
PLATFORM-SPECIFIC STANDARDS FOR REXX

ERIC GIGUERE
UNIVERSITY OF WATERLOO

31

Platform-Specific Standards for REXX:
Issues for Developers and Implementors

Eric Giguhre

Computer Systems Group
University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

Internet: g iguereksg .uwater loo . ca
B1X:giguere

Introduction

Standards are important to the growth and acceptance of a programming language. However, standards
cannot - and should not - specify everything about language implementations. Many details - type
sizes, calling conventions, file manipulation methods - will change with the machine architecture and
operating system, and sometimes at the whim of the implementation team. This is why standards
documents are littered with the phrase “implementation-defined behaviour”.

REXX is no different from any other language in this respect. For example, REXX has the capability
to send an arbitrary command to a host environment and to receive a return code in reply. The hows of
registering the host environment, sending the command, and receiving the reply are all implementation-
defined. Even the command strings and reply codes have different meanings on different systems.

REXX is different from other languages, however, in that it explicitly provides the means for integration
and expandability. A typical use for REXX is to tie together two applications from different vendors.
The REXX implementation should make this integration as painless and seamless as possible, for both
the application developers and the end users. And on a given machine/OS pair it shouldn’t matter
which REXX implementation a user uses - each version of REXX should be “plug compatible” with
the other. Similarly, different applications should support similar REXX interfaces and command sets.

This paper discusses the idea of platform-specific standards as they apply both to REXX implementors
and to developers of REXX-compatible products. The emphasis is on co-operation and the adaptation
of existing standards to meet the needs of the REXX community.

Many of the examples in this paper will center around ARexx, an implementation of REXX for the
Commodore Amiga. A brief description of the Amiga and ARexx can be found in the appendix. OS/2
REXX and CMS REXX are also mentioned.

32

Eric Gigdre - Platform-Specific Standards for REXX

1. The Host Interface

There are four basic problems in using or implementing the REXX host command interface.

Finding hosts: The use and syntax of the ADDRESS instruction is well-documented, but not what the
host address actually means, or how REXX locates the host.

On the Amiga, host addresses correspond to named message ports. When an ARexx-compatible appli-
cation starts execution it opens a message port to which commands may be sent. This ARexx port is a
public resource that other applications, including ARexx, can search for by name.’

OS/2 and CMS require applications to register subcommand handlers with the REXX system. Each
handler is a library/program entry point.

Naming hosts: When multiple copies of the same application are running, which host does the user
actually want to talk to, and how do they specify it?

Naming rules are not enforced under ARexx. The system ports list is prioritized, but a friendly appli-
cation should not duplicate or override any name already in the list. Commodore’s developer guidelines
advocate letting the user set whatever port name they desire. If the user doesn’t assign a specific
port name, then the application should use its own name, stripped of non-alphanumeric characters and
converted to uppercase. Applications that support multiple projects/documents should append a slot
number to the name, as in EDIT.01, EDIT.02, and so on (in other words, an ARexx port can be allocated
for each document). The actual slot numbers are searched for and assigned dynamically. Slot numbers
should also be used when two or more copies of an application are executing simultaneously.

Under O S / 2 REXX a user can append the handler’s library name to the host address, as in ADDRESS
’Edit .Qedit’, to differentiate between applications using the same host address.

Sending commands: Some form of inter-application communication is necessary for sending host
commands and receiving the return codes in reply. On systems without inter-process communication
the interface is obviously much harder to implement.

ARexx simply sends the command as a message to the appropriate port. The message structure is fixed
and includes fields for strings, results, and action codes. When the application receives a message at
its port, it retrieves the message and parses the command string. The ARexx program that sent the
message is suspended until a reply arrives (each ARexx program is a separate task).

O S / 2 and CMS call the handler function that was registered with the REXX system.

Starting REXX macros: How does an application access and start the REXX interpreter when it
wishes to invoke a REXX macro program?

An Amiga application merely sends a message (using the same message structure described above) to
the ARexx resident process. The resident process spawns the ARexx program as a new task. The
application has the option of waiting for the program to finish execution or of continuing on with its
work. The application must always be ready to process incoming ARexx command messages as well.

OS/2 and CMS applications call a system function to start a REXX program.

‘Note that unlike OS/2 REXX, there is no formal registration to be made. ARexx will search for and locate the
appropriate message port each time it has a message to send.

33

Eric Gigdre - Platform-Specific Standards for REXX

Note that all macros that are started by an application should have the application’s port/handler set
as their default host address. This minimizes the naming problems discussed above.

2. Command Standards

REXX performs minimal processing for commands: it merely evaluates an expression and sends the
resulting string to a host application for processing. It’s the application’s responsibility to parse this
string and act on its contents. This is as it should be: it is not REXX’s mandate to assign meaning to
these strings.

It would be nice, however, if REXX-aware applications used similar command sets.’ A simple text editor
macro such as:

/* Load a f i l e , search f o r a s t r i n g */
’open’ arg(I)
search’ arg(2)

should be simple to adapt for another text editor. This makes it possible for developers to include
fairly complete sets of REXX macros with their applications without having to explicitly support every
programming tool on the market. Command standards make application integration much simpler.

As an example of what can happen without a set of guidelines, consider the text editors available
for the Amiga. These days all Amiga text editors (and most other applications) are ARexx-aware.
Unfortunately, their ARexx command sets are completely incompatible. While there are many interesting
macros available for various purposes (automatic tracking of compiler errors, for example), the macros
have to be rewritten from scratch for each text editor. Telecommunication utilities are in the same boat.

To address this situation, Commodore has just released a set of ARexx command guidelines to developers
as part of the Amiga User Interface Style Guide. The guidelines list suggested commands (names and
options) for common operations. Hopefully new applications will include these commands in their
command set and ease the confusion that prevails right now.

3. Returning Command Results

It isn’t enough to send commands to an application - a REXX program must be able to receive and
process data from those commands as well, if only to know whether the command failed or succeeded.

“Vanilla” REXX only defines the concept of a return code when it comes to command results. When a
command has been executed, the special variable RC will hold a numeric value which the program can
then use as basis for further action:

/* Run a program */
address command
’run rxtoo1s:rxtools’

2Commands to the underlying operating system being an obvious exception.

34

Eric Giguere - Platform-Specific Standards for REXX

if (

end

The value

rc -= 0)then do
say "Could not start RxTools.
exit 1

in RC is (of course) implementation-defined. A general convention is that non-zero values
indicate warning or error conditions.

ARexx implements an extension that allows applications to return result strings as well as return codes.
Result strings must be requested before sending a command by using the OP?IONS RESULTS instruction.
After a command has been sent, the special variable RESULT may have been set to a value if no error
occurred (RC is 0):

/* Ask user for a string */
options results
address 'rexx-ced'
'getstring "Please enter search pattern:"'
if (result -= @*'(8 result -= "RESULT")then do

...... /* do stuff */
end

Note that RC doesn't actually need to be checked since if an error occurred the value of RESULT will be
DROPped automatically.

The OPTIONS RESULTS extension is a useful one because it allows commands to act like function calls.
Another way of passing back data is to use RVI/VPI, as discussed below.

Using a clipboard is also an effective way of passing information between applications. A 'PASTE'
command could be sent to an application to place its data into the clipboard. A set of functions (either
built-in or part of a function package) could then be used from within a REXX program to manipulate
this data. The paste operation could even be performed manually by the user for applications that aren't
REXX-aware.

4. Function Packages

A simple but effective way of extending the REXX language is to allow developers to create their own
function packages. REXX programs can then call the functions in a package as if they were built-in
functions. Unlike external functions, the functions in these packages are probably not written in REXX.

An obvious use for function packages is to extend REXX to include user interface support. At least
two such packages (one freeware, one commercial) already exist on the Amiga. Another ARexx function
package provides transcendental mathematics f ~ n c t i o n s . ~ ARexx even allows applications to act as
function packages (function hosts) as well as accepting command messages.

The user can run into trouble using function packages, however, through namespace pollution. Sooner

SFor serious mathematics an ARexx-aware application program such as Maple is recommended instead.

35

Eric Giguke - Platform-Specific Standards for REXX

or later one function package is going to use a name already used by another function package. Which
function will get called? Can function packages override built-in functions?

5. RVI/VPI

The last important issue has to do with the sharing of data between REXX and application programs.
Under ARexx this capability is known as the REXX Variables Interface (RVI), while OS/2 and CMS
refer to it as the Variable Pool Interface (VPI).

RVI can only be used by REXX-aware applications. RVI allows these applications to set and examine
the value of REXX variables. These alterations can only happen when a REXX program has sent a host
command and is waiting for a reply. During the processing of the command the host application can
use RVI to modify the REXX program’s symbol tables.

RVI is a simple way to pass back complex information to a REXX program. For example, on CMS the
XEDIT ’EXTRACT’ command can be used to copy state information into a stem variable in the calling
program.

When processing a command, a host application must be careful to ensure that the command came from
a REXX program and not some other application before using the RVI routines. Some method must be
built into the host addressing to differentiate between REXX and non-REXX callers.

And of course, user documentation is very important. If an application can change a variable, the user
should be made aware of the fact. Preferably, the user will have control over which variables are changed.
Commodore’s command standards, for example, include ’VAR’ and ’STEM’ options to allow the user to
specify variables for command results.

Conclusions

This paper doesn’t pretend to present any startling conclusions, but only some observations and some
simple advice for any implementor: check out current REXX implementations, especially the ones on
the platform you’re developing for. If possible, offer a similar set of capabilities and interfaces, at least
as an option. Consider the interfaces other macro languages - BASIC, for example - offer, especially
if REXX is not the predominant macro language for your system. You can’t expect every application to
be REXX-aware, so it certainly helps if they can still use REXX even on the most rudimentary level.

A. ARexx: A Sample Platform

The Commodore Amiga is a microcomputer based on the Motorola 680x0 architecture. The base oper-
ating system, Exec, is a message-based, preemptive multitasking system. File 1/0 and command shells
are provided by AmigaDOS, while graphics and user interface support are provided by Intuition.

ARexx is an implementation of REXX 3.5 with some Amiga-specific extensions. The ARexx interpreter
is stored as a shared library and is about 33K in size. A resident process of about 3K runs as a

36

Eric Gigukre - Platform-Specific Standards for REXX

background task. The resident process is the master ARexx control program: it launches new ARexx
programs and keeps track of global resources.

To start an ARexx program, a message is sent to the resident process. It spawns a new process which
invokes the interpreter. Each ARexx program runs as a separate task and performs its own resource
tracking.

Messages are at the heart of ARexx program interaction. ARexx defines its own message protocol as
an extension of the Exec message structure. (The Amiga’s memory space is shared between all tasks.
Message ports are really just linked lists.) An ARexx message is defined as follows:

struct RexxMsg
c
struct Message. rm-Node ; /* Exec message structure */
APTR rm-TaskBlock; /* g loba l structure (p r i v a t e) */
APTR rm-LibBase; /* l i b r a r y base (p r iva t e) */
LONG rm-Action; /* command (action) code */
LONG rm-Resultl; /* pr imary resu l t (return code) */
LONG rm-Result2; /* secondary resu l t */
STRPTR rm_Args[I6] ; /* argument block (ARGO-ARGIS) */

/* Extens ion f i e lds (not modified by ARexx) */
struct MsgPort *rm-Passport; /* forwarding port */
STRPTR rm-CommAddr; /* hos t address (po r t name) */
STRPTR rm-FileExt; /* f i l e extension */
LONG rm-Stdin; /* input stream (filehandle) */
LONG rm-Stdout; /* output stream (f i l ehand le) */
LONG rm-avail; /* future expansion */

1;
The message structure includes fields for setting various action codes (whether a message is a host
command or function call) and modifier flags (is a result string required? how many arguments are
being passed?), a return code, a result string, and the arguments for the command Or function call.
Arguments are always passed as strings.

To send a host command, an ARexx program allocates a RexxMsg structure, fills in the appropriate values,
and sends the message to the host’s port. The host will receive the message, parse the command string,
execute the command, set a return code (and if requested, a result string) and reply to the message.
The ARexx program remains blocked until the reply message arrives.

Function calls are also handled with messages. If a function call cannot be resolved by an internal or
built-in function, ARexx will search a prioritized library list maintained by the resident process. Each
entry in the library list is either a function Library or a function host. A function library is a shared
library with a public entry point, while a function host is an application program with a public message
port. ARew will query each library/host in turn (by calling the library’s entry point directly or by
sending a message to the host) until the desired function is found. If this fails, a search is made for an
external function.

37

Eric GiguGre - Platform-Specific Standards for REXX

References

[Amiga 911 Commodore-Amiga, Inc. Amiga Programmer’s Guide to ARexx, 1991 (forthcoming).

[Cowlishaw 901 M. F. Cowlishaw. The REXX Language: A Practical Approach to Programming, 2nd

[GiguGre 911

[Hawes 871

[IBM 871

[IBM 88.1

[IBM 88b]

[IBM 89.1

[IBM 89b]

[Watts 901

edition, Prentice-Hall, 1990.

Eric GiguZre. “Rexx: Not Just a Wonder Dog”, Computer Language, Vol. 8 No. 3,
March 1991.

William S. Hawes. ARexx User’s Reference Manual, Wishful Thinking Development
Corporation, 1987.

International Business Machines Corporation. SAA Common Programming Inter-
face/Procedures Language Reference, SC26-4358-0, 1987.

International Business Machines Corporation. VM/SP System Product Interpreter Ref-
erence, SC24-5239-03, 1988.

International Business Machines Corporation. VM/SP System Product Interpreter
User’s Guide, SC24-5238-04, 1988.

International Business Machines Corporation. OS/2 1.2 Procedures Language 2/REXX,
1989.

International Business Machines Corporation. OS/2 1.2 Procedures Language 2/REXX
Programming Reference, 1989.

Keith Watts. “REXX Language 1/0 and Environment Challenges”, Proceedings of the
1990 REXX Symposium, SLAC Report 368, 1990.

38

