
THE DESIGN OF RUO(

MIKE COWLISHAW
IBM

The Design of REXX
Mike Cowlishaw

ISM UK Laboratories, Winchester, UK

Introduction
REXX is a flexible personal language that was designed with particular attention to
feedback from users. The electronic environment used for its development has evolved
a tool that seems to be effective and easy to use, yet is sufficiently general and powerful
to fulfil the needs of many professional applications. As a result REXX is very widely
used in IBM, and has been implemented for a variety of operating systems and ma-
chines.

The philosophy of the REXX language reflects the environment in which it was devel-
oped. A strong emphasis on readability and usability means that the language itself
provides a programming environment that encourages high productivity while reducing
the occurrence of errors.

RE= is useful for many applications, including command and macro programming,
prototyping, and personal programming. It is a suitable language for teaching the
principles of programming, since it includes powerful control constructs and modern
data manipulation. It lets the student concentrate on the algorithms being developed
rather than on language mechanics.

The REXX programming language has been designed with just one objective. It has been
designed to make programming easier than it was before, in the belief that the best
way to encourage high quality programs is to make writing them as simple and as en-
joyable as possible. Each part of the language has been devised with this in mind;
providing a programming language that is by nature comfortable to use is more im-
portant than designing for easy implementation.

The first section of this paper introduces the REXX language, and the other two sections
describe the concepts and design environment that shaped the language.

2

Summary of the Language
REX is a language that is superficially similar to earlier languages. However. most
aspects of the language differ from previous designs in ways that make REXX more
suited to general users. It was possible to make these improvements because REXX was
designed as an entirely new language, without the requirement that it be compatible
with any earlier design.

The structure of a REXX program is extremely simple. This sample program, TOAST,
is complete, documented, and executable as it stands.

TOAST

/* This wishes you the best of health. */
say ‘Cheers!’

TOAST consists of two lines: the first is a comment that describes the purpose of the
program, and the second is an instance of the SAY instruction. SAY simply displays
the result of the expression following it - in this case a literal string.

Of course, REX can do more than just display a character string. Although the Ian-
guage is composed of a small number of instructions and options, it is powerful. Where
a function is not built-in it can be added by using one of the defined mechanisms for
external interfaces.

The rest of this section introduces most of the features of RE=.

REX provides a conventional selection of control constructs. These include
IF.. .THEN.. .ELSE, SELECT.. .WHEN.. .OTHERWISE.. .END, and several varieties of
DO.. .END for grouping and repetition. These constructs are similar to those of PUI,
but with several enhancements and simplifications. The DO (looping) construct can
be used to step a variable TO some limit, FOR a specified number of iterations, and
WHILE or UNTIL some condition is satisfied. DO FOREVER is also provided. LOOP
execution may be mohfied by LEAVE and ITERATE instructions that significantly
reduce the complexity of many programs. No GOT0 instruction is included, but a
SIGNAL instruction is provided for abnormal transfer of control, such as error exits and
computed branching.

REXX expressions are general, in that any operator combinations may be used (provided,
of course, that the data values are valid for those operations). There are 9 arithmetic
operators (including integer division, remainder, and power operators), 3 concatenation
operators, 12 comparative operators, and 4 logical operators. All the operators act upon
strings of characters, which may be of any length (typically limited only by the amount
of storage available).

This sample program shows both expressions and a conditional instruction:

3

GREET

/* A short program t o greet you. */
/* First display a prompt: */
say ‘Please type your name and then press ENTER:‘
parse pull answer /* Get the reply into ANSWER */
/* If nothing w a s typed, then use a fixed greeting, */
/* otherwise echo the name p o l i t e l y . */
i f answer=“ then say ‘Hello Stranger!‘

else say ‘Hello‘ answer‘ !‘

The expression on the last SAY (display) instruction concatenates the string ‘Hello‘
to the variable ANSWER with a blank in between them (the blank is here a valid op-
erator, meaning “concatenate with blank”). The string ‘ ! ‘ is then directly concat-
enated to the result built up so far. These simple and unobtrusive concatenation
operators make it very easy to build up strings and commands, and may be freely mixed
with arithmetic operations.

In RExx, any string or symbol may be a number. Numbers are all “real” and may be
specified in exponential notation if desired. (A n implementation may use appropriately
efficient internal representations, of course.) The arithmetic operations in REXX are
completely defined, so that different implementations must always give the same re-
sults.

The NUMERIC instruction may be used to select the arbitrary precision of calculations
(you may calculate with one thousand significant digits, for example). The same in-
struction may also be used to set the fuzz to be used for comparisons, and the expo-
nential notation (scientific or engineering) that RExx will use to present results. The
term fuzz refers to the number of significant digits of error permitted when malung a
numerical comparison.

Variables all hold strings of characters, and cannot have aliases under any circum-
stances. The simple compound variable mechanism allows the use of arrays (many-
dimensional) that have the property of being indexed by arbitrary character strings.
These are in effect content-addressable data structures, which can be used for building
lists and trees. Groups of variables (arrays) with a common stem to their name can
be set, reset, or manipulated by references to that stem alone.

This example is a routine that removes all duplicate words from a string of words:

4

JUSTONE

/* This r o u t i n e removes d u p l i c a t e words from a s t r i n g , a n d
/* i l l u s t r a t e s t h e use of a compound v a r i a b l e (HADWORD)
/* which i s indexed by a r b i t r a r y data (words).
Justone: procedure /* make a l l v a r i a b l e s p r i v a t e

pa r se arg wordl i s t /* g e t the list of words
hadword.=O /* show a l l p o s s i b l e words as new
o u t l i s t = “ /* i n i t i a l i z e the output l ist
do while wordlistT=‘ /* loop while w e have data

/* s p l i t WORDLIST i n t o the first word and the remainder
pa r se va r word l i s t word word l i s t
if hadword.word then iterate /* loop i f had word before
hadword.word=l /* record that w e have had t h i s word
o u t l i s t = o u t l i s t word /* add t h i s word t o o u t p u t l ist
end

r e t u r n o u t l i s t /* f i n a l l y r e t u r n t h e r e s u l t

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

This example also shows some of the built-in string parsing available with the PARSE
instruction. This provides a fast and simple way of decomposing strings of characters
using a primitive form of pattern matching. A string may be split into parts using
various forms of patterns, and then assigned to variables by words or as a whole.

A variety of internal and external calling mechanisms are defined. The most primitive
is the command (which is similar to a message in the Smalltalk-801 system), in which
a clause that consists of just an expression is evaluated. The resulting string of char-
acters is passed to the currently selected external environment, which might be an OP-
erating system, an editor, or any other functional object. The REXX programmer can
also invoke functions and subroutines. These may be internal to the program, built-in
(part of the language), or external. Within an internal routine, variables may be shared
with the caller, or protected by the PROCEDURE instruction (that is, be made local to
the routine). If protected, selected variables or groups of variables belonging to the
caller may be exposed to the routine for read or write access.

Certain types of exception handzing are supported. A simple mechanism (associated
with the SIGNAL instruction) allows the trapping of run-time errors, halt conditions
(external interrupts), command errors (errors resulting from external commands), and
the use of uninitialized variables. No method of return from an exception is provided
in this language definition.

The INTERPRET instruction (intended to be supported by interpreters only) allows m y
string of REXX instructions to be interpreted dynamically. It is useful for some kinds
of interactive or interpretive environments, and can be used to build the following
SHOWME program - an almost trivial “instant calculator”:

1 See, for example: Xerox Learning Research Group, The Smalltalk-80 System, Byte 6, No. 8,
~ ~ 3 6 - 4 7 (August 1981).

5

SHOWME

/* Simple calculator, interprets input as a h x x

numeric digits 20 /* Work t o 20 s i g n i f i c a n t d i g i t s */
parse arg input /* Get user‘s expression into INPUT */
interpret ‘Say‘ input /* Build and execute SAY instruction */

expression */

This program first sets REXX arithmetic to work to 20 digits. It then assigns the first
argument string (perhaps typed by a user) to the variable INPUT. The final instruction
evaluates the expression following the keyword INTERPRET to build a SAY instruction
which is then executed. If you were to call this program with the argument “22/7” then
the instruction “Say 22/7” would be built and executed. This would therefore display
the result

3.1428571428571428571

Input and output functions in REXX are defined only for simple character-based oper-
ations. Included in the language are the concepts of named character streams (whose
actual source or destination are determined externally). These streams may be ac-
cessed on a character basis or on a line-by-line basis. One input stream is linked with
the concept of an external data queue that provides for limited communication with
external programs.

The language defines an extensive tracing (debugging) mechanism, though it is
recognised that some implementations may be unable to support the whole package.
The tracing options allow various subsets of instructions to be traced (Commands, La-
bels, All, and so on), and also control the tracing of various levels of expression evalu-
ation results (intermediate calculation results, or just the final results). Furthermore,
for a suitable implementation, the language describes an interactive tracing environ-
ment, in which the execution of the program may be halted selectively. Once execution
has paused, you may then type in any RExx instructions (to display or alter variables,
and so on), step to the next pause, or re-execute the last clause traced.

Fundamental Language Concepts
Language design is always subtly affected by unconscious biases and by historical
precedent. To minimize these effects a number of concepts were chosen and used as
guidelines for the design of the RExx language. The following list includes the major
concepts that were consciously followed during the design of kxx.

Readability

If there is one concept that has dominated the evolution of REXX syntax, it is
readability (used here in the sense of perceived legibility). Readability in this sense
is a rather subjective quality, but the general principle followed in REXX is that the
tokens which form a program can be written much as one might write them in
European languages (English, French, and so forth). Although the semantics of RE= is, of course, more formal than that of a natural language, RE= is lexically
similar to normal text.

6

The structure of the syntax means that the language readily adapts itself to a va-
riety of programming styles and layouts. This helps satisfy user preferences and
allows a lexical familiarity that also increases readability. Good readability leads
to enhanced understandability, thus yielding fewer errors both while writing a
program and while reading it for debug or maintenance. Important factors here
are :

1. There is deliberate support throughout the language for upper and lower case
letters, both for processing data and for the program itself.

2. The essentially free format of the language (and the way blanks are treated
around tokens and so on) lets you lay out the program in the style that you feel
is the most readable.

3. Punctuation is required only when absolutely necessary to remove ambiguity
(though it may often be added according to personal preference, so long as it
is syntactically correct). This relatively tolerant syntax proves less frustrating
than the syntax of languages such as Pascal.

4. Modern concepts of structured programming are available in RE=, and can
undoubtedly lead to programs that are easier to read than they might other-
wise be. The structured programming constructs also make REXX a good lan-
guage for teaching the concepts of structured programming.

5. Loose binding between lines and program source ensure that even though
programs are affected by line ends, they are not irrevocably so. You may
spread a clause over several lines or put it on just one line. Clause separators
are optional (except where more than one clause is put on a line), again letting
you adjust the language to your own preferred style.

Natural data typing

“Strong typing”, in which the values that a variable may take are tightly con-
strained, has become a fashionable attribute for languages over the last ten years.
I believe that the greatest advantage of strong typing is for the interfaces between
program modules, where errors may be difficult to catch. Errors within modules
that would be detected by strong typing (and would not be detected from context)
are much rarer, and in the majority of cases do not justify the added program
complexity.

REXX , therefore, treats types as naturally as possible. The meaning of data de-
pends entirely on its usage. All values are defined in the form of the symbolic no-
tation (strings of characters) that a user would normally write to represent that
data. Since no internal or machine representation is exposed in the language, the
need for many data types is reduced. There are, for example, no fundamentally
different concepts of integer and real; there is just the single concept of number.
The results of all operations have a defined symbolic representation, SO you can
always inspect values (for example, the intermediate results of an expression
evaluation). Numeric computations and all other operations are precisely defined,
and will therefore act consistently and predictably for every correct implementa-
tion.

7

This language definition does not exclude the future addition of a data typing
mechanism for those applications that require it, though there seems to be little
call for this. The mechanism would be in the form of ASSERT-like instructions
that assign data type checking to variables during execution flow. An optional re-
striction, similar to the existing trap for uninitialized variables, could be defined
to provide enforced assertion for all variables.

Emphasis on symbolic manipulation

The values that RExx manipulates are (from the user’s point of view, at least) in
the form of strings of characters. It is extremely desirable to be able to manage this
data as naturally as you would manipulate words in other environments, such as
on a page or in a text editor. The language therefore has a rich set of character
manipulation operators and functions.

Concatenation is treated specially in RExx. In addition to a conventional concat-
enate operator (“I I ”), there is a novel blank operator that concatenates two data
strings together with a blank in between. Furthermore, if two syntactically distinct
terms (such as a string and a variable name) are abutted, then the data strings are
concatenated directly. These operators make it especially easy to build up complex
character strings, and may at any time be combined with the other operators
available.

For example, the SAY instruction consists of the keyword SAY followed by any
expression. In this instance of the instruction, if the variable N has the value ’ 6‘
then

say n*100/50‘%‘ ARE REJECTS

would display the string

12% ARE REJECTS

Concatenation has a lower priority than the arithmetic operators. The order of
evaluation of the expression is therefore first the multiplication, then the division,
then the direct concatenation, and finally the two “concatenate with blank” oper-
ations.

Dynamic scoping

Most languages (especially those designed to be compiled) rely on static scoping,
where the physical position of an instruction in the program source may alter its
meaning. Languages that are interpreted (or that have intelligent compilers)
generally have dynamic scoping. Here, the meaning of an instruction is only af-
fected by the instructions that have already been executed (rather than those that
precede or follow it in the program source).

RE= scoping is purely dynamic. This implies that it may be eficiently interpreted
because only minimal look-ahead is needed. It also implies that a compiler is
harder to implement, so the semantics includes restrictions that considerably ease
the task of the compiler writer. Most importantly, though, it implies that a person
readmg the program need only be aware of the program above the point which is

8

being studied. Not only does this aid comprehension, but it also makes program-
ming and maintenance easier when only a computer &splay terminal is being used.

The GOTO instruction is a necessary casualty of dynamic scoping. In a truly dy-
namic scoped language, a GOTO cannot be used as an error exit from a loop. If it
were, the loop would never become inactive. (Some interpreted languages detect
control jumping outside the body of the loop and terminate the loop if this occurs.
These languages are therefore relying on static scoping.) REXX instead provides an
“abnormal transfer of control” instruction, SIGNAL, that terminates all active
control structures when it is executed. Note that it is not just a synonym for GOTO
since it cannot be used to transfer control within a loop (for which alternative in-
structions are provided).

Nothing to declare

Consistent with the philosophy of simplicity, REXX provides no mechanism for de-
claring variables. Variables may of course be documented and initialized at the
start of a program, and this covers the primary advantages of declarations. The
other, data typing, is discussed above.

Implicit declarations do take place during execution, but the only true declarations
in the REXX language are the markers (labels) that identify points in the program
that may be used as the targets of signals or internal routine calls.

System independence

The RE= language is independent of both system and hardware. RE= programs,
though, must be able to interact with their environment. Such interactions nec-
essarily have system dependent attributes. However, these system dependencies
are clearly bounded and the rest of the language has no such dependencies. In
some cases this leads to added expense in implementation (and in language usage),
but the advantages are obvious and well worth the penalties.

As an example, string-of-characters comparison is normally independent of leading
and trailing blanks. (The string “ Yes ” means the same as “Yes” in most appli-
cations.) However, the influence of underlying hardware has subtly affected this
kind of decision, so that many languages only allow trailing blanks but not leading
blanks. By contrast, Fbxx permits both leading and trailing blanks during general
comparisons.

Limited span syntactic units

The fundamental unit of syntax in the RExx language is the clause, which is a piece
of program text terminated by a semicolon (usually implied by the end of a line).
The span of syntactic units is therefore small, usually one line or less. This means
that the parser can rapidly detect errors in syntax, which in turn means that error
messages can be both precise and concise.

It is difficult to provide good diagnostics for languages (such as Pascal and its de-
rivatives) that have large fundamental syntactic units. For these languages, a
small error can often have a major and unexpected effect on the parser.

9

Dealing with reality

A computer language is a tool for use by real people to do real work. Any tool must,
above all, be reliable. In the case of a language this means that it should do what
the user expects. User expectations are generally based on prior experience, in-
cludmg the use of various programming and natural languages, and on the human
ability to abstract and generalize.

It is difficult to define exactly how to meet user expectations, but it helps to ask the
question “Could there be a high astonishment factor associated with this
feature?”. If a feature, accidentally misused, gives apparently unpredictable re-
sults, then it has a high astonishment factor and is therefore undesirable.

Another important attribute of a reliable software tool is consistency. A consistent
language is by definition predictable and is often elegant. The danger here is to
assume that because a rule is consistent and easily described, it is therefore simple
to understand. Unfortunately, some of the most elegant rules can lead to effects
that are completely alien to the intuition and expectations of a user; who, after all,
is human.

Consistency applied for its own sake can easily lead to rules that are either too
restrictive or too powerful for general human use. During the design process, I
found that simple rules for Rmx syntax quite often had to be rethought to make
the language a more usable tool.

Originally, RExx allowed almost all options on instructions to be variable (and even
the names of functions were variable), but many users fell into the pitfalls that
were the side-effects of this powerful generality. For example, the TRACE in-
struction allows its options to be abbreviated to a single letter (as it needs to be
typed often during debugging sessions). Users therefore often used the instruction
“TRACE I”, but when “I” had been used as a variable (perhaps as a loop counter)
then this instruction could become “TRACE 10” - a correct but unexpected action.
The TRACE instruction was therefore changed to treat the symbol as a constant
(and the language became more complex as a consequence) to protect users against
such happenings. A VALUE option on TRACE allows variability for the experi-
enced user. There is a fine line to tread between concise (terse) syntax and usa-
bility.

Be adaptable

Wherever possible the language allows for extension of instructions and other lan-
guage constructs. For example, there is a large set of characters available for fu-
ture extensions, since only a restricted set is allowed for the names of variables
(symbols). Similarly, the rules for keyword recognition allow instructions to be
added whenever required without compromising the integrity of existing programs
that are written in the appropriate style. There are no globally reserved words
(though a few are reserved within the local context of a single clause).

A language needs to be adaptable because it certainly will be used for applications
not foreseen by the designer. Although proven effective as a command programming
and personal language, RExx may (indeed, probably will) prove inadequate in cer-
tain future applications. Room for expansion and change is included to make the
language more adaptable.

10

Keep the language small

Every suggested addition to the language was considered only if it would be of use
to a significant number of users. My intention has been to keep the language as
small as possible, so that users can rapidly grasp most of the language. This means
that:

The language appears less formidable to the new user.

Documentation is smaller and simpler.

The experienced user can be aware of all the abilities of the language, and SO
has the whole tool at his disposal to achieve results.

There are few exceptions, special cases, or rarely used embellishments.

The language is easier to implement.

No defined size or shape limits

The language does not define limits on the size or shape of any of its tokens or data
(although there may be implementation restrictions). It does, however, define the
minimum requirements that must be satisfied by an implementation. Wherever
an implementation restriction has to be applied, it is recommended that it should
be of such a magnitude that few (if any) users will be affected.

Where implementation limits are necessary, the language encourages the imple-
menter to use familiar and memorable values for the limits. For example 250 is
preferred to 255, 500 to 512, and so on. There is no longer any excuse for forcing
the artifacts of the binary system onto a population that uses only the decimal
system. Only a tiny minority of future programmers will need to deal with base-
two-derived number systems.

History and Design Principles
The REXX language (originally called ‘’REX”) borrows from many earlier languages;
PWI, Algol, and even APL have had their influences, as have several unpublished lan-
guages that I developed during the 1970’s. REXX itself was designed as a personal
project in about four thousand hours during the years 1979 through 1982, at the IBM
UK Laboratories near Winchester (England) and at the IBM T. J. Watson Research
Center in New York (USA). As might be expected REXX has an international flavour,
with roots in both the European and North American programming cultures.

There are several implementations of the REXX language available from IBM, for both
large and small machines. My own Systed370 implementation has become a part of
the Virtual Machine/System Product, as the System Product Interpreter for the Con-
versational Monitor System (CMS), and is also part of the TSOE product. This im-
plementation of the language is described in the Reference Manuals for these products.
A hfferent IBM implementation, written in C, provides a subset of the language as part
of the IBM PCNM Bond product, running on various models of the IBM Personal
Computer. In 1989, the IBM VM REXX Compiler for CMS was announced, and also

REXX for OS/2. The AS/400 version - completing the four SAA implementations - was
added in 1990.

There are now many other implementations of REXX and, in 1991, the process of ANSI
standardization was started.

The design process for RExx began in a conventional manner. The REXX language was
first designed and documented; this initial informal specification was then circulated
to a number of appropriate reviewers. The revised initial description then became the
basis for the first specification and implementation.

From then on, other less common design principles were followed, strongly influenced
by the development environment. The most significant was the intense use of a com-
munications network, but all three items in this list have had a considerable influence
on the evolution of Fbxx.
Communications

Once an initial implementation was complete, the most important factor in the
development of F&XX began to take effect. IBM has an internal network, known
as WET, that now links over 3100 main-frame computers in 58 countries. RE=
rapidly spread throughout this network, so from the start many hundreds of people
were using the language. All the users, from temporary staff to professional pro-
grammers, were able to provide immediate feedback to the designer on their pref-
erences, needs, and suggestions for changes. (At times it seemed as though most
of them did - at peak periods I was replying to an average of 350 pieces of elec-
tronic mail each day.)

An informal language committee soon appeared spontaneously, communicating
entirely electronically, and the language discussions grew to be hundreds of thou-
sands of lines.

On occasions it became clear as time passed that incompatible changes to the lan-
guage were needed. Here the network was both a hindrance and a help. It was a
hindrance as its size meant that RExx was enjoying very wide usage and hence
many people had a heavy investment in existing programs. It was a help because
it was possible to communicate directly with the users to explain why the change
was necessary, and to provide aids to help and persuade people to change to the
new version of the language. The decision to make an incompatible change was
never taken lightly, but because changes could be made relatively easily the Ian-
guage was able to evolve much further than would have been the case if only up-
wards compatible extensions were considered.

12

Documentation before implementation

Every major section of the REXX language was documented (and circulated for re-
view) before implementation. The documentation was not in the form of a func-
tional specification, but was instead complete reference documentation that in due
course became part of this language definition. At the same time (before imple-
mentation) sample programs were written to explore the usability of any proposed
new feature. This approach resulted in the following benefits:

The majority of usability problems were discovered before they became em-
bedded in the language and before any implementation included them.

Writing the documentation was found to be the most effective way of spotting
inconsistencies, ambiguities, or incompleteness in a design. (But the doc-
umentation must itself be complete, to “final draft” standard.)

I deliberately did not consider the implementation details until the documen-
tation was complete. This minimized the implementation’s influence upon the
language.

Reference documentation written after implementation is likely to be inaccu-
rate or incomplete, since at that stage the author will know the implementation
too well to write an objective description.

The language user is usually right

User feedback was fundamental to the process of evolution of the RE= language.
Although users can be unwise in their suggestions, even those suggestions which
appeared to be shallow were considered carefully since they often acted as pointers
to deficiencies in the language or documentation. The language has often been
tuned to meet user expectations; some of the desirable quirks of the language are
a direct result of this necessary tuning. Much would have remained unimproved
if users had had to go though a formal suggestions procedure, rather than just
sending a piece of electronic mail directly to me. All of this mail was reviewed some
time after the initial correspondence in an effort to perceive trends and generalities
that might not have been apparent on a day-to-day basis.

Many (if not most) of the good ideas embodied in the language came directly or
indirectly from suggestions made by users. It is impossible to overestimate the
value of the direct feedback from users that was available while REXX was being
designed.

Conclusions
A vital part of the environment provided to programmers is the programming language
itself. Most of our programming languages have, for various historical reasons, been
designed for the benefit of the target machines and compilers rather than for the ben-
efit of people. As a result they are more demanding of the programmer than they need
be, and this often leads to errors.

13

REXX is an attempt to redress this balance; it is designed specifically to provide a com-
fortable programming environment. If the user - the programmer - finds it easy to
program, then fewer mistakes and errors are made.

14

