EXPERT SYSTEM DESIGN IN REXX

MARC VINCENT IRVIN
NORDEN SYSTEMS
Because REXX has user friendly syntax, it is lightly typed, and handles symbols well it was an ideal medium for a Knowledge Engineering systems experiment named REXRULES.

Expert System Design in REXX

Introduction

- WHAT ARE EXPERT SYSTEMS
 history
 players
 structure
 paradigms
 justifications
 applications

- REXRULES: ES INFERENCE IN REXX
 assets
 facts
 rules
 chainings
 attributes
 pros/cons

- ES/REXX PROMISE

(C) MVI Software 05/91
Expert System Design In REXX

WHAT ARE EXPERT SYSTEMS?

- HISTORY
 from games to chemistry to medicine to value seen

- PLAYERS
 hosts, tools, shells, experts, engineers, & users

- STRUCTURE
 knowledge, inference engines, and heuristics

- PARADIGMS
 Emycin, Prolog, OPS5, TK-Solver, and Expert Choice

- QUALITIES
 high ROIs by saving, promoting, and enforcing work

- APPLICATIONS
 DASD, Software, JOB, Network, and Help Desk management

(C)Copyright 05/91 By Marc Vincent Irvin

What Are Expert Systems?
DEFINITIVE DEFINITION

- An EXPERT SYSTEM is one that assists facilitates, or replaces expert(s).

- ASSISTS - When the expert calls on the system to improve his/her performance.

- FACILLITATES - When the expert's skills improve the performance of non-experts.

- REPLACES - When expert(s) develop expertise exceeding human capabilities.
What Are Expert Systems?

HISTORY

• PARLOR GAMES
 Turing asked, can it pass a line up?
 Parlor game provided measuring rod.
 Eliza was therapist, PARRY was patient.

• NASA’s ROBOT Chemist
 DENDRAL uncoded molecules.
 DENDRAL out did the experts.

• Bacterial Infection Diagnosis
 MYCIN gave RXs and explained reasoning.
 MYCIN led to EMPTY MYCIN or EMYCIN.

• NEED SEEN: Future Shock’s Answer
 MIT, computers didn’t up productivity.
 10-15 yrs to get expert in something.
 Experts decode & sift $K into solutions.
 ES are industrial complexity pills.

• BEST AI SOLUTION AMONG MANY
 NL, Robotics, Neural Nets, & Fuzzy Logic.

(C)Copyright 05/91 by Marc Vincent Irvin

What Are Expert Systems?

PLAYERS

• Construction Materials
 computers, languages, shells, and boxes.

• Architect (Cogpsych/CS/AI)
 Knowledge Engineers put it together.
 Trained in extraction & compaction.

• Domain Expert
 Provides subjective functional analysis.
 KA blues, busy silent vague and distant.

• ES Users
 They get advised, directed, or corrected.
 Potential next generation of experts.
 Complex work with little or no training.

• ES Support
 Keep facts and rules up to date.
 Done by any of the above, or others.

(C)Copyright 05/91 by Marc Vincent Irvin
What Are Expert Systems

STRUCTURE

- KNOWLEDGE
 Facts
 Rules
 Frames
 Attributes

- INFERENC ENGINE
 Interpreter
 Scheduler
 Reporter

- HEURISTICS
 Expert observation
 Metabase experience

What Are Expert Systems

STRUCTURE: Knowledge

- FACTS ie. Can is bent, top is not off.
 data element or multivalued variables
 monotonic, nonmonotonic, or uncertain
 discrete or inheritable via attributes

- RULES ie. If can is bent then can is b
 has rule name for infer, fuzz, & reporting
 name: LHS/antecedent RHS/consequent
 can use old facts to make new facts

- FRAMES (objects attributes values)
 CONCEPT: part
 SLOT1: name
 SLOT2: condition

 INSTANCE: part
 NAME: can
 CONDITION: bent
 PROCEDURE: part_fixer
What Are Expert Systems

STRUCTURE: Inference Engine

- Inference Engines contain strategies and controls that KE use to manipulate facts and rules. Its 3 main functions are to interpret, schedule, and explain facts and rules to and for its users.

- INTERPRETER
 Maps attributes against facts and rules.
 Sets and stores processing options.
 Does var/memory inits and runs profiles.
 Does syntax checking and writes errors.

- SCHEDULER
 Seeks goals, fires rules, finds unknowns.
 Sets firing priorities and tracks steps.
 Interfaces procedurally to environment.
 Does message sending and retrieval.

- EXPLAINER
 Tells in english how answers were made.

What Are Expert Systems

STRUCTURE: Attributes

- ATTRIBUTES - Used for query, process controls, and english status reporting.

- USER QUERY
 Usually, if knowbase has no answer it will ask user for answer using A) a KE made text or B) an invented text.

- PROCESS CONTROLS
 Things like value and range checking, logic tracking, fuzzy or confidence factors, and defaults are often found.

- ENGLISH STATUS REPORTING
 Sometimes, IE will provide english like responses about outstanding RULES and set values. They may be KE supplied, but better IEs will give current reasoning and value settings.

(C)Copyright 05/91 By Marc Vincent Irvin
What Are Expert Systems

STRUCTURE: Chainings

- Demo Ruleset for chaining
 GOAL END -OR- RETE ON
 R1: IF A = J & C = 2 THEN END = 1
 R2: IF D = M & C = 1 THEN C = 2
 R3: IF C = 2 THEN A = J
 R4: IF D = M THEN C = 1
 R5: IF C ^= 1 THEN D = M

- forward chaining FIRE sequences
 R1 R2 R3 R4 (R5)
 R1 R2 R3 (R4) R5
 R1 (R2) R3 -R4- -R5-
 R1 R2 (R3) -R4- -R5-
 (R1) R2 -R3- -R4- -R5-

- backward chaining FIRE sequence
 R1 R3 R2 (R5) R2 (R4) (R2) (R3) (R1)END

PARADIGMS

- M.1
 Mycin backward chained
certainty factors

- PROLOG
 declare/proc Logic base
 clause driven

- OPS5
 RETE forward chained
data driven popular in MIS

- TK-SOLVER
 ESS w/o cells

- EXPERT CHOICE
 DSS w/o PHD

(C)Copyright 05/91 By Marc Vincent Irvin
What Are Expert Systems

QUALITIES

- 1000 pct return on investment
 Northrop, ESP - 14 to 4.3 hrs
 DEC nets $40M/yr on XCON

- VALUABLE SKILLS RETAINED
 retirees knowledge coded
career changes painless

- USEFUL SKILLS PROMOTED
 Easy, 24 hr, error free access
 Automatic history of reasoning

- STANDARDS ENFORCEMENT
 critical tasks
 routine tasks

- COMPLEXITY MANAGEMENT
 information overload
 overboard technology

What Are Expert Systems

MIS APPLICATIONS

- DASD DEFINITIONS
 performance/security enforcing
 parameter optimizing

- SOFTWARE MAINTENANCE
 advice and error recovery

- JOB MANAGEMENT
 scheduling and prioritizing

- NETWORK SUPPORT
 EP/VTAM/NETVIEW line servers
 DASD and SPOOL monitoring

- HELP DESK
 expert directory & basic fixups
 problem logs and tracks

- AUTOMATED OPERATIONS
 Operators/Tech-support replaced
 Light's Out has become common

(C)Copyright 05/91 By Marc Vincent Irvin

(C)Copyright 05/91 By Marc Vincent Irvin
Expert System Design In REXX

REXRULES: Expert Systems In REXX

- ASSETS
 untyped, pseudo code, symbolic, and portable

- FACTS
 literals, variables, stored, filed, & iterative

- RULES
 value, clause, data, formula, clock, & self driven

- CHAININGS
 backward, forward, mixed, and custom(depth/breadth)

- ATTRIBUTES
 basic, truth, dynamic, imprecise, and fuzzy values

- PROS/CONS
 learning, I/O, math, connects, and procedural

(C)Copyright 05/91 By Marc Vincent Irvin

Expert Systems In REXX

REXX ASSETS

- UNTYPED MEANS:
 no time defining fields
 unlimited mixing
 SAY 'Value of' X 'is' N+3.'

- PSEUDO CODE MEANS:
 coders need little training
 code can be self documenting
 IF A = B THEN SAY 'A=B'

- SYMBOLIC MEANS:
 words & phrases paramount
 unknown symbols can be found
 IF SUNNY & WARM THEN 'SWIM'

- PORTABLE MEANS:
 PC code can run on VM & MVS
 one day REXX IBM on REXX DEC

- CONNECTED MEANS:
 excellent host interfaces?

(C)Copyright 05/91 By Marc Vincent Irvin
LITERAL
IF IDEA = 'GOOD' THEN JOKE = 'FUNNY'
INITGOAL: IDEA = GOOD; TIME = LATE

ASSIGNED (FALSE = 0)
IF DAY OR SUNSET THEN NIGHT = FALSE
rules/tasks can set true/false values
popular in diagnostic systems

SYMBOLIC
PUT(Tim sees Ann); PUT(Ted sees Sue not)
UNKNOWN = 'WHO'; GET(Tim sees who)
multiple UNKNOWN solutions sep'd by space
advanced pattern match, GET(RANGE*)

FILE BASED
X = READ(filename,seq[key]) for basic files
RC = WRITE(filename,seq,data) to write recs
OPS(MAKE,","UID1" DAY TIME)
IF OPS("","UID1 = "UID1") THEN 'IDFND'

ITERATIVE - experimental = 'Tim Ted Sue Ann'
One pass done for each name.

VALUE DRIVEN
unset values Q'd for OOS resolution
FORM(s) => RULE(S) => ASK.X
Examples...
RULE_8: IF SPEED = LOW AND,
PRT_QUALITY = HIGH THEN DO
 PRT_SET="MODL-1"; RUN(SAY_MODL); END
RULE_2: IF ABBREV('YES',NEEDEST,1) AND,
PRTPAGE > 5 THEN SPEED = HIGH

CLAUSE DRIVEN
unfound patterns/GET() Q'd for solution
RULE(s) => ASK.
Examples... unknowns = 'sport'
put(hockey has contact soccer has contact,3)
put(hockey is fast hockey played_with puck,3)
likes_sport: if nop(name) & get(sport has action),
 & get(sport played_with puck),
 then put(name likes_sport sport)
has_action: if get(sport has contact) &,
 get(sport is fast),
 then put(sport has action)
Expert Systems In REXX

REXRULES RULES

- **DATA DRIVEN**
 matched objects/OPS() direct reasoning
 Examples...
 OPS('FIL NAM A', QUEST, 'NAME TEXT')
 OPS(MAKE, QUEST, 'QUEST1 WHAT IS TEMP?')
 OPS_RULE:
 IF OPS(QUEST, 'NAME = "QUEST1") THEN,
 OPS(SET, QUEST); SAY NAME TEXT
 OPS(REMOVE, QUEST)
 END

- **FORMULA DRIVEN**
 Unset values in formulas/EQU. get solved
 Examples...
 MAINGOAL = 'SHOTS'
 EQU.BACBOOZ* (150/WGHT)*(PCT/50)*SHOTS,
 * .025
 EQU.PCT = PROOF / 2
 ASK.WGHT = 'WHAT DO YOU WEIGH NAME?'
 * Implied via rules of algebra...
 EQU.PROOF = PCT* 2
 EQU.SHOTS*BACBOOZ/(150/WGHT*PCT/50*.025)

Expert Systems In REXX

REXRULES RULES

- **CLOCK DRIVEN**
 rules form tasks on date/time/elapsed
 Examples...
 /* in 30 minutes run CK_LINES once */
 CLK.CK_LINES = 'M30'
 /* on 3/3 run every 2min from 12 to 6*/
 CLK.SUBMIT='91/03/03 12:00 0.M2•18:00'
 CK_LINES: 'EXEC LINESCAN'
 ACCTRULE: IF CLK.SUBMIT THEN 'SUBMIT X'

- **SELF DRIVEN**
 recursion done on rules/tasks/pattds/masks
 recursion via FIRE!RUNIGETIOPS commands
 Example...
 HANOI: RUN('MOVE 6 LEFT MIDDLE RIGHT')
 IF ?N = 1 THEN DO
 ?M = ?N - 1
 SAY 'MOVE DISK' ?N 'TO' ?C
 END

(C)Copyright 05/91 By Marc Vincent Irvin
Expert Systems In REXX

REXRULES CHAININGS

- **BACKWARD** using literals & assigned facts
 - maingol = 'animal'
 - rule1: if mammal & carnivore & striped, then animal = tiger
 - rule2: if haired then mammal = true
 - rule3: if meateater then carnivore = true
 - ask.striped = 'is animal striped? Y/N'
 - equ.haired = 1/1/0-0=false /* ans = 1 */

- **FORWARD** using file based facts
 - FIRE('PICK HOLD DROP STOP', FOR 100)
 - PICK: IF OPS(GOAL,'TASK="ADD") AND,
 - OPS(BRICK,'PLACE=HEAP'),
 - THEN OPS(MODIFY,BRICK,'A 10 HAND')
 - HOLD: IF OPS(GOAL,'TASK="ADD") AND,
 - OPS(BRICK,'PLACE="HAND")',
 - THEN OPS(MODIFY,GOAL,'DROP')
 - DROP: IF OPS(GOAL,'TASK="DROP") AND,
 - ETC...

- **MIXED**, unset value in fired rule starts GOAL.
 - Once GOAL set fired rule resumes. Fires in GOALs takeover & when done GOAL resumes.

(C)Copyright 05/91 By Marc Vincent Irvin

Expert Systems In REXX

REXRULES ATTRIBUTES

- **STATIC**
 - Sets query, process, & english info controls.
 - ASK.VIEW = "Select VIEW from:@ CHK.VIEW
 - DFT.VIEW = "FOR" /* default reply */
 - CHK.VIEW = "FOR AGAINST"
 - FMT.VIEW = 1 7 ALPHABETIC 3
 - WHY.VIEW = "Need to know side you're on,",
 - "OK!" /* continuation example */
 - DOC.VIEW = "Only reply is FOR or AGAINST."
 - IDK.VIEW = "AGAINST" */ ie. I don't know */

- **TRUTH**
 - Uses boolean true/false logic for REXX vars.
 - YES = 1; NO = 0; DONTKNOW = 'o'
 - ASK.EATSMEAT = 'Does animal eat meat? Y/N'
 - CHK.EATSMEAT = 'CHK_YESNO;' /*set 1 1 0 */
 - IF EATSMEAT = NO THEN HERBIVORE = TRUE
 - IF EATSMEAT=DONTKNOW THEN EATSMEAT=1
 - IF EATSMEAT THEN DO
 - HERBIVORE = NO; CARNIVORE = YES; END
 - ELSE CARNIVORE = FALSE

(C)Copyright 05/91 By Marc Vincent Irvin
Expert Systems In REXX

REXRULES ATTRIBUTES

- **DYNAMIC**
 Most attributes can execute tasks or rules.

 ASK_NAME = "ASK_NAME:" /* use name task */
 DFT_NAME = "DFT_NAME:" /* default task */
 CHK_NAME = "CHK_NAME:" /* check name lgc */
 PNL_NAME = "PNL_NAME: name addr phone"
 ASK_NAME: /* msges below shown to user */
 SAY "It's TIME()", please enter name.
 SAY "Thank you."
 DFT_NAME: /* assume William's using system*/
 IF am then rpsns = BOB; else rpsns = WILL
 CHK_NAME:
 IF AM THEN,
 IF FIND('BOB TIM JAY',RSPNS) > 0,
 THEN RUNCC = 1; ELSE RUNCC = 0
 PNL_NAME:
 ! --- FULLSCREEN INFO ENTRY ---
 ENTER NAME: %NAME
 ADDRESS: %ADDR
 PHONE: %PHONE
 EOP:
 For @ panel var invalid dialog asks for input.

- **CHRONOLOGIC**
 Rules can be run after N hrs, mins, or secs.
 Rules can be run based on "date" or "time".
 Rules can be run every N hrs, mins, or secs.
 Variables used to signal if time has come.
 CLK.PAYRULE = "M30" /* Do 30 mins from now*/
 CLK.CHKDASD = "H1-21:00" /*@ hr, stop 9pm*/
 * On May 30th tell operator's to go home.
 CLK.MSGOPER = "91/05/30 09:00 0.M10•12"
 * Issue clock request for 10 PM shutdown.
 CLK.STORUN = DATE('O) '22:00' 0'
 PAYRULE: "MSG ALL IT'S PETTY CASH TIME."
 * test of CLK. val needed to ctl miss fires.
 CHKDASD:
 IF CLK.CHKDASD THEN FIRE(DASDRULES)
 SPECIAL_RULE.CHECKS_CLOCK_STUFF:
 SELECT
 WHEN CLK.MSGOPER THEN RUN(TELOP)
 WHEN CLK.STORUN THEN EXIT 000
 OTHERWISE NOP
 END
 If no rule then only CLK. switch is set.

(C)Copyright 05/91 By Marc Vincent Irvin
Expert Systems In REXX

REXRULES ATTRIBUTES

- IMPRECISE
 IF RUN(BIG: A) OR RUN(MED: A),
 AND ~RUN(LOW: A) THEN A_OK = TRUE
 BIG: PARSE VAR RUNSTR X
 IF X >= 9 THEN RUNCC = 1; ELSE RUNCC = 0
 MED: PARSE VAR RUNSTR X; RUNCC = 0
 IF X < 10 AND X > 5 THEN RUNCC = 1

- FUZZY (FUZ. is certainty factor if sw on)
 CHK.QUALITY = "HIGH GOOD FAIR POOR"
 FUZ.QUALITY = "0 1 .75 .5 .25"
 Output example:
 MEDIA_TO_CONSIDER = 80% FOILS
 MEDIA_TO_CONSIDER = 92% SLIDES

- EPISODIC
 Assume FUZ. for quality/ability/quantity set
 CHK.RATING = "QUALITY ABILITY QUANTITY"
 DSS_RATING = "0 .345 .243 .161"
 Output example:
 RATING = .376 HAYAT, F
 RATING = .234 NISS, T

(C)Copyright 05/91 By Marc Vincent Irvin

Expert Systems In REXX

REXRULES PROS/CONS

- PROS
 Needs no compile, but compiler possible.
 Can mimic most PROLOG & OPS5 code well.
 Perfect medium for teaching AI skills.
 Grade schoolers could learn this in hours.
 Intensely flexible parse ability kept.
 Ideal for LADDER like NL implementations.
 Relatively little cost to buy & maintain.
 IBM's SAA stand is less support overhead.
 Embodies six plus popular IE paradigms.
 Highly flexible calculator ability.
 Infers using both dialogs and panels.

- CONS
 Not very fast CPU wise, nor IO wise.
 Lacks high math capabilities.
 Bleeding edge...
 Few people use or have heard of REXX.
 MVS version lacks EXECIO's index feature.
 VM REXX Compiler can't do INTERPRET cmds.
 Does not do LISP like list processing.
 Has few syntax checking features yet.
 Has little to no documentation yet.

(C)Copyright 05/91 By Marc Vincent Irvin
Expert Systems In REXX
Towers of Hanoi in LISP

(defun tower-of-hanoi (disks from to spare)
 (unless (endp disks)
 (tower-of-hanoi (rest disks) from spare to)
 (format t ""%Move ~a from "~a." (first disks) from to)
 (tower-of-hanoi (rest disks) spare to from)))

Expert Systems In REXX
Towers of Hanoi in Prolog

loc = right; middle; left
predicates
hanoi(integer)
moves(integer, loc, loc, loc)
inform(integer, loc, loc)
clauses
hanoi(N) if
 move(N, left, middle, right).
moves(1, A, _, C) if
 inform(1, A, C), !.
moves(N, A, B, C) if
 M = N - 1,
 move(M, A, C, B),
 inform(N, A, C),
 move(M, B, A, C).
inform(Disk, Loc1, Loc2) if
 write("\nMove disk ", Disk, " from ",
 Loc1, " to ", Loc2, ". ").
Expert Systems in REXX
Towers of Hanoi in REXX

HANOI: RUN('MOVE' SIZE 'LEFT MIDDLE RIGHT')

 IF ?N = 1,
 THEN SAY 'MOVE DISK' ?N 'TO' ?C
 ELSE DO
 ?M = ?N - 1
 SAY 'MOVE DISK' ?N 'TO' ?C
 END

(C)Copyright 05/91 by Marc Vincent Irvin

EXPERT SYSTEMS IN REXX

PROCEDURAL

DECLARATIVE
OR
OBJECT ES

Goes to whatever object will provide needed information.
For example if any of the above were removed it would just try to get answer from the user.