
A Tokenizer for Rexx and ooRexx∗

Josep Maria Blasco
Espacio Psicoanalítico de Barcelona

Balmes, 32, 2º 1ª – 08007 Barcelona
jose.maria.blasco@gmail.com

+34 93 454 89 78

March the 4th, 2024

Abstract

In this article, we present a tokenizer for the Rexx language. The
tokenizer is written in Open Object Rexx (ooRexx), and it can pro-
cess program files written in ooRexx, Regina Rexx, or ansi Rexx.
Experimental support for Unicode extensions is also included (Uni-
code support requires the use of the Tutor package). The tokenizer
has two modes of operation: simple tokenizing, where all items are
returned as-is, and full tokenizing, where Rexx rules are applied to
discard separator items, like comments or non-significant whitespace,
and certain tokens are combined into higher-level items, like com-
pound operators or extended assignment operators. In the case of
full tokenizing, detailed or undetailed tokenizing can also be selected;
the former includes, as an attribute of every higher-level construct,
the sequence of constituent items, while the latter discards these low-
level elements. In both cases, the returned sequence contains enough
information to reconstitute the whole source program file.

The tokenizer is distributed as part of the Tutor package, which
is described in an accompanying document, but, when not making use
of the Unicode features, it does not depend on Tutor, and, therefore,
it can be used independently.

∗URL of this document: https://www.epbcn.com/pdf/josep-maria-blasco/2024-
03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf. Presented to the 35th International
Rexx Language Symposium, held in Brisbane, Australia and online from the 3rd to the
6th of March, 2024.

1

https://www.epbcn.com/equipo/josep-maria-blasco/
https://www.epbcn.com/
mailto:jose.maria.blasco@gmail.com
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf

Contents
1 Introduction 4

1.1 History of the tokenizer . 4
1.2 Structure of this document . 5

2 General concepts 7
2.1 Alphabets, lexical elements and syntax 7
2.2 Lexers, tokenizers and parsers 7
2.3 Rexx clauses, tokens and items 8
2.4 “Tokenized” programs . 8
2.5 What is a tokenizer good for? 8

2.5.1 Transforming programs 9
2.5.2 Compiling data about a program 9
2.5.3 Tokenizers vs. parsers 9

3 Tokenizer features 10
3.1 The specificity of Rexx . 10
3.2 Simple and full tokenizing . 11
3.3 Tokenizing several dialects . 11
3.4 Experimental support for Unicode 12

4 Using the tokenizer 14
4.1 Installation instructions . 14
4.2 Creating a tokenizer instance 14
4.3 Using the simple and full tokenizers 14
4.4 Detailed and undetailed tokenizing 15
4.5 Error handling . 15

5 Structure of the returned items 17
5.1 Classes and subclasses . 17
5.2 Locations . 17
5.3 Values . 18
5.4 Other attributes . 18

6 Testing the tokenizer: the InspectTokens program 19
6.1 Simple tokenizing . 19

6.1.1 Output format . 20
6.1.2 Analysis of the returned items 20

6.2 Undetailed full tokenizing . 21
6.3 Detailed full tokenizing . 22

2

7 An example application: the Rexx tokenizer for Unicode 24
7.1 An example run of the RXU command 24

7.1.1 Creating a test file . 25
7.1.2 A test run . 25
7.1.3 The translated file . 25

7.2 How does the preprocessor work 26
7.2.1 An example: translating LENGTH() 27
7.2.2 Another example: translating strings 28

8 Further work 30

9 Acknowledgements 31

Appendix A Class and subclass constants used in simple toke-
nizing 32

Appendix B Class and subclass constants used in full tokeni-
zing 34

Appendix C Resources 37

3

1 Introduction
In this document, we present a tokenizer for several dialects of the Rexx

language; the exact meaning of “tokenizer” will be made clear below. The
dialects include Regina Rexx and some of its variants (e.g., ansi Rexx), as
well as Open Object Rexx (“ooRexx”), and several experimental extensions
of Rexx for Unicode.

1.1 History of the tokenizer
Work on the tokenizer started in mid-May, 2023, just after the closing of

the 34th International Rexx Language Symposium. The original plan was to
produce a full abstract syntax tree (ast) parser, and writing a tokenizer was
a necessary first step to that end. It also created an opportunity to delve
into the ansi standard (1996), and also into the fascinating, but regretfully
incomplete, Object Rexx Dallas Draft report (1998).

Around March, 2023, I was invited to participate in the Architecture Re-
view Board (arb) of the Rexx Language Association (RexxLA). Soon, dis-
cussions about a possible Unicode-enabled implementation of Rexx started;
I became very active in these debates. On 10 July I released “a toy ooRexx
implementation of the General_Category Unicode property”;1 several new
releases of the then called “Unicode toys” quickly followed.2

I started to realize that many of the concepts we were debating about
would be much easier to understand (and, eventually, to improve) if we could
play with them, that is, if we could manipulate them in practice. We would
thus need an implementation of a Unicode extension of Rexx that included
these concepts. Writing a preprocessor would be a way to fulfil these needs:
it would translate Unicode-extended Rexx into standard Rexx, and, with
the help of an accompanying library, it would allow us to experiment with
the new concepts.

Normally, writing a preprocessor is not a trivial task, but in the present
case I could count on my tokenizer. In a few days, and after introducing
some few modifications to the tokenizer so that it could optionally parse
Unicode-extended Rexx, I had a working prototype of the preprocessor.

On 19 July I released version 0.1d of the Unicode Toys for Rexx: they
1See https://github.com/RexxLA/rexx-repository/blob/master/ARB/

standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-
notes.md

2See, for example, version 0.1, released on 20230716 (https://github.com/
RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/
UnicodeTools/doc/0.1-release-notes.md).

4

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1-release-notes.md

included the updated tokenizer, and a new Rexx preprocessor for Unicode
(rxu). At some moment in August, the Toys were renamed to The Uni-
code Tools for Rexx, and, later, following a suggestion by Chip Davis, to
The Unicode Tools Of Rexx (a denomination which happens to have a nice
acronym: Tutor).

The tokenizer is since being distributed as part of the Tutor package,
but, if no use is being made of the Unicode extensions, it can be used inde-
pendently of that package.3

1.2 Structure of this document
Section 1, Introduction, on page 4, contains a minimal presentation, a

historical introduction, and the structure listing you are now reading.
Section 2, General concepts, on page 7, includes a gentle introduction to

the basic concepts needed to understand what a tokenizer is. We specifically
discuss the different uses of the term “token” that can be found in the Rexx
literature, and we also establish our own nomenclature, to be used throughout
this document. We end the section by detailing some of the possible uses of
a tokenizer.

Section 3, Tokenizer features, on page 10, highlights the features of our
tokenizer. Some of the specificities of the Rexx language are examined, and
we introduce the notions of simple and full tokenizing. We highlight the fact
that the tokenizer can accept several dialects of the Rexx language, and we
introduce important details about the Unicode support; in particular, we list
the five new kinds of string that the Tutor-flavoured variant of Unicode-
enabled Rexx defines.

Section 4, Using the tokenizer, on page 14, covers the installation and use
of the tokenizer, how to create a tokenizer instance, how to use the simple
and the full tokenizers, and, in the latter case, how to request detailed or
undetailed tokenizing. The section ends with the examination of a sample
code snippet that can be used for a very complete form of error handling.

Section 5, Structure of the returned items, on page 17, details the internal
structure of the items returned by the tokenizer. The concept of attribute is
introduced, and the standard attributes, class, subclass, location and value,
common to all items, are defined. The fact that some special items, and full
tokenization results, may include additional attributes, is examined. The
concrete, symbolic names that define the repertoire of the class and subclass
attributes are listed in the appendixes.

3Please refer to section 4.1, Installation instructions, on page 14, for details about the
installation and use of the tokenizer under both scenarios.

5

Section 6, Testing the tokenizer: the InspectTokens program, on page 19,
describes InspectTokens, a Rexx program designed to test and debug the
tokenizer. InspectTokens is also excellent as a learning tool. The diverse
modes of operation of InspectTokens are described, and sample test runs
are examined in detail.

Section 7, An example application: the Rexx tokenizer for Unicode, on
page 24, describes, as a sample application of the tokenizer, the implemen-
tation of rxu, the Rexx Preprocessor for Unicode; rxu makes heavy use of
the tokenizer. This will give us an occasion to examine in detail some of the
internal workings of rxu, and the nuances of its translation process.

Section 8, Further work, on page 30, outlines the natural evolution in the
development of the tokenizer, a full abstract syntax tree (ast) parser, and
quickly explores the possibilities that the existence of such a parser would
open.

Section 9, on page 31, contains the Acknowledgements.
Appendix A, Class and subclass constants used in simple tokenizing, on

page 32, describes the part of TokenClasses related to simple tokenizing.
TokenClasses is a constant method of the Rexx tokenizer which provides
an array of symbolic names for the item classes and subclasses.

Appendix B, Class and subclass constants used in full tokenizing, on page
34, describes the rest of the symbolic names provided by the TokenClasses
constant; these are used exclusively by the full tokenizer.

Appendix C, Resources, on page 37, contains links to the present article
and to the corresponding presentation slides, as well as to the files related
to the accompanying presentation, The Unicode Tools Of Rexx. We also
offer a modified class RexxLexer fragment of the scripting.py file which
allows the use of the LuaLATEX minted package with support for ooRexx
and the Tutor-defined Unicode extensions.

6

2 General concepts

2.1 Alphabets, lexical elements and syntax
Like natural languages, programming languages have an alphabet. Natu-

ral languages form words using letters, a distinguished subset of the alphabet,
and normally allow also numerals and some forms of punctuation marks. Sim-
ilarly, a programming language defines its own set of lexical elements; usual
elements are identifiers, numbers, strings, operators and other punctuation.
Natural languages define a set of syntactic rules that stipulate how lexical el-
ements should be combined to produce meaningful discourse, although these
rules are routinely ignored or deliberately broken in certain allowed contexts,
like jokes, marketing, press headlines, poetry, and many others. Syntactic
rules in formal languages do not allow for such leniencies, since one of the
major requirements of a formal language is to convey meaning in a completely
unambiguous way. When we are using a formal language, be it the language
of logic, mathematics, physics, or a programming language, we want to be
absolutely sure of what we are saying, and of the meaning of what we are
saying; hence, the syntactic rules will have to be relatively rigid and, in any
case, they will not be optional, in the sense that the existence of special
contexts in which they can be ignored or broken will not be allowed.

2.2 Lexers, tokenizers and parsers
Lexical analysis of a program breaks the program into its constituent

lexical elements. An application that parses programs written in a certain
programming language and identifies and returns its lexical elements is usu-
ally called a lexer or a tokenizer, although the term “token” has specific and
slightly different meanings in the Rexx language. Lexical elements or to-
kens are combined into higher level constructs or structures, like expressions,
templates, instructions or directives. Many of these constructs are defined in
a recursive way, and therefore their instances can be represented naturally
using certain variants of nested, tree-like structures. A tool that is able to
completely identify and extract these higher level structures from a source
program is called a parser. The representation of a whole program using
these higher level structures is sometimes known as an abstract syntax tree
(ast).

7

2.3 Rexx clauses, tokens and items
The Rexx language defines a program to be a sequence of clauses. A

clause, in turn, is composed of sequences of whitespace, comments, and cer-
tain syntactical constructs called tokens, and it ends with a semicolon. In
Rexx, this is the main acceptation of the word “token”.

In most cases, the semicolon that ends a clause is implied by the syntactic
rules, and can in practice be omitted.

An application that scans Rexx programs and identifies and returns the
tokens that compose that program is a tokenizer ; for completeness and for
convenience (in particular, to be able to reconstitute the original program),
a tokenizer can identify and return not only the tokens, but also these other
syntactic elements, which are part of the program but are formally not tokens,
like whitespace or comments. We will use the term items to refer to the whole
set of tokens and non-token separators.

2.4 “Tokenized” programs
In addition to the formal meaning of the term “token”, in the Rexx par-

lance we find another, different, connotation. Colloquially, one refers to a
program distributed without source (for example, after being processed by
the ooRexx rexxc utility) as a tokenized program. Although this denomi-
nation has stuck, in fact it is inexact, because the output of rexxc is indeed
a full abstract syntax tree representing the source program, and not a mere
sequence of tokens. In this article, we will use the term “tokenizer” in its
proper sense (i.e., a tool that breaks programs into their constituent items,
i.e., tokens, and other separators).

2.5 What is a tokenizer good for?
Tokenizers are an indispensable part of language processors like compilers

and interpreters. To be able to interpret a program, an interpreter needs
to “understand” it first, and to this purpose it necessarily has to begin by
breaking the program into its constituent elements.

A tokenizer, however, can also be used for many other purposes. Since it
essentially produces the sequence of lexical elements that compose a source
program, it is ideally suited to introduce transformations into the sequence,
and also to compile data about that sequence.

8

2.5.1 Transforming programs

Transformations can be of a cosmetic nature, as in a program formatter
or prettyprinter, or have a deeper purpose, like implementing some form of
language extension.

As an example of the latter, we have implemented a set of experimental,
Unicode-related, extensions to the Rexx language in our Rexx Preprocessor
for Unicode (rxu), using a slight modification of our original tokenizer. The
rxu preprocessor is part of the (Tutor) package, described in a separate
and accompanying document,4 where a definition of the functionality of rxu
can be found; the implementation of rxu is described in some detail below,
in section 7, An example application: the Rexx tokenizer for Unicode, on
page 24.

2.5.2 Compiling data about a program

Compiling data allows to create a number of program analysis tools, like
variable and cross-reference listings.

A cross-referencer for the Rexx language cannot be reasonably implemented
with a tokenizer, because Rexx has no reserved words, and therefore it is
impossible, in the general case, to determine whether a certain symbol is or
not a keyword, without resorting to a deeper syntactic analysis of the source
program. In the case of languages with reserved words, however, some forms
of cross-referencing can be easily implemented with a simple tokenizer.

2.5.3 Tokenizers vs. parsers

Tokenizers form the basis for a full parser, since a parser is always built
upon a tokenizer. Once a full parser is available, it becomes possible, among
other things, to write more ambitious language extensions and program ana-
lysis tools, but also interpreters, compilers, and translators to other languages
(or to different dialects of the same language).

4See The Unicode Tools Of Rexx, https://www.epbcn.com/pdf/josep-maria-
blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf. See also section 3.4, Experimen-
tal support for Unicode, on page 12, below.

9

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf

3 Tokenizer features

3.1 The specificity of Rexx
The syntax of the Rexx language contains a number of departures from

what is usual in most other programming languages. There are no reserved
words, for example, and therefore keywords can be used as the names of
variables in many cases;

To a degree that varies, depending on the dialect and implementation. For
example, while ooRexx considers

Do i = 1 To While

erroneous, it allows

Do i = 1 To (While).

As for Regina, it does not accept any of these variations.

whitespace outside literal strings is only used as a separator, but it is other-
wise ignored in most contexts; however, there is one of these contexts (con-
catenation) where it is significant; there is a single concept of “symbol”,
which encompasses simple variables, stems, compound variables, numbers,
environment symbols, and constant symbols;

Constants symbols, like 23abc, which has a value of "23ABC", are a very un-
usual construction. Similarly, the syntactical exception by which a numeric
symbol can include a signed exponent is also very rare.

the very concept of “token” is somewhat counterintuitive, because some of the
basic building blocks of the language, for example multi-character operators,
extended assignments and the "::" construction that starts a directive, are
not tokens, but combinations of tokens (which may be separated by optional
non-tokens): this means that one can insert whitespace and/or comments
between the different characters of an operator, for example (not that it is,
generally speaking, a very good idea). A tokenizer for the Rexx language
has to take into account all these specificities.

/* This not very readable, to say the least: */
a1 = a2 | /* comment */ - /* continued... */

| a3 /* That was a concatenation, after all */

10

3.2 Simple and full tokenizing
For some applications, it may be necessary to get the items of a source

program exactly as they are written. The assignment instruction

a += 1,

for example, would get us six items, namely:

• "a" (a variable symbol),
• " " (whitespace, a blank),
• "+" (an operator character),
• "=" (another operator character),
• " " (another blank), and
• "1" (an integer number symbol).

In other cases, we might benefit from a higher level of analysis; in our
example, we might want to get only three items:

• a variable ("a"),
• an extended assignment operator ("+="),
• and a number ("1").

Our tokenizer implements variants for both possibilities. We call the ver-
batim tokenizing of a source file (i.e., our first example) a simple tokenizing,
and the more elaborate version a full tokenizing. A tokenizer instance can
be used as a simple tokenizer, or as a full tokenizer (but not as both at the
same time).

3.3 Tokenizing several dialects
From a syntactic point of view, the differences between the various di-

alects of Rexx are minimal (and, in some cases, these differences can also
be extremely subtle). This is one of the reasons why the ansi standard de-
fines a number of optional syntactical categories that extend the basic Rexx
definitions that any conforming variant of Rexx has the obligation to im-
plement. For example, extra_letters (5.3.2) is empty for ooRexx, but it
includes "$", "#" and "@" for Regina. Similarly, ooRexx only recognises
the horizontal tab (HT) character as other_blank_characters, but Regina
additionally allows CR, FF, LF and VT.

Different dialectal variants of the same implementation also recognise
different syntactical constructs. For example, the single line comment form

11

(that is, comments starting with "--"), is allowed by default by Regina,
but not by ansi, and therefore not by the ansi variant of Regina itself.

The tokenizer is designed to accept several dialects of Rexx. This is
accomplished by creating a main, centralized, class, Rexx.Tokenizer, that
implements the basic functionality common to all the dialects, and then writ-
ing a number of subclasses that implement the aspects specific to each dialect.
Currently, ooRexx (class ooRexx.Tokenizer), Regina (class Regina.To-
kenizer) and ansi Rexx (class ANSI.Rexx.Tokenizer) are supported, and
it would most probably be very easy to add support for other dialects, like
BRexx.

3.4 Experimental support for Unicode
In addition to the above variants of Rexx, the tokenizer includes an extra

set of classes that implement some Unicode extensions, following the design
guidelines of the Tutor package.

For a full description of the Unicode extensions defined by Tutor, please
refer to the accompanying document, The Unicode Tools of Rexx.5

The Unicode class names are formed by adding ".Unicode" before the ".To-
kenizer" part of the name, so that, for example, ooRexx.Unicode.Tokeni-
zer is the Unicode variant of the ooRexx tokenizer, ooRexx.Tokenizer.
Unicode classes extend the language by allowing five new, case insensitive,
string suffixes:

• "Y" strings (bYtes strings): a string terminated with a "Y" suffix,
"string"Y, is a BYTES string, that is, a string explicitly composed of
bytes. This is equivalent to current Classic Rexx strings. The notation
can be used to emphasize that a string is a classic Rexx string, or when
unsuffixed strings are set by default to represent another kind of strings.

• "P" strings (codePoints strings): a string terminated with a "P" suffix,
"string"P, is a CODEPOINTS string, that is, a string explicitly composed
of Unicode code points. The source string has to contain well-formed
utf-8, or a syntax error will be raised at parse time.

• "G" strings (Graphemes strings): a string terminated with a "G" suffix,
"string"G, is a GRAPHEMES string, that is, a string explicitly composed
of Unicode extended grapheme clusters. The source string has to con-
tain well-formed utf-8, or a syntax error will be raised at parse time.

5See https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-
Unicode-Tools-Of-Rexx.pdf.

12

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf

• "T" strings (Text strings): a string terminated with a "T" suffix,
"string"T, is a TEXT string, that is, a string explicitly composed of
Unicode extended grapheme clusters, and normalized to the Unicode
Normalization Form C (nfc). The source string has to contain well-
formed utf-8, or a syntax error will be raised at parse time, and it
will be automatically normalized to the nfc form if necessary.

• "U" strings (Unicode strings): a string terminated with a "U" suffix,
"string"U, is a BYTES string composed of (the utf-8 representation of)
a sequence of Unicode codepoints specified inside the quotes. You can
use character names, aliases and labels, and also codepoint numbers, to
specify the contents of a ”U” string. Names, aliasis and labels should
be specified between parentheses; codepoints should be separated by
blanks, and they can optionally include the ”U+” prefix that many
languages use.

"Test"Y /* A BYTES string */
"�����"Y /* Another BYTES string */

/* 1 emoji, 4 bytes (UTF-8) */
"��"P /* A CODEPOINTS string */

/* 2 emojis, 2 code points */
"(cow)(giraffe)"U /* A BYTES string */

/* 2 emojis, 8 bytes */

13

4 Using the tokenizer

4.1 Installation instructions
Install the Tutor package6 and follow the instructions found in the

readme.md file. In your program, you will need to load the Unicode library:

::Requires "Unicode.cls"

Alternatively, and only in the case that you are not going to use the
new Unicode strings, you can directly download Rexx.Tokenizer.cls, a
readme.md file and some utility programs from the parser subdirectory.7 In
this case, you can directly load the tokenizer classes:

::Requires "Rexx.Tokenizer.cls"

4.2 Creating a tokenizer instance
To create a tokenizer instance, you will first need to construct a Rexx

array containing the source program to tokenize.

/* Read the whole file into an array */
source = CharIn(inFile,,Chars(inFile))~makeArray

This array will then be passed as an argument to the new method of the
corresponding tokenizer class, to get an instance of the tokenizer for this
particular program source.

/* Now create a tokenizer instance */
tokenizer = .ooRexx.Tokenizer~new(source)
/* Or .Regina.Tokenizer, etc. */

4.3 Using the simple and full tokenizers
You will also have to decide whether you will be using the simple toke-

nizer (i.e., if you will be getting items using the getSimpleToken tokenizer
method), or you will prefer to use the full tokenizer (i.e., you will be getting
your items using the getFullToken tokenizer method).

6You can download it from https://github.com/RexxLA/rexx-repository/tree/
master/ARB/standards/work-in-progress/unicode/UnicodeTools

7https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/
work-in-progress/unicode/UnicodeTools/parser

14

https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/unicode/UnicodeTools
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/unicode/UnicodeTools
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/unicode/UnicodeTools/parser
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/unicode/UnicodeTools/parser

Do Forever
item = tokenizer~getSimpleToken
/* Or tokenizer~getFullToken */

/* Retrieve the class of our item */
cls = item[class]

/* Two possible reasons to exit the loop */
If cls == END_OF_SOURCE | cls == SYNTAX_ERROR Then Leave
/* Do things with the itemn */

End

4.4 Detailed and undetailed tokenizing
Both kind of items will be described below. In case you have opted for the

full tokenizer, you will also be able to select detailed or undetailed tokenizing.
Detailed tokenizing will return the sequence of simple items absorbed by the
full item as an attribute ("absorbed") of the full item (we will define what
an attribute is shortly).

/* A second, boolean and optional, argument of the */
/* 'new' method determines if tokenizing will be */
/* detailed or not. */
tokenizer = .ooRexx.Tokenizer~new(source, .true)

Undetailed tokenizing returns only the full items, and discards the ele-
mentary, simple items, once the full items have been constructed.

/* Creates an undetailed tokenizer */
tokenizer = .ooRexx.Tokenizer~new(source, .false)

In any case, you will always be able to reconstitute the entirety of your
source file by considering the location attributes of the returned items.

4.5 Error handling
When an error is encountered, tokenizing stops, and a special item is

returned. Its class and subclass will be SYNTAX_ERROR, and a number of
special attributes will be included, so that the error information is as complete
as possible:

15

item.class = SYNTAX_ERROR
item.subclass = SYNTAX_ERROR
item.location = location in the source file

where the error was found
item.value = main error message

/* Additional attributes, specific to SYNTAX_ERROR */
item.number = the error number,

in the format major.minor
item.message = the main error message

(same as item.value)
item.secondaryMessage = the secondary error message,

with all substitutions applied
item.line = line number where the error

occurred (first word of
.location)

If you want to print error messages that are identical to the ones printed
by ooRexx, you can use the following code snippet:

If item.class == SYNTAX_ERROR Then Do
line = item.line
Parse Value item.number With major"."minor

Say
/* "array" contains the source code */
Say Right(line,6) "*-*" array[line]
/* "inFile" is the input file name */
Say "Error" major "running" inFile,
"line" line":" item.message

Say "Error" major"."minor": " item.secondaryMessage

/* -major should be returned when a syntax error */
/* is encountered */
Return -major

End

16

5 Structure of the returned items
The elements returned by the getSimpleToken and getFullToken meth-

ods are Rexx stems. In an abuse of language, we will ofter refer to the stem
tails (indexes) as “attributes” or “properties” of the stem. A item i. has a
class, i.class, a subclass, i.subclass, a location i.location, and a value,
i.value, and, in some few cases, some additional attributes.

5.1 Classes and subclasses
Classes and subclasses are defined in the tokenClasses array constant

(simple and full tokenizing return different subsets of the whole set of item
classes).

You can find a listing of the simple tokenizer classes and subclasses in ap-
pendix A, Class and subclass constants used in simple tokenizing, on page
32, and a listing of the full tokenizer classes and subclasses in appendix B,
Class and subclass constants used in full tokenizing, on page 34.

You should use the following code to replicate these constants in your
own program:

Do constant over tokenizer~tokenClasses
Call Value constant[1], constant[2]

End

You should always use this construction, instead of relying on the internal
values of the constants, which can be changed without notice.

In the present implementation, all these constants have one-byte values,
which allows the use of bifs like POS() when they are concatenated, and
other similar techniques.

5.2 Locations
A location is a blank-separated sequence of four integers, in the form

"startLine startCol endLine endCol". Startine and startCol refer to
the first character in a item; endLine and endCol refer to the first position
after the item (this may not correspond to any character in the line if the
item occupies the last position in the line). Startine and endLine will
always be identical, except for multi-line comments and ooRexx resources.

Locations are guaranteed to be sequentially adjacent and total: two con-
secutive locations (that is, the locations of two items obtained one after the

17

other), "l1 c1 l2 c2" and "l3 c3 l4 c4", are adjacent when the end of the first
is the start of the second, that is, when l2 = l3 and c2 = c3, and then they
can be composed into a super-item "l1 c1 l4 c4"; the composition of all the
items in the source file is total because it always is "1 1 line col", where
line is the number of lines in the source program, and col is the length of
the last line, plus 1. The source file can always be reconstituted by collating
the substrings indicated by the sequence of locations.

5.3 Values
The value of an item is normally the item itself, except in some special

cases. When comments or resources are tokenized, they are not returned as
the values of the value attribute, but only a placeholder is (you can always
use the location of the item to retrieve the original value from the source
file array). Strings are interpreted, so that the actual string value is returned;
this means that separator blanks are removed (for binary, hexadecimal and
Unicode strings), double quotes are eliminated, and Unicode code points,
names, aliases and labels are substituted by their utf-8 representations.

5.4 Other attributes
Some few item classes return stems with additional attributes (apart from

class, subclass, location and value).

For example, items with the SYNTAX_ERROR class return additional informa-
tion, like the secondary error message, major and minor error codes, and
more. See section 4.5, Error handling, on page 15 for details.

18

6 Testing the tokenizer: the InspectTokens
program

The tokenizer distribution includes a sample test program called Inspect-
Tokens.rex, located in the parser subdirectory. InspectTokens takes a
Rexx program file name as its argument, tokenizes the program source, and
prints the results of the tokenization in the terminal. It is an excellent tool
to play with the tokenizer, and to understand how it processes a source file.
It is also a very useful tool to debug the tokenizer itself.

Inspecttokens recognises a set of options that allow the selection of
all possible variants and options of the tokenizer. Calling InspectTokens
without arguments (or with the -h or -help options) produces the following
output:

InspectTokens.rex -- Tokenize and inspect a .rex source file
--

Format:

[rexx] InspectTokens[.rex] [options] [filename]

Options (starred descriptions are the default):

-h, -help Print this information
-d, -detail, -detailed Perform a detailed tokenization (*)
-nd, -nodetail, -nodetailed Perform an undetailed tokenization
-f, -full Use the full tokenizer (*)
-s, -simple Use the simple tokenizer
-u, -unicode Allow Unicode extensions (*)
-nu, -nounicode Do not allow Unicode extensions
-o, -oorexx Use the Open Object Rexx tokenizer (*)
-r, -regina Use the Regina Rexx tokenizer
-a, -ansi Use the ANSI Rexx tokenizer

We will see how InspectTokens works by examining the results of a small
number of tests runs. We will have to create a very simple one-line test file,
called test.rex. Its contents will be the following (we have added a scale
for your convenience):

i = i + 1
....+....1

6.1 Simple tokenizing
If we run InspectTokens against test.rex with the -simple option,

19

InspectTokens -simple test.rex

we will get the following output:
1 [1 1 1 1] END_OF_CLAUSE (BEGIN_OF_SOURCE): ''
2 [1 1 1 2] VAR_SYMBOL (SIMPLE_VAR): 'i'
3 [1 2 1 3] BLANK: ' '
4 [1 3 1 4] OPERATOR: '='
5 [1 4 1 5] BLANK: ' '
6 [1 5 1 6] VAR_SYMBOL (SIMPLE_VAR): 'i'
7 [1 6 1 7] BLANK: ' '
8 [1 7 1 8] OPERATOR: '+'
9 [1 8 1 9] BLANK: ' '

10 [1 9 1 10] NUMBER (INTEGER): '1'
11 [1 10 1 10] END_OF_CLAUSE (END_OF_LINE): ''

6.1.1 Output format

• The first column is a counter.
• The second column is the location of the item, prettyprinted and en-

closed [between brackets].
• The third column contains one or two values. When there are two, the

second one is separated by a blank and enclosed between parentheses.
These are the class and the subclass of the item, as defined above.
They give a lot of information about the nature of the item (e.g., this
is a NUMBER [class], subclass INTEGER; or this is a VAR_SYMBOL [class],
subclass SIMPLE_VAR [i.e., not a stem or a compound variable]; and so
on).

• The fourth column, after a colon and between simple quotes, is the
value of the item. Generally speaking, this is the item itself, as it
appears in the source file, but in some few cases (classic comments,
resources), only an indicator is returned (you can always reconstitute
the original comment or resource by referring to the location attribute
of the item). In some other cases, the value contains an elaboration of
the original item: for example, an X, B or U string will be interpreted,
so that its value can be substituted in the source file. The tokenizing of
"(Steam locomotive)"U, for instance, will generate a value of "���������".

6.1.2 Analysis of the returned items

1. The first item returned by the tokenizer is always a dummy END_OF_-
CLAUSE, subclass BEGIN_OF SOURCE. This allows considerable simpli-
cation of many internal algorithms. For example, if you want to keep

20

track of the item number in a line, you can safely reset your counter to
zero when you receive an END_OF_CLAUSE item. In the absence of this
dummy item, it would become necessary to dual-path: “if we are at
the beginning of the program, or we just got an END_OF_CLAUSE item,
then...”.

2. The second item returned is a proper token, a VAR_SYMBOL (a variable
symbol), and its subclass is SIMPLE_VAR (i.e., it is not a stem or a
compound variable). The name of the variable, "i", is returned as the
value of the item.

3. The third item returned by the tokenizer is a separator, BLANK, i.e.,
some whitespace. In this case, BLANK represents a single blank char-
acter, " ", as its value attribute shows, but it could also have been
a tab character, or any combination of whitespace characters (what
constitutes a whitespace character is dependent on the dialect).

4. The fourth item returned by the tokenizer is another proper token,
an OPERATOR (an operator character). The operator character, "=", is
returned as the value of the item. Simple tokenizing does not offer more
detail about this character; as we will see below, full tokenizing will
return more detailed discriminations, by using the subclass attribute
of the item.

5. Another blank.
6. Another variable symbol.
7. Still another blank.
8. An operator more (in this case, "+").
9. One blank more.

10. The tenth item returned by the tokenizer is a proper token, a NUMBER,
subclass INTEGER, with a value of "1".

11. The eleventh item returned by the tokenizer is an end-of-clause, gener-
ated by the end-of-line. It has the same effect as an explicit semicolon,
as it terminates the clause.

The tokenizer will also return a final END_OF_SOURCE item, but Inspect-
Tokens will not print it.

6.2 Undetailed full tokenizing
We will now invoke InspectTokens once more against test.rex, but this

time we will be asking for an undetailed full tokenizing:

InspectTokens -full -nodetailed test.rex

21

The program output will be the following (colours are ours and not part of
the program output):

1 [1 1 1 1] END_OF_CLAUSE (BEGIN_OF_SOURCE): ''
2 [1 1 1 2] ASSIGNMENT_INSTRUCTION (SIMPLE_VAR): 'i'
3 [1 2 1 5] OPERATOR (ASSIGNMENT_OPERATOR): '='
4 [1 5 1 6] VAR_SYMBOL (SIMPLE_VAR): 'i'
5 [1 6 1 9] OPERATOR (ADDITIVE_OPERATOR): '+'
6 [1 9 1 10] NUMBER (INTEGER): '1'
7 [1 10 1 10] END_OF_CLAUSE (END_OF_LINE): ''

What are the changes, relative to simple tokenizing? Well, both the "="
operator and the "+" operator seem to have “grown”, while several items
have disappeared (indeed, all the items with a BLANK class). The opera-
tors seem to have “eaten” or “absorbed” the corresponding blanks; we have
changed the colour of their location value to magenta to highlight this fact.
This absorption strictly follows the rules of Rexx: blanks before and after
operator characters are always ignored. The tokenizer ignores the blanks,
but, at the same time, it does not want to lose information — to that effect,
it “expands” the absorbing items, by making them wider, so that they can
(so to speak) “accommodate” the ignored blanks. The "=" operator on line
3, for example, runs now from [1 2 1 3] to [1 4 1 5], that is, it encompasses
all the characters between, and including, the previous and following blanks,
that is, " ", "=" and " ".

There are some other, not immediately apparent, changes in the returned
results. The class of "i" has changed, for example: it is no longer VAR_-
SYMBOL, but ASSIGNMENT_INSTRUCTION. The full tokenizer “knows” that i
= i + 1 is an assignment instructions, and it passes this knowledge to us.
Similarly, the subclass of "=" has changed. Previously, it was OPERATOR:
all the tokenizer knew was that "=" was an operator character. Now it is
ASSIGNMENT_OPERATOR, which is much more informative. Finally, "+" has
now a subclass of ADDITIVE_OPERATOR.

6.3 Detailed full tokenizing
As a last test, we will run InspectTokens against test.rex one last

time, asking again for a full tokenizing, but it this case a detailed one (the
default):

InspectTokens -full test.rex

Here is the program output (lines which are new are highlighted in magenta):

22

1 [1 1 1 1] END_OF_CLAUSE (BEGIN_OF_SOURCE): ''
2 [1 1 1 2] ASSIGNMENT_INSTRUCTION (SIMPLE_VAR): 'i'
3 [1 2 1 5] OPERATOR (ASSIGNMENT_OPERATOR): '='

---> Absorbed:
1 [1 2 1 3] BLANK: ' '
2 [1 3 1 4] OPERATOR: '=' <==
3 [1 4 1 5] BLANK: ' '

4 [1 5 1 6] VAR_SYMBOL (SIMPLE_VAR): 'i'
5 [1 6 1 9] OPERATOR (ADDITIVE_OPERATOR): '+'

---> Absorbed:
1 [1 6 1 7] BLANK: ' '
2 [1 7 1 8] OPERATOR: '+' <==
3 [1 8 1 9] BLANK: ' '

6 [1 9 1 10] NUMBER (INTEGER): '1'
7 [1 10 1 10] END_OF_CLAUSE (END_OF_LINE): ''

The unindented lines are exactly the same as in our previous run. New in
the listing are the indented lines, grouped in different sets, and highlighted:
each set lists the simple items absorbed by the parent items in the full to-
kenizing process. As it is easily visible, only the items that have absorbed
some items list their absorptions (in the other cases, since there is nothing
absorbed, nothing is listed).

Every sequence of absorbed items starts with an "---> Absorbed:" marker.
A number of lines then follows, listing the original items present in the simple
tokenizing of the source file. The original absorbing item has a "<==" marker
to the right of its value.

23

7 An example application: the Rexx tokeni-
zer for Unicode

In this section, we briefly describe the implementation of an example
application of our tokenizer: rxu, the Rexx preprocessor for Unicode, part
of The Unicode Tools Of Rexx (Tutor), a package described in a separate
document.8

An ampler definition of the specification of the preprocessor and its role in
the totality of Tutor can be found in the accompanying document.

The main purpose of the Tutor package is to facilitate the understand-
ing and the implementation of prototypes of Unicode-enabled Rexx. To this
purpose, the package defines a set of Unicode extensions to the (ooRexx
variant of the) Rexx language. We will say that this extended language is
(Tutor-flavoured) Unicode Rexx. A program written in Unicode Rexx is
a (Tutor-flavoured) Unicode Rexx program, or a rxu program for short.

There are other flavours of Unicode-enabled Rexx, most notably Jean Louis
Faucher’s Executor, a derivative of ooRexx 4.x, and Adrian Sutherland’s
CRexx, a Rexx inspired low-level language which is built from the ground
up to support Unicode.

In the same way that Rexx programs that are invoked directly by Rexx
are normally created with a .rex extension, Unicode Rexx programs usually
have a .rxu extension.

The rxu preprocessor translates a .rxu program into a .rex program. It
then calls the translated program, after which it deletes it. The net result
of this process is that the user is able to write rxu programs and to execute
them, effectively providing an implementation of Unicode Rexx.

In the rest of this section, we will be using the terminology defined by the
Tutor package, as described in the referred document.

7.1 An example run of the RXU command
We will study the inner workings of the rxu preprocessor by taking a

look at a sample translation.
8See https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-

Unicode-Tools-Of-Rexx.pdf.

24

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf

7.1.1 Creating a test file

Let us create a test.rxu file containing the following rxu program:

1 Options DefaultString Text
2 var = "������������������" || "(Lobster)"U
3 Say '"'var'" is a' StringType(var) "string of length" Length(var)

Line number 1 states that a string lacking a suffix (an unsuffixed string)
shall be a TEXT string, i.e., a string composed of Unicode extended grapheme
clusters automatically normalized to nfc (instead of a string of bytes, like
in the current implementations of Rexx).

Line number 2 creates a new variable, called var, which contains a con-
catenation of two strings. The first string is the crab emoji, "������������������"; since it is
unsuffixed, this string will be a TEXT string, as dictated by the Options in-
struction in line 1. The second string is a Unicode string, specified by listing
the constituent code points by name, alias, label or (hexadecimal) number
— in this case, the only code point is the lobster emoji, "���������".

Line number 3 prints the contents of var, followed by its string type,
followed by its length.

7.1.2 A test run

If we now run the rxu preprocessor against our newly created file,

rxu test,

we will get the following output

"���������������������������" is a TEXT string of length 2.

7.1.3 The translated file

To understand what has happened (and how the rxu preprocessor works),
we will run rxu again, but this time we will be using the -keep option, so
that the translated .rex file is not erased after interpretation.

rxu -keep test.

Here is the contents of the test.rex file (translated lines are very large in
this case, which has forced us to use a small font size and avoid indentation):

1 Do; !Options = DefaultString Text; Call !Options !Options; Options !Options; End
2 var = (!DS("������������������")) || (Bytes("���������"))
3 Say (!DS('"'))var||(!DS('" is a')) StringType(var) (!DS("string of length")) !Length(var)
4
5 ::Requires 'Unicode.cls'

25

Contemplation of this listing shows us a large number of instructive things
about the translation process:

• The preprocessor performs a line-by-line translation, that is, the trans-
lated .rex file has the same line numbers as the source .rxu file. This
is very convenient, for example, when debugging, or to be able to com-
pare translated and untranslated versions of the same program.

• The preprocessor adds a blank line, and a line containing the directive
::Requires 'Unicode.cls', to the end of the translated program.
This ensures that the main Tutor class, Unicode.cls, is loaded, in
effect adding support for Unicode.

• The Options instruction is translated into a complex construction. The
contents of the expression following the Options keyword is stored
in an intermediate variable, !Options, and then the !Options rou-
tine is called with that variable as an argument. !Options, which re-
sides in Unicode.cls, implements the Unicode-specific aspects of the
Options instruction. Finally, the collected expression value is passed
to the standard Options instruction: this guarantees that we can mix
Unicode-oriented options and interpreter-specific options in the same
instruction.

• All unsuffixed strings are enclosed in a call to the !DS routine. !DS
(which stands for Default String) is located in Unicode.cls, and it
implements the semantics of the Options DefaultString instruction.
In our example, the routine will guarantee that all unsuffixed strings
are TEXT strings.

• The Unicode string "(Lobster)"U is interpreted and translated by the
preprocessor into its corresponding emoji, and coerced to the BYTES
string type.

• New built-in functions (bifs), like StringType, appear in the trans-
lated program as-is, while existing bifs, like Length, get a "!" char-
acter prepended to their name: !Length. This allows to assign new
semantics to existing bifs.

7.2 How does the preprocessor work
We just had a glance at what are (some of) the transformations that

rxu applies to translate Unicode Rexx programs into standard ooRexx
programs. Now we would like to understand how these transformations are
accomplished. Since our tokenizer is not a full parser, when we are examining
an item, our knowledge of its context will be, unavoidably, limited. On the
other hand, the full tokenizer does indeed return a considerable amount of

26

context, so that, by maintaining limited forms of state, we will be able to
infer the syntactic category of most of the constructions we are required to
process.

7.2.1 An example: translating LENGTH()

Let us focus, as an example, on the translation of existing built-in func-
tions. As we have seen, they are modified by prepending a "!" character to
their name: Length has to be translated to !Length, and so on. A naïve
algorithm to implement this translation would be the following: “every time
that you see a symbol that uppercases to 'LENGTH', prepend an exclamation
mark to it”. Such an approach would —erroneously— translate the name of
any variable called Length:

l = Length(v) /* Should be translated */
l = length /* Should NOT be translated */

We could try to improve our algorithm and say, “ok, let us modify the
bif name if and only if it is immediately followed by a left parentheses: this
will then guarantee that it is a function call”. But, in this case, we would be
forgetting that there are also methods called length.

l = Length(v) /* Should be translated */
l = v~length() /* Should NOT be translated */

A still better approach would be to understand that we should be keeping
some state (in our case, the last item inspected), and transform our algorithm
into the following: “prepend an exclamation symbol if and only if the item
is immediately followed by a left parentheses, and, additionally, the last
item is not a twiddle or a double twiddle”. This algorithm would almost
be complete, but we would still be forgetting the (admittedly infrequent,
but perfectly valid) case where the Length() bif is called as a subroutine,
i.e., using the Call instruction and then taking care of the Result special
variable (besides, there are a number of bifs which are usually called as a
subroutine).

Call Length v /* Should be translated */
l = result

To handle this case, we are forced to add a second path to our algorithm,
and keep, as additional state, the position of an item inside an instruction (we

27

can do that because the tokenizer is systematically returning all the END_-
OF_CLAUSE items to us). Then we can add to the last algorithm a second
case: “or when the context (i.e., the item class) is a KEYWORD_INSTRUCTION
and the subcontext (the item subclass) is CALL_INSTRUCTION and the called
routine name is one of the recognised bifs ”.

Have we reached a perfect algorithm? Not yet. There is still a case that
we are not able to handle: when there is an internal routine with the same
name as a built-in function. In such cases, the rxu preprocessor produces
the wrong result (i.e., it prepends an exclamation mark, when it should not).
It would be possible to implement such discriminations using the tokenizer
alone, but it would also be very costly: we would need to recognise and
differentiate the diverse code sections (code fragments between directives),
because internal labels are local to code sections. And then we would still
need to apply two passes to our tokenizing, because a label can be used
before its definition — or we should have to maintain an arbitrarily large
context. We prefer to wait for the day that our tokenizer will be upgraded
to a full parser: there is where such efforts belong.

7.2.2 Another example: translating strings

Another relatively complex problem is the translation of strings: we have
to handle (1) the default string type (i.e., the type of unsuffixed strings);
(2) the new "Y", "P", "G" and "T" strings, where the last three have to be
validated for well-formed utf-8; and (3) the new "U" strings, which can use
names, aliases, labels or code points.

(1) The Options DefaultString setting has to be honoured; this is not
completely trivial, because it is a setting that may be changed at execution
time. As we have already seen, we solve this problem by translating every oc-
currence of an unsuffixed string "string" to a function call !DS("string"),
and then leaving to the !DS routine the task to dynamically assign the right
type to the string.

l = "string" /* Translated to !DS(string) */
/* The !DS routine knows how to return a string of the */
/* right type */

Here is a simplified version of the source code for the !DS routine (ex-
tracted from Unicode.cls; the .Unicode.DefaultString environment vari-
able stores the value of the Options DefaultString setting):

::Routine !DS Public
Use Strict Arg string

28

Select Case Upper(.Unicode.DefaultString)
When "BYTES" Then Return Bytes(string)
When "CODEPOINTS" Then Return Codepoints(string)
When "GRAPHEMES" Then Return Graphemes(string)
When "TEXT" Then Return Text(string)
Otherwise Return String

End

(2) On the other hand, we have to handle the full collection of new
string suffixes that our flavour of Unicode Rexx defines, namely, "Y" (BYTES
strings), "P" (CODEPOINTS strings), "G" (GRAPHEMES strings), "T" (TEXT
strings) and "U" (Unicode strings). The first four of these cases can be imple-
mented by translating the string to a function call containing the unsuffixed
string, where the function name is the the corresponding built-in function:
"string"G will be translated to GRAPHEMES("string"), for example; strings
should also be checked for utf-8 well-formedness.

(3) Unicode strings may require the lookup of names, aliases or labels
to translate them to Unicode code points, and then the transformation of a
sequence of code points into its utf-8 encoding.

c = "(Duck)"U /* Translated to c = BYTES("������") */

Translation of strings is context-dependent. For example, the string
"(Duck)"U has to be translated to BYTES("������"), but when "(Duck)"U ap-
pears in certain contexts, like in the position of a label, it has to be translated
to simply "������":

/* A label */
"(Duck)"U: /* Do something */

/* If we translate to */
BYTES("������"): /* --> Syntax error */
/* We should instead translate to */
"������": /* OK */

A single instruction may include several different contexts, so that differ-
ent translation strategies may be necessary in every context. For example,
in the instruction

Parse Arg x1 "(Duck)"U x2 (fun("(Crab)"U)) x3

the first Unicode string has to be translated to "������", and the second to
BYTES("������������������").

29

8 Further work
The next natural step for the tokenizer is to grow and expand until it

becomes a full Abstract Syntax Tree (ast) parser. A full parser will be able
to assign the correct grammatical category to every token. For example, in

Do while = 1 to 3 While (while < 4)
Say while

End while

four out of six whiles are variables (simple VAR_SYMBOLs); the second one is
a keyword, and the last one is a name.9

A full ast parser will also have an impact on several aspects of rxu, the
Rexx preprocessor for Unicode. For example, it will be able to know when
a static function or procedure call is referring to an internal label, and, in
that case, no built-in name substitution will be attempted by rxu.10

Generally speaking, the existence of a full ast parser will open the door to
many new tools and programs. For instance, it will be almost trivial to write
a powerful cross-referencer: it would reduce to traversing the ast to collect
the variables in each code section, plus some sorting and some prettyprinting.
The possibility to experiment with language extensions much more ambitious
than the ones defined by Tutor will also be greatly facilitated.

9This example is ooRexx-specific.
10Please refer to section 7.2.1, An example: translating LENGTH(), on page 27 for addi-

tional details.

30

9 Acknowledgements
Tutor, and the Rexx tokenizer, could not have been developed without

the intense debates, general creativity and overwhelming feedback of the
RexxLA Architecture Review Board (arb), for which I am deeply indebted.

I also want to extend my gratitude to Laura Blanco, Mireia Monforte,
David Palau and Amalia Prats, students of my Psychoanalysis and Logic
course at epbcn, where I also teach some Rexx programming, for their
persistence, unwavering interest, and candid feedback.

Finally, I have to thank my colleagues at epbcn, for being loving, caring
and supportive, and for bearing with me during the long periods where I
immersed myself in Rexx matters, disappearing from the common world.
Special thanks should go to Silvina Fernández and Olga Palomino, who have
attended several essay sessions. Silvina Fernández has also taken care to
operate our ElGato Stream Deck during my talks.

31

Appendices
Appendix A Class and subclass constants used

in simple tokenizing
Subclasses are listed by inserting them as nested itemizations, except

when there is only one subclass that is identical to the class, in which case
nothing is listed. So, for example, BLANK has as its only subclass BLANK itself,
but CONST_SYMBOL has three subclasses, ENVIRONMENT_SYMBOL, LITERAL_-
SYMBOL and PERIOD_SYMBOL.

• BLANK. Whitespace, like tabs and blanks.
• CLASSIC_COMMENT. Arbitrary nesting is allowed.
• COLON. The ":" character.
• CONST_SYMBOL. A constant symbol, like a literal symbol, a dot, or an

environment symbol.
– ENVIRONMENT_SYMBOL, of the form ".symbol".
– LITERAL_SYMBOL that are not environment symbols and diferent

from ".".
– PERIOD_SYMBOL. The special case of ".".

• END_OF_CLAUSE. Semicolons and ends of lines. The tokenizer inserts
a dummy END_OF_CLAUSE(BEGIN_OF SOURCE) clause at the beginning
of the program.

– BEGIN_OF_SOURCE. Dummy, inserted. Very convenient for simpli-
fication.

– END_OF_LINE. Implied semicolon.
– INSERTED_SEMICOLON. In simple tokenizing, this is generated only

for ooRexx RESOURCEs, at the end of the line holding the final
resource delimiter.

– SEMICOLON. An explicit semicolon.
• END_OF_SOURCE. Signals the end of the source file. When a call to

getSimpleToken or getFullToken returns END_OF_SOURCE, no further
items should be retrieved.

• LBRACKET. The "[" character.
• LINE_COMMENT. Up to but not including the end of line.
• LPAREN. The "(" character.
• NUMBER. A Rexx number. This can be

– EXPONENTIAL. A number with a (potentially signed) exponent.
– INTEGER. An integer.

32

– FRACTIONAL. A number with a decimal point, but no exponent.
• OPERATOR. An operator character. Please note that simple tokenizing

does not recognise multi-character operators, like "**" or "||" (these
are returned instead as multiple items, irrespective of whether they are
internally separated by whitespace or comments).

• RBRACKET. The "]" character.
• RESOURCE. The resource itself, i.e., the array of lines.
• RESOURCE_DELIMITER. The end delimiter, which ends the resource.
• RESOURCE_IGNORED. Characters after ::Resource name; or ::END are

ignored (this is undocumented behaviour).11

• RPAREN. The ")" character.
• SPECIAL. At present, only the "," character (all the other characters

from ansi 6.2.2.2 are handled separately).
• STRING. All kinds of strings, namely:

– BINARY_STRING.
– BYTES_STRING (Unicode-only): a string with a "Y" suffix.
– CHARACTER_STRING, an unsuffixed string.
– CODEPOINTS_STRING (Unicode-only), a string with a "P" suffix,

checked for valid utf-8.
– GRAPHEMES_STRING (Unicode-only), a string with a "G" suffix,

checked for valid utf-8.
– HEXADECIMAL_STRING.
– TEXT_STRING (Unicode-only), a string with a "T" suffix, checked

for valid utf-8.
– UNOTATION_STRING (Unicode-only), a string with a "U" suffix

(syntax checked).
• SYNTAX_ERROR. This is the class of an item signaling a syntax error in

the tokenizer program. If a call to getSimpleToken or getFullToken
returns SYNTAX_ERROR, no further items should be retrieved.

• VAR_SYMBOL. It may be a variable symbol, a stem name, or a compound
variable name. It may also be a keyword: please note that the simple
tokenizer does not recognise any keyword, except for the ::RESOURCE
construction.

– SIMPLE_VAR.
– STEM_VAR.
– COMPOUND_VAR.

11Reported in https://sourceforge.net/p/oorexx/documentation/307/.

33

https://sourceforge.net/p/oorexx/documentation/307/

Appendix B Class and subclass constants used
in full tokenizing

The full tokenizer builds upon the simple tokenizer. It recognises some
Rexx keywords, but not all of them. In addition to the constants for item
class and subclass used in simple tokenizing, the full tokenizer uses the fol-
lowing constants:

• ASSIGNMENT_INSTRUCTION. Variable assignments, not message assign-
ments.

• COMMAND_OR_MESSAGE_INSTRUCTION. Cannot determine without arbi-
trarily large context.

• DIRECTIVE. All directives include and absorb the "::" marker.
– ANNOTATE_DIRECTIVE.
– ATTRIBUTE_DIRECTIVE.
– CLASS_DIRECTIVE
– CONSTANT_DIRECTIVE
– METHOD_DIRECTIVE
– OPTIONS_DIRECTIVE
– REQUIRES_DIRECTIVE
– RESOURCE_DIRECTIVE
– ROUTINE_DIRECTIVE

• LABEL. Includes and absorbs the colon; it also inserts an implied semi-
colon.

• KEYWORD_INSTRUCTION. All KEYWORD_INSTRUCTIONs include the first
blank after the keyword, if present.

– ADDRESS_INSTRUCTION.
– ARG_INSTRUCTION.
– CALL_INSTRUCTION (excluding Call On and Call Off).
– CALL_OFF_INSTRUCTION. Includes the Off subkeyword.
– CALL_ON_INSTRUCTION. Includes the On subkeyword.
– DO_INSTRUCTION.
– DROP_INSTRUCTION.
– ELSE_INSTRUCTION. Inserts a semicolon after the keyword.
– END_INSTRUCTION.
– EXIT_INSTRUCTION.
– EXPOSE_INSTRUCTION.
– FORWARD_INSTRUCTION. ooRexx only.
– GUARD_INSTRUCTION. ooRexx only.
– IF_INSTRUCTION.

34

– INTERPRET_INSTRUCTION.
– ITERATE_INSTRUCTION.
– LEAVE_INSTRUCTION.
– LOOP_INSTRUCTION. ooRexx only.
– NOP_INSTRUCTION.
– NUMERIC_INSTRUCTION.
– OPTIONS_INSTRUCTION.
– OTHERWISE_INSTRUCTION. Inserts a semicolon after the keyword.
– PARSE_INSTRUCTION. Includes the CASELESS, LOWER and UPPER

keywords, if present, and adds corresponding tail values too.
– PROCEDURE_INSTRUCTION.
– PUSH_INSTRUCTION.
– PULL_INSTRUCTION.
– QUEUE_INSTRUCTION.
– RAISE_INSTRUCTION. ooRexx only.
– REPLY_INSTRUCTION. ooRexx only.
– RETURN_INSTRUCTION.
– SAY_INSTRUCTION.
– SELECT_INSTRUCTION.
– SIGNAL_INSTRUCTION. Excluding Signal On and Signal Off.
– SIGNAL_OFF_INSTRUCTION. Includes the Off subkeyword.
– SIGNAL_ON_INSTRUCTION. Includes the On subkeyword.
– THEN_INSTRUCTION. Inserts a semicolon before and after the key-

word.
– TRACE_INSTRUCTION.
– UPPER_INSTRUCTION. Regina only (but not in ansi Rexx).
– USE_INSTRUCTION. ooRexx only.
– WHEN_INSTRUCTION.

• OPERATOR. Simple and compound operators, and extended assignment
item sequences. The full tokenizing process knows how to combine ad-
jacents items (discarding whitespace and comments) to form compound
operators and other item sequences.

– ADDITIVE_OPERATOR ("+" and "-").
– CONCATENATION_OPERATOR ("||").
– COMPARISON_OPERATOR ("=", "\=", ">", "<", "><","<>", ">=",

"\<", "<=", "\>”, "==", "\==", ">>", "<<", ">>=”, "\<<”, "<<="
and "\>>").

– EXTENDED_ASSIGNMENT ("+=", "-=", "*=", "/=", "%=", "//=",
"||=", "&=", "|=", "&&=", and "**=").

– LOGICAL_OPERATOR ("&", "|" and "&&").
– MESSAGE_OPERATOR ("~" and "~~").

35

– MULTIPLICATIVE_OPERATOR ("*", "/", "//" and "%").
– POWER_OPERATOR ("**").

36

Appendix C Resources
• A copy of this article can be downloaded from https:

//www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-
Tokenizer-for-Rexx-and-ooRexx.pdf.

• The presentation slides can be downloaded from https:
//www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-
Tokenizer-for-Rexx-and-ooRexx-slides.pdf.

• The accompanying article, The Unicode Tools Of Rexx, describing Tu-
tor, can be downloaded from https://www.epbcn.com/pdf/josep-
maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf. The
slides are available at https://www.epbcn.com/pdf/josep-maria-
blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf.

Modified scripting.py file, class RexxLexer fragment, for the
LuaLATEX minted package:

1 class RexxLexer(RegexLexer):
2 """
3 Rexx is a scripting language available for a wide range of
4 different platforms with its roots found on mainframe systems.
5 It is popular for I/O- and data based tasks and can act as glue
6 language to bind different applications together.
7

8 .. versionadded:: 2.0
9

10 Modified by Josep Maria Blasco <josep.maria.blasco@epbcn.com>
11 to support ooRexx 5.0 and Tutor-defined Unicode extensions,
12 Jan-Mar 2024.
13 """
14 name = 'Rexx'
15 url = 'http://www.rexxinfo.org/'
16 aliases = ['rexx', 'arexx']
17 filenames = ['*.rexx', '*.rex', '*.rx', '*.arexx']
18 mimetypes = ['text/x-rexx']
19 flags = re.IGNORECASE
20

21 tokens = {
22 'root': [
23 (r'\s+', Whitespace),
24 (r'/*', Comment.Multiline, 'comment'),
25 (r'"', String, 'string_double'),
26 (r"'", String, 'string_single'),
27 (r'[0-9]+(\.[0-9]+)?(e[+-]?[0-9])?', Number),
28 (r'([a-z_]\w*)(\s*)(:)(\s*)(procedure)\b',
29 bygroups(Name.Function, Whitespace, Operator, Whitespace,

37

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf

30 Keyword.Declaration)),
31 (r'([a-z_]\w*)(\s*)(:)',
32 bygroups(Name.Label, Whitespace, Operator)),
33 include('function'),
34 include('keyword'),
35 include('operator'),
36 (r'[a-z_]\w*', Text),
37],
38 'function': [
39 (words((
40 'abbrev', 'abs', 'address', 'arg', 'b2x', 'bitand', 'bitor',
41 'bitxor', 'bytes', 'c2d', 'c2x', 'c2u', 'center', 'centre',
42 'changestr', 'charin', 'charout', 'chars', 'codepoints',
43 'compare', 'condition', 'copies', 'd2c', 'd2x', 'datatype',
44 'date', 'decode', 'delstr', 'delword', 'digits', 'encode',
45 'errortext', 'form', 'format', 'fuzz', 'graphemes', 'insert',
46 'lastpos', 'left', 'length', 'linein', 'lineout', 'lines',
47 'lower', 'max', 'min', 'n2p', 'overlay', 'p2n', 'pos',
48 'queued', 'random', 'reverse', 'right', 'sign', 'sourceline',
49 'space', 'stream', 'stringtype', 'strip', 'substr', 'subword',
50 'symbol', 'text', 'time', 'trace', 'translate', 'trunc',
51 'u2c', 'unicode', 'upper', 'utf8', 'value', 'verify', 'word',
52 'wordindex', 'wordlength', 'wordpos', 'words', 'x2b', 'x2c',
53 'x2d', 'xrange'), suffix=r'(\s*)(\()'),
54 bygroups(Name.Builtin, Whitespace, Operator)),
55],
56 'keyword': [
57 (r'(address|arg|by|call|coercions|command|defaultstring|do|drop|'
58 r'else|end|exit|expose|for|forever|if|interpret|iterate|leave|'
59 r'method|nop|numeric|off|on|options|parse|procedure|pull|push|'
60 r'queue|requires|resource|return|routine|say|select|signal|'
61 r'strict|to|then|trace|until|use|while)\b', Keyword.Reserved),
62],
63 'operator': [
64 (r'(-|//|/|\(|\)|**|*|\\<<|\\<|\\==|\\=|\\>>|\\>|\\|\|\||\||'
65 r'&&|&|%|\+|<<=|<<|<=|<>|<|==|=|><|>=|>>=|>>|>|¬<<|¬<|¬==|¬=|'
66 r'¬>>|¬>|¬|\.|,)', Operator),
67],
68 'string_double': [
69 (r'[^"\n]+', String),
70 (r'""', String),
71 (r'"', String, '#pop'),
72 (r'\n', Text, '#pop'), # Stray linefeed also terminates strings.
73],
74 'string_single': [
75 (r'[^\'\n]+', String),
76 (r'\'\'', String),
77 (r'\'', String, '#pop'),
78 (r'\n', Text, '#pop'), # Stray linefeed also terminates strings.

38

79],
80 'comment': [
81 (r'[^*]+', Comment.Multiline),
82 (r'*/', Comment.Multiline, '#pop'),
83 (r'*', Comment.Multiline),
84]
85 }
86

87 _c = lambda s: re.compile(s, re.MULTILINE)
88 _ADDRESS_COMMAND_PATTERN = _c(r'^\s*address\s+command\b')
89 _ADDRESS_PATTERN = _c(r'^\s*address\s+')
90 _DO_WHILE_PATTERN = _c(r'^\s*do\s+while\b')
91 _IF_THEN_DO_PATTERN = _c(r'^\s*if\b.+\bthen\s+do\s*$')
92 _PROCEDURE_PATTERN = _c(r'^\s*([a-z_]\w*)(\s*)(:)(\s*)(procedure)\b')
93 _ELSE_DO_PATTERN = _c(r'\belse\s+do\s*$')
94 _PARSE_ARG_PATTERN = _c(r'^\s*parse\s+(upper\s+)?(arg|value)\b')
95 PATTERNS_AND_WEIGHTS = (
96 (_ADDRESS_COMMAND_PATTERN, 0.2),
97 (_ADDRESS_PATTERN, 0.05),
98 (_DO_WHILE_PATTERN, 0.1),
99 (_ELSE_DO_PATTERN, 0.1),

100 (_IF_THEN_DO_PATTERN, 0.1),
101 (_PROCEDURE_PATTERN, 0.5),
102 (_PARSE_ARG_PATTERN, 0.2),
103)
104

105 def analyse_text(text):
106 """
107 Check for initial comment and patterns that distinguish Rexx from other
108 C-like languages.
109 """
110 if re.search(r'/***\s*rexx', text, re.IGNORECASE):
111 # Header matches MVS Rexx requirements, this is certainly a Rexx
112 # script.
113 return 1.0
114 elif text.startswith('/*'):
115 # Header matches general Rexx requirements; the source code might
116 # still be any language using C comments such as C++, C# or Java.
117 lowerText = text.lower()
118 result = sum(weight
119 for (pattern, weight) in RexxLexer.PATTERNS_AND_WEIGHTS
120 if pattern.search(lowerText)) + 0.01
121 return min(result, 1.0)

39

	Introduction
	History of the tokenizer
	Structure of this document

	General concepts
	Alphabets, lexical elements and syntax
	Lexers, tokenizers and parsers
	Rexx clauses, tokens and items
	``Tokenized'' programs
	What is a tokenizer good for?
	Transforming programs
	Compiling data about a program
	Tokenizers vs. parsers

	Tokenizer features
	The specificity of Rexx
	Simple and full tokenizing
	Tokenizing several dialects
	Experimental support for Unicode

	Using the tokenizer
	Installation instructions
	Creating a tokenizer instance
	Using the simple and full tokenizers
	Detailed and undetailed tokenizing
	Error handling

	Structure of the returned items
	Classes and subclasses
	Locations
	Values
	Other attributes

	Testing the tokenizer: the InspectTokens program
	Simple tokenizing
	Output format
	Analysis of the returned items

	Undetailed full tokenizing
	Detailed full tokenizing

	An example application: the Rexx tokenizer for Unicode
	An example run of the RXU command
	Creating a test file
	A test run
	The translated file

	How does the preprocessor work
	An example: translating LENGTH()
	Another example: translating strings

	Further work
	Acknowledgements
	Appendix Class and subclass constants used in simple tokenizing
	Appendix Class and subclass constants used in full tokenizing
	Appendix Resources

