
Mike Cowlishaw
IBM Fellow

mfc @ uk.ibm.com

REXX Symposium - Raleigh, 29 April 2002

The evolution of REXX

rexxevol

Overview

Early days

Language concepts and philosophy

Development principles

Questions?

Whence Rexx?

Two core concepts:

 A single macro language for many applications

 A language designed for the benefit of the user, not the
 language implementer

Traditional macro languages

Macro languages assumed that most of the content
of a program would be literal data:
&IF &NODE&J ¬= &LOCAL &USER = &STRING OF &USER&J AT &NODE&J

By 1979, programs existed where more than 50% of
the tokens began with &. The solution:

if node.j ¬= local then user = user.j 'AT' node.j

(March 20, 1979)

e-mail, 1979.03.22

"... I'm thinking of implementing an experimental
EXEC processor to handle a more ... PL/I-like
language. ... This is of course the dual of the
EXEC/EXEC 2 languages, in that literals are
identified, rather than variables/control words, but ...
EXECs nowadays often seem as complex as
programs ... and that therefore literals are often a
very small percent of the tokens in an EXEC"

Timeline, 1979

March: Initial Specification (10 pages + examples)

May/June: First implementation (30-page manual)

August: 'VM News' mailing list

December: FSX and an animated Xmas card...

 "It is spectacular ... it has swept through our installation this
 morning. I put it on a subsystem disk and everybody is
 telling everybody else to type TRYTHIS"

Growth chart

Ingredients

Lots of feedback and ideas from users
 At peak, 350 e-mail a day

10,000 lines of code and 5,000 of documentation

1,000 hours in first year, 4,000 total

Only evenings and some weekends
 few interruptions
 good response time (machines were slow!)

How slow?

Test loop: i=0
do 2000
 i=i+2
 end

IBM S/370 model 155 1979: 3.31 seconds

800MHz laptop 2002: 0.0013 seconds

(2,546 x)

REXX language philosophies

Ground rule: A user's time is more important than
implementation time or computer time

12
1
2

3
4

5
6

7
8

9

10
11

Readability

Perceived legibility: tokens are familiar
 minimal punctuation and boilerplate

Free format: layout can be familiar, meaningful, and
structured

fewer errors

Few notations

Keywords and function names are 'real words'

Most special characters are used conventionally

easier to learn

easier to remember

Natural data typing

Only one data type; strings of characters
 rich set of string operations and functions

Nothing to Declare

simplifies
programmingincreases
portability

Decimal arithmetic

Matches user model of arithmetic

No binary artifacts

Hardware independent

simplifies programming

No limits

No language limits on size of strings, size of
numbers, or size of programs

Implementations usually only limited by available
memory

simplifies programming

Keep the language small

Few special cases

Compact documentation

easier to learn and use

Dynamic scoping

Well matched to our human procedural model

Easy to modify programs

rapid development
low human overhead

No need to learn every keyword before you can
safely write a program

Programs, especially macros and scripts, are robust
against changes in the language or applications

No reserved keywords

lower costs

Dealing with reality

Usability does not necessarily follow from elegant
design; human expectations must be met

Optional restrictions support writing robust programs

a tool for real work

REXX development principles

Ground rule: get feedback from users

Telecommunications

Designing for people means you need feedback from
many different people

Only practical electronically

VNET

Rexx was designed in the UK, with most users in the
USA; impossible without the electronic network

Hundreds of users from the start; rich feedback for
problems and changes

... but users soon built up an investment in existing
programs ...

The user is always right

Simplest to express; hardest to follow

Any confusion, question, or suggestion shows there
is a problem. Not with the user, but with the
program or documentation

Mail review is a powerful technique, rarely used

Documentation first

Documentation before implementation, to final draft
quality

Problems discovered early

Improved review process (feedback!)

Much less influence of implementation on design and
documentation

And finally ...

... Rexx gets everywhere

Questions?

