jdh -- add handler
address jdor with input using (.stdin) -- from stdin
"-- comment" -- kick off handler

::requires "BSF.CLS" -- get ooRexx-Java bridge

Figure 9: Filter program “jdor.rex”

4.2 Affine Transform JDOR Demo
In the Java based tutorial on programming Java games with Ja-
va2D [10] there is a section that demonstrates Java2D's affine
transformations employing a polygon shape [11]. This is done by
creating a "java.awt.Polygon" which gets drawn in original size at
the default location “0,0” (left upperhand corner) by filling it
with a green color. According to the polygon's coordinates part
of it does not get shown. Then the scaling (an affine transform)
gets increased by 20% affecting all Java2D operations that follow.
Using the "translate" operation the origin gets moved right and
down by 50 pixels, the polygon gets drawn again in green and
then in a loop the origin gets translated 50 pixels to the right and
5 pixels to the bottom, the polygon gets drawn again by filling it
in blue, rotated by 15 degrees (an affine transform) and drawn
over it once more by filling it in red.

Figure 10 depicts a program that creates the same image using
JDOR commands, the resulting image is shown in Figure 12. It is
equivalent to the Java program in [11] shown in Figure 11 which
allows for comparing it with the Java solution and also compar-

ing the involved complexity in creating such an image exploiting
Java2D with Java and with JDOR commands.

jdh=.bsf~new("org.oorexx.handlers.jdor.JavaDrawingHandler")
call BsfCommandHandler "add", "JDOR", jdh -- add handler
address JDOR -- set JDOR as default environment
newImage 640 480 -- JDOR command to create new image
winShow -- show image in a window
winTitle "Affine Transform Demo (ooRexx)" -- set title
polygonXs="(-20,0,+20,0)" -- define four x coordinates
polygonYs="(20,10,20,-20)" -- define four y coordinates
shape myP polygon polygonXs polygonYs 4 -- create polygon
color green -- set color to green
fillShape myP -- fill (and show) the polygon shape
translate 50 50 -- move origin (x=x+50, y=y+50)
scale 1.2 1.2 -- increase scale symmetrically by 20%
fillShape myP -- fill (and show) the polygon shape
do 5 -- repeat five times
 translate 50 5 -- move origin (x=x+50, y=y+5)
 color blue -- set color to blue
 fillShape myP -- fill (and show) the polygon shape
 rotate 15 -- rotate by 15°
 color red -- set color to red
 fillShape myP -- fill (and show) the polygon shape
end
sleep 3 -- sleep a bit

::requires "BSF.CLS" -- get ooRexx-Java bridge

Figure 10: JDOR solution of Java program in Figure 11

import java.awt.*;
import java.awt.geom.AffineTransform;
import javax.swing.*;

/** Test applying affine transform on vector graphics */
@SuppressWarnings("serial")
public class AffineTransformDemo extends JPanel {
 // Named-constants for dimensions
 public static final int CANVAS_WIDTH = 640;
 public static final int CANVAS_HEIGHT = 480;
 public static final String TITLE = "Affine Transform Demo";
 // Define an arrow shape using a polygon centered at (0, 0)
 int[] polygonXs = { -20, 0, +20, 0};
 int[] polygonYs = { 20, 10, 20, -20};
 Shape shape = new Polygon(polygonXs, polygonYs, polygonXs.length);
 double x = 50.0, y = 50.0; // (x, y) position of this Shape
 /** Constructor to set up the GUI components */
 public AffineTransformDemo() {
 setPreferredSize(new Dimension(CANVAS_WIDTH, CANVAS_HEIGHT));
 }
 /** Custom painting codes on this JPanel */
 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // paint background
 setBackground(Color.WHITE);
 Graphics2D g2d = (Graphics2D)g;
 // Save the current transform of the graphics contexts.
 AffineTransform saveTransform = g2d.getTransform();
 // Create a identity affine transform, and apply to the Graphics2D context
 AffineTransform identity = new AffineTransform();
 g2d.setTransform(identity);
 // Paint Shape (with identity transform), centered at (0, 0) as defined.
 g2d.setColor(Color.GREEN);
 g2d.fill(shape);
 // Translate to the initial (x, y) position, scale, and paint
 g2d.translate(x, y);
 g2d.scale(1.2, 1.2);
 g2d.fill(shape);
 // Try more transforms
 for (int i = 0; i < 5; ++i) {
 g2d.translate(50.0, 5.0); // translates by (50, 5)
 g2d.setColor(Color.BLUE);
 g2d.fill(shape);
 g2d.rotate(Math.toRadians(15.0)); // rotates about transformed origin
 g2d.setColor(Color.RED);
 g2d.fill(shape);
 }
 // Restore original transform before returning
 g2d.setTransform(saveTransform);
 }
 /** The Entry main method */
 public static void main(String[] args) {
 // Run the GUI codes on the Event-Dispatching thread for thread safety
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 JFrame frame = new JFrame(TITLE);
 frame.setContentPane(new AffineTransformDemo());
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLocationRelativeTo(null); // center the application window
 frame.setVisible(true);
 }
 });
 }
}

Figure 11: AffineTransform Java program from [11]

35th International Rexx Language Symposium Rony G. Flatscher

Figure 12: Image by program in Figure 10

5 Roundup

This article introduced the JDOR Rexx command handler which
has been implemented in BSF4ooRexx850 and which can be ex-
ploited by Rexx programs by using JDOR commands. In order to
understand the tool the constituting software components, the
ooRexx programming language and the BSF4ooRexx850 ooRexx-
Java bridge got briefly characterized such that it should have
become possible to relate to Rexx commands and Rexx command
handlers implemented in Java.

Then Java2D has been briefly characterized and links got sup-
plied that allow for a quick introduction and study of its archi-
tecture as well as the related Java2D classes that allow for creat-
ing 2-dimensional graphics in Java. BSF4ooRexx850 includes a
Rexx command handler implemented in Java for the purpose of
making the Java2D functionality available as simple Rexx com-
mands named "JDOR" ("Java2D for ooRexx"). The JDOR docu-
mentation comes with BSF4ooRexx850 and can be studied at
[12]. Two JDOR examples demonstrate how Java2D can be used
with JDOR examples, one (Figure 7) loading two images that get
rescaled and drawn on a JDOR image and saved into a file, one
example (Figure 10) realizing the JDOR counterpart of a Java2D
program that attempts to demonstrate applying affinity trans-
forms.

The JDOR command handler is implemented as a redirectable
Rexx command handler such that stdin and stdout can be redi-
rected. Together with a simple JDOR filter program (Figure 9) it
becomes possible to use JDOR commands to create Java2D
graphics using redirections (redirecting the JDOR's filter stdin
from a file, or via pipes that feed the JDOR filter's stdin). As a
consequence it is possible to use JDOR commands in combina-
tion with a JDOR filter program to create Java2D graphics of any
complexity from any program and application.

The implementation of the JDOR command handler is regarded
to be feature complete. If Java2D features are sought but not
made available via JDOR commands it would still be possible to
supply them in ooRexx programs by interacting with the JDOR
command handler's infrastructure, e.g., fetching the java.awt.

Graphics2D Java object with the JDOR command “gc” and then
interact directly with it from ooRexx.

ACKNOWLEDGMENTS
The author wishes to thank DI Walter Pachl and Dr. Till Winkler
for their valuable feedback and help.

REFERENCES
[1] Java 2D Graphics and Imaging. Retrieved January 31, 2024 from

https://docs.oracle.com/javase/6/docs/technotes/guides/2d/
[2] The Java Tutorials: Trail: 2D Graphics. Retrieved January 31, 2024 from

https://docs.oracle.com/javase/tutorial/2d/TOC.html
[3] ooRexx. 2024. ooRexx (Open Object Rexx). Retrieved January 31, 2024 from

https://sourceforge.net/projects/oorexx/
[4] RexxLA. 2023. The Rexx Language Association. Retrieved January 31, 2024 from

https://www.RexxLA.org
[5] BSF4ooRexx850. 2024. Bean scripting framework for ooRexx. Retrieved January

31, 2024 from https://sourceforge.net/projects/bsf4oorexx/files/beta/20240109/
[6] BSF4ooRexx: Introducing the JDOR Rexx Command Handler for Easy Creation

of Bitmaps and Bitmap Manipulations on Windows, Mac and Linux. 2022. Re-
trieved January 31, 2024 from
https://www.rexxla.org/presentations/2022/202209_JDOR_command_handler.pdf

[7] Flatscher G. Rony and Müller Günter. 2021. "Business Programming" – Critical
Factors from Zero to Portable GUI Programming in Four Hours. In 6th Busi-
ness and Entrepreneurial Economics 2021 - Conference Proceedings. 76-82.
Retrieved January 31, 2024 from
https://research.wu.ac.at/files/32933846/2021_Flatscher_Mueller_BusinessProgramming_from_proceedings.pdf

[8] ANSI Rexx standard. Retrieved January 31, 2024 from
https://www.rexxla.org/rexxlang/standards/j18pub.pdf

[9] The Java Tutorials: Modifying the Look and Feel. Retrieved January 31, 2024
from https://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/index.html

[10] Chua Hock-Chuan. 2012. Java Game Programming 2D Graphics, Java2D and
Images. Retrieved January 31, 2024 from
https://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html

[11] Chua Hock-Chuan. 2012. Java Game Programming 2D Graphics, Java2D and
Images, 2.2 Affine Transform (java.awt.geom.AffineTransform). Retrieved
January 31, 2024 from
https://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html#zz-2.2

[12] Documentation of the JDOR Commands. 2023. Retrieved January 31, 2024
from https://wi.wu.ac.at/rgf/rexx/misc/jdor_doc.tmp/jdor_doc.html

