PIPELINES: HOW CMS GOT ITS PLUMBING FIXED

JOHN P. HARTMANN
IBM

&2

How CMS Got Its Plumbing Fixed

John P. Hartmann IBM FSC, Nymgllevey 85, DK-2800 I.yngby, Denmark

Abstract

An overview of pipeline concepts is followed by a description of how these concepts were adapted to
single-tasking cMs, and how the implementation evolved.

The data flow model of programming is well suited for many (but not all) programming problems. CMS
Pipelines is a simple, robust, and efficient tool to use data flow techniques in VM/CMS.

Programs running in a pipeline read and write records on a symmetrical device-independent interface. A
non-trivial problem is often solved by running a number of simple programs, each doing a little bit of the
big problem; the pipeline combines programs, often to accomplish tasks that arc not imagined when a
particular program is written. Pipelines are entered from the terminal or issued as commands in REXX
programs.

CMS Pipelines has features not found in most other systems supporting pipelines:

+ Multistream pipelines support any number of concurrent strcams through a program; a simple
example is the master-file-update paradigm.

~ A program can temporarily replace itself with a subroutine pipeline.

~ A pipeline is run only when all stages of it are specified correctly; the syntax of built-in filters is
checked before the pipeline is started.

© Copyright 1990, 1991. IBM Danmark A/S. © Copyright 1990, SHARE Tnc. © Copyright 1990, STIART, Furope SA. Permis-
sion is granted to the REXX Symposium to publish an exact copy ol this paper in its proccedings. 1BM retains the litle to the
copyright in this paper as well as the title to the copyright to all underlying work. IBM retains the right to make derivative works
and to publish and distribute this paper to whomever il chooses in any way it chooses.

Disclaimers: This material may contain reference to, or information about, IBM products that are not announced in all countries
in which IBM operates; this should not be construed to mean that IBM intends to announce these product(s) in your country.
This paper is intended to give an overview of CMS Pipelines. The information in this paper is not intended as the specification of
any programming interfaces that are provided by CAMS Pipelines. Refer to the appropriate documentation for the description of
such interfaces.

How CMS Got Its Plumbing Fixed
83

Introduction

When programs run in a pipeline, the output from
one program is automatically presented as input to
the next program in the pipcline. FEach program
reads its input and writes its output through a
device-independent interface ‘vithout concern for
other programs in the pipeline Thus the standard
output from a program can be read by the standard
input of any program.

Why CMS Pipelines?

» Things get done that might not be done other-
wise. The ease with which standard programs
are bolted together means that users can
perform ad-hoc processing of their data in
ways that would not be as economical with
traditional programming.

» Users can solve problems by functional pro-
gramming. By selecting appropriatc filters,
users can apply functions to a stream of data
and not worry about how to perform a partic-
ular function to all records in a file.

* Code is re-used each time a program is run in
a pipeline; unlike traditional software cngi-
neering, code re-use with CMS Pipelines
requires no modification or compilation.

e Pipeline programs are device-independent.
This takes the drudgery out of writing pro-
grams. All pipeline programs can use new host
interfaces as soon as a single device driver is
written to support the interface in question.

e A complex task is often broken into simpler
tasks, some or all of which are performed by
built-in programs. What programs remain to
be written, if any, are often significantly
simpler than a program to perform the original
task directly.

e A simple, efficient interfice supports REXX
programs in a pipeline, bringing device-
independent 1/0 to REXX.

s CMS Pipelines supports most CP/CMS devices
and interfaces, many of which are not available
to REXX programs using standard CMS inter-
faces.

Sample Pipeline

Though CP has a command to display the number
of users logged on to a system, there is no
command to display the number of disconnected
users. Figure 1 shows how to obtain this informa-
tion with CMS Pipelines.

The first word is the CMS command to run a
pipeline. The rest of the line is a pipeline
specification defining which programs to select and
run. Therce are five programs in this example; they
are separated by a solid vertical bar (]).

¢p issues the query command to CP and writes the
response to the pipeline, with a line for cach line of
CP response. I'our users are shown on each line.

split splits lines at the commas that separate the
four users. T'he comma is discarded.

locate selects lines with the string '~ DSC'. This
selects all disconnected users.

count counts the number of lines in the input
stream. This count is the number of disconnected
vsers because there is a line for each user, and con-
nected users have been discarded from the file.

console copies its input stream to the terminal of
the virtual machine. It also copies the input lines
to the output, but in this example the output from
console is not connected.

ITow does one count the number of disconnected
users with standard CMS commands? With
difliculty, it would appear, and certainly not
without writing a program.

pipe cp query names|split ,|locate /- DSC/|count Vines|console

123
Ready;

Figure 1. Sample Pipcline

Hartmann

84

What is CMS Pipelines

CMS Pipelines Structure
The user sees three parts of CAMS Pipelines:

Command Parser: Scans the argument string to
the PIPE command to build a control block struc-
ture describing the pipeline to run. It ensures that
the pipeline specification is well formed, that all
programs exist, and that the syniax is correct for
those programs where a syntax description is avail-
able to the parser.

Library of Built-in Programs: Contains device
drivers, filters, and many utility functions that can
be selected by the parser.

Dispatcher: Starts programs and passes control
between programs to maintain an orderly flow of
data through the pipeline. Programs call the pipe-
line dispatcher to read and write the pipeline. The
dispatcher runs programs as co-routines; control
passes from one program to another only when a
program calls the dispatcher to transport data.

REXX Programs

Though many tasks can be performed with a com-
bination of built-in programs, there arc bound to
be times when CMS Pipelines does not provide the
primitive function needed for a particular task. A
program must be wrilten to perform the missing
function when pipethink (chipping sub-problems
off a big problem) does not come up with a useful
solution.

However, the program to be written needs only to
solve one particular little problem; most of the task
should be performed with built-in programs.

Programs to process pipeline data can be written in
REXX, PI/I, IBM C/370, Assembler, and other
languages that use Assembler calling conventions.
REXX is used exclusively in the examples in this

paper.

A REXX progiam processing data in the pipeline
is stored as a disk file; it has file type REXX to dis-
tinguish it from EXEC procedures. 'The REXX
program can be EXDCLOATed or installed in a
shared segment just like all othzr REXX programs.

The default command environment for REXX
pipeline programs processes ppeline commands to
move data from the pipeline into the program’s

variable pool, and to write output fines into the
pipeline.

As an example of a function that is not readily
made with built-in programs, consider how to
display the number of terminals that are in the
state between displaying the VM logo and having a
user logged on. Local terminals in this statc are
shown with the a user 1D comprised of 1060 fol-
lowed by the four-digit device address.

— NOTLOG REXX

/* Select LOGOxxxx userIDs */
signal on novalue
signal on error

do forever
'readto in!
parse var in user+8 '-' device .
If user = 'LOGO'device

Then 'output' in
end
error: exit RC*{RC-=12)

The program in the sample above reads input lines
into the variable in which is parsed to obtain the
user II> and the device address. The input line is
copied 1o the output with the output command
when the line represents a terminal in limbo. Note
that the two commands are not symmetrical: the
name of the variable to receive the next input line
is a literal; the variable is sct as a side effect of the
command. The line to write is the argument string
to the output command. The loop terminates
when either of the two commands gives a non-zero
return code. The return code from the filter is 0 at
normal end-of-file or the return code from the
pipcline.

pipe cp q n]split ,|strip|notlog|console
LOGOLO97 - 1697
Ready;

It becomes cumbersome to write long pipelines on
the terminal, cspecially when fine-tuning a suite of
filters: put them into a REXX EXHC instead.
Commands on the terminal are in landscape format
(a single line); when writing EXIECs, it is more
convenient to write pipelines in portrait form with
one line per program. This is the sample above in
portrait form:

How CMS Got Its Plumbing Fixed

/* Limbo sample */

'"PIPE’,
'cp g ni',
'split ,|',
'strip|',
'notlog|',
'console!

exit RC

CMS Pipelines supplies a sample XEDIT macro to
convert from landscape to portrait form.

Using CMS Pipelines in REXX EXECs

It is easy to augment REXX FEXIECs with pipe-
lines: use the PIPE command with device drivers
to read and write RIEXX variables.

Sort: The example below sorts the contents of the
stemmed array unsorted. ste/n rcads and writes a
stemmed array. The variable unsorted.@ has the
number of variables in the array; the first variable
is unsorted.1, and so on. The result is stored in
the array sorted.

'PIPE stem unsorted.|sort|stzm sorted.'

Discovering Stemmed Varviables: 'The device driver
rexxvars writes the source string and all exposed
variables in a REXX program into the pipeline. Tt
writes the name and value of a variable on separate
lines. The first column is the record type (n for a
variable name); the source string, name, or value
begins in column 3. Given this, finding all varni-
ables with a common stem is a matter of find. To
find the names of all variables that have the stem
array:

'PIPE',
'rexxvars|', /* Read all variahles */
'find n ARRAY.|', /* Names of array x/
'spec 3-* 1|', /* Discard type prefix*/

‘buffer|', /* Ensure no interf. */
'stem vars.' /* Store in stemmed */
rexxvars Reads the names and values of all

exposed variables in the RTIXX program.

find selects name lines for variables with stem
array. Discard the lines with the values of the
stemmed variables and inforination about other
variables.

spec moves the name (from column 3 onwards) to
the beginning of the record.

Hartmann

86

buffer stores all lines in a buffer before writing any
to the output. This ensures that the variables to be
set with the result do not interferc with the vari-
ables being queried.

stem writes the names of all variables with the stem
array into the stemmed array vars where they can
be accessed with a numeric index.

Transporting Variables Between REXX Programs:

The device drivers supporting REXX variables can
manipulate REXX environments prior to the one
issuing the PIPE command. To copy the stemmed
array parms from the caller to the current REXX
program:

'PIPE stem parms. 1|stem parms.'

The number after the first stem indicates that the
EXECCOMM before the current one is to be read.

Find the Caller: 'The first line of output from
rexxvars has the letter s in the first column and the
source string (the string parsed with Parse Source)
from column 3 onwards. When rexxvars is applied
to the environment before the current one, the first
line is the source string for the caller. This can be
parsed to determine the caller of a REXX program.
var sets the variable to the first line on the input
stream.

'PIPE rexxvars ljtake 1}var source!

parse var source 3 . . c_fn c_ft ¢ fm .

parse source . . m_fnm ftm fm .

say m_fn m_ft 'called from' ¢_fn c_ft c_fm'."

Multistream Pipelines

Imagination sets the limits for multistream pipe-
lines; here we show two simple examples without
attempting to explain how multistream pipelines
work in gencral. Refer to the tutorial or reference
manuals for further information.

A program rcads and writes the pipeline through a
stream. When the program has access to several
streams, they are named the primary stream, the
secondary stream, and so on. A stream has an
input side and an output side. The input side reads
from the Ieft-hand neighbour (what is before the
previous |); the output side writes to the right-
hand neighbour (what is after the next |).

CMS Pipelines has many built-in selection pro-
grams to select subscts of the input file that satisfy
some sclection criterion. (locate has already been

used.) Selection stages discard records that are not
selected when the program is i1 a straight pipeline.
With multistream pipelines, sclection stages direct
rejected records to the alternate output stream, if
defined.

Count Connected and Disconnected Users: As an
example, the pipeline in TFigure 3 displays the
count of connected users and the count of discon-
nected users. Figure 2 shows the topology of the
pipeline.

There are two pipelines in this example: the left-
hand one is the primary stream for the programs in
it. The wide boxes represent programs that use
two data streams: the right-hand pipeline is the sec-
ondary stream for these programs. (Both of the
count and change filters read and write their
primary streams.)

Some trickery is needed to transform this two-
dimensional picture into a parameter string which

must of nature be one-dimensional. An end-
character separates pipelines in a pipeline
cp
!
split
'
Jocate
! '
count count
' !
change change
} '
faninany
'
console

Figure 2. Sample Multistream Topotogy

87

/* Count logged and disconnected */

signal on novalue

address command

'PIPE (end \)',
' ¢p query names',
"[split L',
"|1:1ocate /- DSC/',
"{count 1ines’,
"|change //Disc'd: /*,
'|f:faninany',
'[consale?,
11,
"|count lines',
'"|change //Logged: /',
Ilf:|

exit RC

Figure 3. LND EXEC: Count Users

specification. Tt ends one pipeline and begins the
next. There is no default end-character; it must be
declared in each multistream pipeline.

Parentheses at the beginning of the pipeline
specification enclose global options. 'The end-
character is one such. The backslant (\) is defined
as the end-character in Figure 3.

1: and f: arc labels. Both are used twice in this
sample. The first time a label is used declares the
primary stream for the particular invocation of the
program written after the label. In the case of
locate, it reads from the primary input stream
(what is before it); it writes lines with the string to
the primary output stream (what 1s after it). locate
writes rccords without the required string to the
secondary output stream. ‘The secondary output
stream is declared the next time the label is used
(after the cnd-character in this sample). Whereas
locate reads one input strcam and writes to two
output streams, faninany reads records from which-
ever input stream has one. faninany writes all
records to the primary output stream. In this
example it merges the lines with the count of
selected and discarded records.

Ind

Disc'd: 130
Logged: 46
Ready;

How CMS Got Its Plumbing Fixed

Update: Many built-in programs support multi-
stream pipelines. As an example, the wpdate
built-in program provides a subset of the function
of the CMS UPDATE comiiand. It reads the
master file from the primarv input stream and
writes the updated file to lhe primary output
streamm. [t reads the update from the secondary
input stream and writes the update log to the sec-
ondary output stream.

update does not perform multilevel updates under
the control of a control file. As a typical example
of applied pipethink, update programs are cascaded
(written one after the other) to implement multi-
level updates. A controlling program reads the
control file and auxiliary control file(s) to deter-
mine which updates to apply and their order.

< mstr

'

update

< updl > —» > Togl

< upd2 —»iupdate

> mstr

Changing Pipeline Topology Dynamically
A pipeline program can issue pipeline commands
to change the topology of its connections to other
pipeline programs. The coramand CAVLPIPE
runs a subroutine pipeline; the program issuing the
command resumes when the subroutine has com-
pleted. ADDPIPE adds a new pipeline to the set
of running pipelines.

Subroutine Pipeline: Subroutine pipelines often
hide the details of a task; they are the easicst way
to create new pipeline filters.

In the previous examples, the sequence of ¢p, split,
and strip was used over and over again. This
example shows how to put these programs into a
subroutine, USERS REXX, that can be called as a
program.

Itartmann

88

A subroutine pipeline is likely to see more use than
a cascade of filters in any one pipeline. Make sure
it works in general, not just in the context where
the cascade of filters comes from. In this case, the
CP response is too long for the default buffer size
when the system has between 400 and 500 users
logged on. 'T'o ruggedise USHRS REXX, a pipe-
line is added to query the number of users logged
on, and allocate sufficient bufler space to hold the
reply to the query. The second pipeline is the sub-
routine implementing the cascade of filters. (It also
deletes lines listing virtual machines connected to
the *CCS system service.)

— USERS REXX

/* USERS REXX: Write a Line for each user */
signal on error

‘callpipe’,
' cp query users',
"[strip',
"|chop before 40',
'|var users'

'callpipe',
' Titeral QUERY NAMES', /* Command */

"|cp' users*25+100, /* Issue CP */

H{nfind VSM _-', /* Ignore VTAMS */

"|split ,', /* One line for each */

"Istrip', /* Strip leading blank */

Pl /* Pass on to next */
error: exit RC

to CALLPIPE is a pipeline
specification like the argument to the PIPE
command, with a dilference. *: i1s a connector to
show wherec to connect the input and output
streams of the calling program. As used in this
example, it specifics that the output stream of the
subroutine pipeline is to be connected instead of
the output stream of the calling program. The
calling program’s output stream is restored when
the subroutine returns and the caller continucs after
the CALLPIPE command is complete.

The argument

Using USERS REXX, the combined function is
performed by the command below. (It is late in
the day, so the number of disconnected users has
gone up since the last sample.)

pipe users|locate /- DSC/|count lines|console

131
Ready;

—— INCLPACK REXX

signal on novalue

call dofile
exit

dofile: procedure
parse arg stack
do forever
'readto in'
If RC-=0

Then leave
If Jeft(in,7)~==" &1 &2 '

Then iterate /* Comment */
Toutput' in
parse var in . . fn ft fm .
If ft-="PACKAGE'

Then iterate
fid=fn'.'Teft(fm,1)

If find(stack, fid)>0

Then iterate /* Recursion */
‘addpipe <' fn ft fm *]*.input:’
If RC/=0

Then exit RC
call dofile stack fid
'sever input’

end

If RC=12 /* EOF? */
Then return

exit RC

/* Include package files recursively */

/* Write line */

/* Not a package */

Parallel Pipelines: The ADDPIPE pipcline
command adds a pipeline specification to the
current sct of pipelines without suspending the
program that issues the command. It can add pro-
grams, for instance, to process the input strcam or
divert the output stream temporarily.

As an example, INCLPACK RIEXX processes an
input strcam in the format used to describe files on
the CMS Pipelines distribution tape (a PACKAGE
file). Such a file has ' &1 &2 ' in columns | to 7;
the file name, type, and mode are in the next 20
columns.

This program has a recursive procedure to process
a file. The argument string to the procedure is the
path of open package files. The loop body reads a
line, checks if it identifies a file (otherwise it is
assumed to be a comment that is discarded). The
input line is copied to the output stream and
inspected to determine if it represents a nested
package file that has not already been processed in
this path.

ADDPIPE puts the current input stream on a
stack of dormant primary input streams for the
stage and connects the primary input stream to <
which reads the package file. The procedure
dofile is called to process the package file. When
done, the input stream (which is now at
end-of-file) is severed. This re-instates the stream
on top of the dormant stack to continue reading
the file that referenced the one just done.

pipe < allpipe package]count Jinesjconsole

>11
>Ready;

pipe < allpipe package|incipack|count linesfconsole

>126
>Ready;

pipe < allpipe package]inclpack]sort uniquejcount Tines|console

>126
>Ready;
.

Figure 4. Processing a Package Recursively

How CMS Got Its Plumbing Fixed

pipe literal 60)dup *|delay|spec /Ind/ 1|subcom cms

Figure 5. Sample Event-driven Pipeline

Event-driven Pipelines

Most pipelines process lines as quickly as they are
read from the host interface (for instance a tape or
a CMS file). A few device drivers, however, wait
for events and write a line to the pipeline when the
event occurs:

e delay writes a line after ar interval has elapsed
or at a particular time-of-day.

immemd writes a line with the argument string
when a particular immediate command is
issued by the user at the terminal.

starmsg connects to the message system
service. It writes a line whenever CP presents
a message or response to it.

These device drivers support pipelines in service
machines to process user requests sent, for instance
with SMSG, as well as authorised commands
entered from the terminal when the virtual machine
is connected, or sent with the SEND command
from the secondary user.

The example of an event-driven pipeline in
Figure 5 shows how to issue the LLND command
in Figure 3 on page S once a rninute.

literal writes a literal 60 (the number of seconds to
wait) into the pipeline.

dup makes an infinite number of copies of the line.
(But only one at a time; this does not flood the
pipeline.)

delay reads a line; the first word specifies when it
must copy the line to the output. In this example
it is the number of seconds to wail. The input line
is copied to the output after the delay. Taving
written the line delap reads another input linc and
waits for 60 seconds once more. Thus, delap
writes a line every 60 seconds.

spec is a program modelled on the COPYIILE
option SPECS. As used here, it writes an output
record with the literal string 1nd for cach input
record (it does not reference fields in the input
record). spec does not delay the record; in this
pipeline it writes a record once every 60 scconds.

Hartmann

90

subcom passes input lines to the CMS subcom-
mand environment which issues them with full
command resolution. The response is written
directly to the terminal by CMS.

How CMS Pipelines Works

CMS Pipelines is in two module files: PIPE
MODULE is a small transient bootstrap module;
the main pipeline module is PIPELINE
MODUTLE. The main module can be disk resident
or installed in a shared segment. A disk resident
module is installed as a system nucleus extension; it
is called from PIPE MODULE to install a PIPE
user nucleus cxtension. The bootstrap module is
not called by CMS once the main module is
installed.

With this sct-up, the pipeline code is protected, but
CMS considers pipeline programs as user programs
and recovers from an ABEND.

Filter Package: A filter package is a module file
that contains filters with an entry point table
defining its programs and optionally a message
table for messages specific to programs in the filter
package. The filter package also has a glue module

that attaches it to the main pipeline module. A
fiter package is in a shared segment or
NUCXLOADed. Once loaded, the filter package

identifies itself to the pipeline module using an
unpublished protocol; from then on programs in
the filter package are considered an extension to
the main pipeline module.

FPour filter packages are installed automatically, if
present, when the main pipeline module is
initialised:

PIPPTEL Filters in this package replace built-in
filters. This allows the replacement of
some built-in programs without regen-
erating the main pipeline module. It
also provides a convenient way to test
fixes to built-in programs.

PIPSYSI' System filter package. This is intended
for programs to be available enterprise-

wide.

PIPLOCF local filter package. Filters available to
all users in a particular system or instal-
lation.

PIPUSERF User filter package. A user can create
a user filter package with private filters
that are used often and thus should
remain in storage.

A filter package can have any name. If a lilter
package is invoked as a CMS command, it installs
itself as a nucleus extension (if not already one)
and attaches its tables to the main pipeline module.
Thus, to ensure that the contents of a filter package
are available, one only has to issue the name of the
package as a CMS command.

/* post processor */

address command

'"PIPLSTPP' /* Ensure installed */
'"PIPE < some listing|postproc ...!

Scanning a Pipeline Specification

The argument string to the PIPE command, as
well as the CALLPIPE and ADDPIPE subcom-
mands, is a pipeline specification that is processed
by the parser. Having determined the over-all
topology of the pipeline network, the parser
resolves entry points and allocates working storage
for programs that specify their requirements in a
program descriptor. When the parser finds no
errors in the pipeline specification, the control
block structure is passed to the dispatcher for exe-
cution.

Resolve Entry Points: DUntry points are resolved
via entry point tables; cach entry has the external
name, flags, and a pointer.

Entry point tables are searched in this order:

1. The PIPPTEI' filter package. This filter
package is intended to hold replacements for
built-in programs.

2. Built-in programs. ‘These programs are in
PIPELINE MODULE.

3. The PIPSYSF, PIPLOCE, and PIPUSERIT
function packages and other filter packages

installed by the user or installation. The pack-
ages are searched in the order they are installed;
by default, PIPSYSF is searched first.

4. Programs in the PIPPRV entry point table.
This entry point table is intended for installa-
tion use to identify programs linked into the
PIPFLINI MODULE. The module shipped
has no PIPPRV entry point table.

If an entry point is not resolved in any of these
entry point tables, CMS Pipelines looks for a file
with file type REXX (using EXECSTAT) and
invokes the program as a REXX filter if one is
found.

The entry point as resolved by look-up in an entry
point table is not necessarily the first instruction of
the program to run. The entry point table can
specify that the entry point requires a high-level
language runtime environment, or that the partic-
ular type of entry point be determined {rom
inspection of storage at the address resolved so far.

When no high-level language is indicated, the entry
can be an alternate format EXEC, an executable
instruction, or a byte of binary zeros indicating an
entry descriptor.

An alternate format EXEC is assumed to be a
REXX filter. It is invoked with suitable parameter
lists'. Other executable entry points are assumed
to require CMS parameter lists (both extended and
tokenised).

Entry Descriptor: An entry descriptor is defined
by CMS Pipelines conventions. It has a byte of
binary zero followed by three bytes of lowercase
characters defining the type of descriptor:

emd A pipeline command to be issued. The fol-
lowing fullword is the length of the command
which follows. The comtnand is usually
CALILPIPE to invoke a subroutine pipeline
to implement the function.

ept Another level of entry point table. The next
word of the filter delinition is looked up in
the table that follows the descriptor.

I Due to the CMS Pipelines restriction that programs must not issue pipcline requests from commands (subrou-
tines) that are called with CMSCALL macros, the runtime environment is called with a BALR; the runtime envi-
ronment must be a nucleus extension or install itself as a nucleus extension when called (using CMSCALL) with a

null parameter list.

91

How CMS Got Its Plumbing Fixed

http://availal.de

lup A look-up routine (for instance ldrtbis to find
an entry point in the CMS loader tables).
The next word of the filter definition is
passed to the look-up routine. It returns the
resolved entry point address, or zero when
the entry point cannot be found.

A REXX program that has been processed
by the PIPGREXX filter to generate an in-
storage program. The next word in storage is
the length of the list that follows, in bytes.
The program list {paits of addresses and
lengths) follows.

rex

The entry address is the beginning of a
program descriptor.

pip

The entry point resolved by a second level of entry
point table or by a look-up routine is inspected for
an entry descriptor. These can be nested to any
depth.

Program Descriptor: 'The program descriptor
defines a built-in program to CMS Pipelines. It
specifies attributes of the program that allow the
pipeline parser to:

s Perform checks that are done by the program
itself in a traditional implementation. For
instance, does the program require arguments,
must there not be arguments, or are arguments
optional? Checking syntax before starting the
pipeline means that the complete pipeline can
be aborted when an error js found in the
parameters to a single program.

« Allocate storage for all programs with one call
to the host system storage management. The
descriptor states the amount of storage to be
allocated on the initial eniry. Work areas for
neighbouring invocations of programs are allo-
cated adjacent; this may reduce the working
set.

e Call a syntax exit, if specified, to perform
further argument scan. Tor instance, the
syntax exit can ensure that a disk file to be
read does exist.

»s Obtain the address of the main entry to call
when no syntax check fails.

Ilartmann

92

Commit Level

The commit Icvel is an integer.
on a particular commit level.
advances its commit level to co-ordinate its
progress with other programs. When a program
returns on its original invocation, the return code is
inspected and an aggregate return code is computed
for the pipeline specification.

A program starts
The program

The programs that start at the lowest commit level
are invoked first. This set of programs run until
each of them returns or issues a COMMIT request
to increase its commit level. The commit level is
increased when there are no programs left at the
original commit level. Programs on the new
commit level are started only if the aggregate return
code is zero at the time the commit level is
reached; programs that start on a commit level are
abandoned if any program has returned with a
non-zero commit code at a lower level of commit.
Programs that were started at a lower commit level
receive the aggregate return code as the return code
for the commit when the requested commit level is
reached.

The convention for all CMS Pipelines built-in pro-
grams is that they transport data on commit level
0; most of the built-in programs start on commit
level 0 as well.

The syntax exit can be considered to be commit
level minus infinity.

The syntax cxit must not allocate resources (for
instance open files or obtain storage) because these
resources are not released if some other syntax exit
fails. On the other hand a program can allocate a
resource on, for instance, commit level -1. It can
then increase its commit level to 0. If the return
code on the commit 1s not zero, the program can
de-allocatc the resource and exit; it can continue if
the return code is 7zero.

When a subroutine pipeline commits to a level that
is higher than the one of its caller, the caller
commits to this higher level before the subroutine's
commit completes. A subroutine pipeline can be
abandoned before it commits its caller when there
are errors in the subroutine; the return code can
cause the caller’s pipeline to be abandonned too.

Most built-in programs process records of any
length. To do this, they typically process a record
this way. Processing stops when a non-zero return

code is received. A positive seturn code indicates
end-of-file; a negative one indicates a stall (dead-
lock).

e Preview the input record. The address and
Iength of the record is provided. The record is
not moved in storage.

* Process the record. If the output record is a
subset, the address and length from the preview
are modified without moving the record. A
record that is modificd must be loaded into a
buffer in the program that processes it.

» Write the output record. An unmodificd
record is written from the producer’s buffer; a
modified record is written from the program'’s
own buffer.

e Release the input rccord with a read into a
buffer of length zero. Tlis lets the producer
continue.

Data Transport

CMS Pipelines transports records between pipeline
programs without buffering. A record is moved in
the pipeline when the left-hand side of a con-
nection is writing and the right-hand side is
reading.

The most important functions of the device-
independent interface are:

e Writc a line. The program provides the
address and length of a buffer where the record
is stored. The program iz suspended until the
right-hand side performs a read operation. The
number of bytes read by the other side of the
connection is returned.

» Read a line, moving it in:o a buffer or work
area. The program specifies the address and
length of the area into which the next input
record is stored. The program is suspended
until the left-hand side performs a write opera-
tion. The number of bytes stored is returned.

e Preview the next line. The address and length
of the next line are returned. The program is
suspended until the left-hand side performs a
write operation. This function does not read a
line; successive previews return the same
record. The program on the left-hand side
remains suspended in its write call until the
record is read into a buffer or released with a
read call for zero bytes.

93

* Select a particular strcam for subsequent reads
or writes, or both. The program can also
select whichever input stream has a record
available; in this case, it is suspended if no
input stream has a record available,

+ Sever a stream. The connection to the other
side is broken. lind-of-file is reflected on the
other side.

» Short-circuit the currently selected input and
output streams. The streams on the left-hand
and right-hand neighbour are connected
directly as if the program has never been in the
pipeline. This is convenient for programs that
inspect the beginning of a file to determine if
any particular processing is required. Shorting
the connections avoids the overhead of copying
the rest of the file.

REXX Interfaces
CMS Pipelines supports REXX in two ways:

» RIIXX programs can process pipeline data. In
this case, the program issues commands to
transmit data to and from the pipeline. Such
programs are started on commit level -1; they
are committed to level 0 when they issue a
pipeline command to transport data, or an
explicit COMMIT pipeline command. Thus,
if the program discovers an error in its argu-
ments, it can return with a return code before
the irnplied commit; this causes the pipeline to
be abandoned. Likewise an error that causes a
subroutine pipeline to be abandoned can be
propagated to the calling pipeline which can
then also be abandoned.

+ Device drivers can access variables in a REXX
environment that is active at the time the pipe-
line specification is parsed. The REXX
program is passive; it performs no action to
make this happen.

REXX Pipeline Commands: Because filters run as
co-routines, REXX filters do not in general return
to the caller in the reverse of the order they are
started. RTIXX filters are invoked by a branch to
the address in AFXEC in NUCON instead of an
SVC (or CMSCALL); thus, all REXX programs
in a pipeline run on the same SVC level. On
MVS, RIIXX filters run in re-entrant environ-
ments.

How CMS Got Its Plumbing FFixed

This is the reason why readto and peekto (which
previews the next record) are commands with side
effects rather than function calls: REXX calls an
external function with SVC (or CMSCALL).

Commands in the REXX filter are processed using
Non-SVC Subcommand Invocation. REXX pro-
grams use the Address instruction to issue com-
mands to other environments.

As REXX programs are dispatched, CMS' Pipelines
maintains the CMS subcommand stack to ensure
that the topmost EXECCOMM represents the
running program.

Access to REXX Variables: 'The address of the
most current EXEC or REXX environment is
obtained (using SUBCOM) when a pipcline
specification is parsed. This is the base environ-
ment for all device drivers thal access REXX vari-
ables. To avoid interference from REXX stages in
the pipeline, device drivers branch directly to
EXECCOMM using this environment (or an
earlier one if requested).

Dispatcher Strategy

At the current commit level, the dispatcher main-
tains a stack of programs that have not started, or
are ready to run. Programs that are committed to
a higher level than the current one are kept on a
separate list; they are moved to the dispatch stack
when the dispatcher commit level is increased to
the level that the program are committed to.

Initially the dispatcher stack has the rightmost
program in the pipeline specification at the bottom;
the leftmost program is started first.

A program runs until it calls the pipeline dispatcher
to transport data or perform some other function.
As an example, refer to the pipcline in Figure 1 on
page 2.

¢p issues the command to CP and gets the
response in a buffer. 1t calls the pipeline dispatcher
to write the first line into the pipeline. 'The dis-
patcher checks the program at the other end of the
connection to see if it is ready to read the linc.
split is not waiting for input, il is ready to run and
not started, so ¢p is suspended (waiting for output
to be consumed) and split is started.

split calls the pipeline dispatcher to get the address
and length of the next input line. (The line is not
moved in storage.) The line is available to the dis-

Hartmann

94

patcher, so the information is returned and split is
resumed. It locates the first comma in the input
line and calls the dispatcher to write the part of the
line up to the comma.

In the same way, locate is started. It inspects the
line. Assuming the first line is for a connected
user, locate calls the dispatcher to indicate that it
has finished with the input line. The dispatcher
makes both programs ready to run. To pump data
out of the pipeline as quickly as possible, the dis-
patcher puts the right-hand program last on the
ready stack, so locate is resumed once more. It
calls the dispatcher to get another record and is
suspended waiting for input to be made available
because split has not yet written the next line.

split 1s resumed to provide the second record. This
process is repeated for each record in the input file.

¢p returns on the initial invocation when all lines
are processed. The pipeline dispatcher severs all
streams available to a program (in this case there is
only the primary output stream). Severing the
stream which split is waiting for sets return code 12
and makes the program ready to run.

split is resumed. It notes the return code meaning
end-of-file and returns as well. This reflects
end-of-file to locate which also returns. count gets
end-of-file and writes a line with the count on its
primary output stream. console is finally started to
process the line and write the response to the ter-
minal.

How CMS Pipelines Evolved

CMS Pipelines evolved over the 1980s. The first
implementation ran on VM/System Product
Release 1; the parser used the tokenised parameter
list~the untokenised command string was not
available to a CMS command in those days. The
first built-in programs supported the console, disk
files, and virtual unit record output devices. Filters
were resolved from a few built-in device drivers and
the CMS loader tables. A pipeline was run by
calling the parser (with a BALR instruction). 'This
implementation was convenient to write CMS user
arca modulcs.

VM/System Product Release 2 introduced
NUCXILOAD to load relocatable modules from a
LOADILIB into free storage as commands. A

command interface was written to support this.
Because NUCXLOAD was a transient module ori-
ginally, it was not practical io have a bootstrap
module; an EXEC was used insiecad. It ensured
that the pipeline module was installed in storage
before invoking it.

By carly 1982 it was clear to insiders that REXX
would be part of VM/System Product Release 3.
An interface was quickly written when it was
realised that:

= 'T'he language is attractive to process data.
% The interpreter is re-entrant.

» The mechanism for Non-SVC Subcommand
Invocation allows subcommands to be issued
on one CMS nesting level.

» The system interfaces (after some tweaking) are
suitable to maintain concurrent invocations of
REXX programs.

The parser was rewritten to use the extended
parameter list on VM/System Product Release 3.

There were several attempts at multistream pipe-
lines and dynamic reconfiguration at this time.
After some experimentation, the pipeline
specification found its current form in the summer
of 1985.

VM/System Product CMS Pipelines Program
Offering (5785-RAC) was announced on October
6, 1986.

NUCXLOAD was made nucleus resident in
VM/System Product Release 4. The PIPE boot-
strap was written to avoid going through an EXEC
to run a pipeline.

The program descriptor was introduced in
Modification I.evel 2 which shipped in November
1987. XA toleration was shipped in Modification
ILevel 3 in December 1988. Modification 1¢:¢l 4,
shipped in October 1989, provided XA exploitation
and support of PL/I and IBM (/370.
Modification level 5, shipped in August 1990, pro-
vided support for commit levels and VM/ESA.

Virtual Machine CMS Pipelines RPPQ P81059 was
announced October 31, 1989.

95

Conclusion

CMS Pipelines moves CMS away from the single-
task single-program model. CMS Pipelines is
attractive because it:

» Makes the system more efficient and respon-
sive. Passing data (in storage) between pro-
grams saves [/OQ operations. Running
co-routines saves processor time relative to
calling subroutines.

% Makes the programmer more efficient. The
user and the programmer can often plug func-
tional building blocks together without having
to worry about procedural code. A solution is
often cxpressed as a subroutine pipeline that
can be called from other programs. Filters are
easily added to tailor existing solutions.

% Makes programs more robust. A filter is tested
out of context, and often exhaustively. It is
easy to perform a regression test.

« Supports REXX as a programming language
both to wrte command procedures that use
pipelines for processing, and as programs in the

pipeline processing data.

» Provides multistream pipelines. Selection
filters can split a file in streams that are proc-
essed in different ways. Programs using mul-
tiple streams can be cascaded.

% Supplies a hbrary of more than 100 built-in
programs to access host interfaces and operate
on data.

References
CMS Pipelines Tutorial, GG66-3158, explains

CMS Pipelines in 15 easy chapters with many
examples.

CMS Pipelines User’'s Guide and Tilter Reference,
SI126-0018, has a task-oriented guide to CMS
Pipelines and a reference section describing built-in
programs and messages.

CMS Pipclines Toolsmith’s Guide and Filter Pro-
gramming Reference, S81.26-0020, describes multi-
stream pipelines, the REXX interface, and the
original Assembler programming interface.

Tow CMS Got lts Plumbing Fixed

CMS Pipelines Installation and Maintenance Ref-
erence, S1.26-0019, describes maintenance proce-
dures, and how to generate a filter package.

Hartmann

96

