The evolution of RExx

RExx Symposium - Raleigh, 29 April 2002

Mike Cowlishaw
IBM Fellow

mfc @ uk.ibm.com

rexxevol



Overview

= Early days
= | anguage concepts and philosophy
= Development principles

= Questions?



Whence Rexx?

= Two core concepts:

— A single macro language for many applications

— A language designed for the benefit of the user, not the
language implementer



Traditional macro languages

= Macro languages assumed that most of the content
of a program would be literal data:

&IF &NODE&J -= &LOCAL &USER = &STRING OF &USER&J AT &NODE&J

= By 1979, programs existed where more than 50% of
the tokens began with &. The solution:

1 £ noede. ] == local then usexr = user.] 'AT'" node.j

(March 20, 1979)



e-maill, 1979.03.22

"... I'm thinking of implementing an experimental
EXEC processor to handle a more ... PL/I-like
language. ... This is of course the dual of the
EXEC/EXEC 2 languages, in that literals are

identified, rather than variables/control words, but ...

EXECs nowadays often seem as complex as
programs ... and that therefore literals are often a
very small percent of the tokens in an EXEC"



Timeline, 1979

= March: Initial Specification (10 pages + examples)
= May/June: First implementation (30-page manual)
= August: 'VM News' mailing list

m December: FSX and an animated Xmas card...

— "It Is spectacular ... it has swept through our installation this
morning. | put it on a subsystem disk and everybody Is
telling everybody else to type TRYTHIS"



Growth chart

Jun Jul Aug Sep Oct Nov Dec 1979




Ingredients

m | ots of feedback and ideas from users
— At peak, 350 e-mail a day

= 10.000 lines of code and 5,000 of documentation
= 1,000 hours In first year, 4,000 total

= Only evenings and some weekends
— few interruptions
— good response time (machines were slow!)



How slow?

= Test loop: i=0
do 2000
1=1+2
end

= |IBM S/370 model 155

= 800MHz laptop

1979: 3.31 seconds

2002: 0.0013 seconds

(2,546 X)



REXX language philosophies

= Ground rule: A user's time is more important than
Implementation time or computer time




Readability

= Perceived legibility: tokens are familiar
— minimal punctuation and boilerplate

= Free format: layout can be familiar, meaningful, and
structured

~

fewer errors




Few notations

= Keywords and function names are 'real words'

= Most special characters are used conventionally

o,

easler to learn

easler to remember



Natural data typing

= Only one data type; strings of characters
— rich set of string operations and functions

= Nothing to Declare

~

simplifies
Mcreases'd
ortabilit




Decimal arithmetic

= Matches user model of arithmetic
= No binary artifacts

= Hardware independent

~

simplifies programming




No limits

= No language limits on size of strings, size of
numbers, or size of programs

= |[mplementations usually only limited by available
memory

~

simplifies programming




Keep the language small

= Few special cases

= Compact documentation

~

easler to learn and use



Dynamic scoping

= \Well matched to our human procedural model

= Easy to modify programs

~

rapid development

low human overhead



No reserved keywords

= No need to learn every keyword before you can
safely write a program

m Programs, especially macros and scripts, are robust
against changes in the language or applications

~

lower costs



Dealing with reality

= Usability does not necessarily follow from elegant
design; human expectations must be met

= Optional restrictions support writing robust programs

~

a tool for real work




REXX development principles

= Ground rule: get feedback from users



Telecommunications

= Designing for people means you need feedback from
many different people

= Only practical electronically




VNET

= Rexx was designed in the UK, with most users In the
USA,; impossible without the electronic network

= Hundreds of users from the start; rich feedback for
problems and changes

= ... but users soon built up an investment in existing
programs ...



The user iIs always right

= Simplest to express; hardest to follow

= Any confusion, question, or suggestion shows there
IS a problem. Not with the user, but with the
program or documentation

= Mail review Is a powerful technique, rarely used



Documentation first

= Documentation before implementation, to final draft
guality

= Problems discovered early
= |[mproved review process (feedback!)

= Much less influence of implementation on design and
documentation



And finally ...



Rexx gets everywhere

. SARDINAS

EN ESCABECHE




Questions?



