REVIEW OF ANSI AND OTHER LANGUAGE DISCUSSIONS

BRIAN MARKS
IBM

113

Preamble added April 1991, was not part of the original handout.

In addition to the caveats embedded in this document, note that:

The reaction of SHART. members included rejection of some of these suggestions
and ideas for variations which were improvements.

The examples tend to be examples of the simplest case. 1t is a reasonable rule to
assume that the gencralizations which scem natural to you were also intended.

This Handout.

This handout accompanies the SHHARE session number A636 - RTEXX Design
Dialogne, speaker Dr Brian Marks, on Tuesday T'ebruary 26th 1991,

Preamble

The Procedures 1.anguage Architecture Review Board is an IBM committee that
defines the programming language and the interfaces that make up Procedures Tan-
guage. The Procedures Language Interface Owner, Linda Green, selects particular
parts of the committee’s output as the SAA Procedures anguage levels; so far there
have been two levels, SAA level 1.0 announced in March 1987 and level 2.0
announced in June 1990. 'The committec members all work for IBM and 1 am the
chairman.

The work of the committee naturally divides into work on reconciliation, (wherever
there is doubt about what implementations should do to honour the architectural
definition), and work to continue the original design principles of REXX into exten-
sions. Today we are going to discuss the design of extensions. The design T will
present is at a very early stage; it is in the minds of the Board members. There are
no implementation plans and only onc part of it is being prototyped. So IBM is
making no commitments that any of this will be delivered, or that if it is it will be in
the form that we are going to discuss today.

It 1s a fair question to ask “Why do any work on extensions?”. REXX was well
designed in the first place, so perhaps extension will do more harm than good by
making REXX more complicated.

The argament in favor of change is that the world of computing has changed - what
was an optimum design earlicr may not be optimum for today or for the next
decade. RIIXX has already benefited from some evolution over the years. The
Review Board fecls that further evolution may be justified by the trends of the
1990s. Such an evolution is prompted by, and built around, the views expressed by
our customers.

The purpose of today’s session is to begin a dialog with you about the Board’s view
of what might be appropriate; we call this "Architected REXX'. The remainder of
this session will be split into parts. In each of the parts I will deseribe a component
of ‘Architected RTVXX” and you will have the opportunity to discuss it. In order to
keep to the timetable it may be necessary to guillotine discussion but T am sure
there will be other opportunities.

114

External Procedures and Parameter Passing.

The first of these parts relates to the trend for the problems that programmers are
solving to be more complex. Although programmers today have better equipment
than ever before, there is still a challenge in programming because our ambitions
have increased. In the case of REXX, writing big programs exposes some limita-
tions in the way variables are handled. As the number of variables in a program
increases it becomes difficult to control the scope of variables with simple PROCE-
DURT EXPOSE statements. The recent extension of EXPOSE to allow a list of
variables to be named is an improvement but users still tell us that better facilitics
for sharing and scoping arc required.

Architected RIIXX postulates the addition of external procedures that share vari-
ables and parameter passing ‘by reference’. Tere is a foil with syntax. In the
example the variable ABC is shared by the main program and the subroutine
ALPIIA.

/* Main Program */ /* External procedure */
. ALPHA: PROCEDURE EXPOSE ABC
call ALPHA .
say ABC ABC=66

exit return

This 1s the same syntax and meaning as is currently used for internal subroutines,
but external routines today cannot start with a PROCEDURE statement. So this is
a ‘clcan’ extension - no correct existing program is ‘broken’, ie given a different
meaning, by the extension. Also it introduces little in the way of new terminology
and concepts.

By-reference addressing is not so ‘clean’.

/* Calling code */ /* Called routine */
call BETA MYVAR. BETA:
say MYVAR.33 use arg GAMMA,
GAMMA. 33="'Something’
return

This program would do something today, but nothing very uscful - because there is
no ‘use’ statcment today, that line would issue a command. That is not a scrious
breakage problem because the coder who wanted to do that would almost certainly
have used guote signs around the word "use”.

'The use statement introduces a name for an argument, like PARSE ARG docs,
with the difference that the argument IS NOT COPIED. The name introduced is a
second name for the same vartable. In this example MYVAR and GAMMA arc
the same variable. This aliasing is a powerful feature and also a source of pitfalls for
the unwary. There are alternative designs, mostly involving multiple vatues on the
return statement, but the Board fecls that passing By-Reference is the correct choice
for cxecution speed, since return of multiple values could require more copying of
data.

This new sort of external routine, that starts with a procedure statement, is also
more like an internal procedure in the way that internal values (like the current
number of NUMERIC DIGITS) arc handled. 'T'oday’s external routines reset these
internal values when the routine starts; the new sort of procedure inherits the caller’s
settings in the way that an internal procedure does today.

We will take our first discussion period now. [belicve the essential questions are:

* Does the expectation of more complex programming justify additions to
REXX?

 Is adding Tixternal-like-Internal and By-Reference-Arguments enough to alle-
viate the difficulties in sharing that people have experienced?

¢ Are there better designs of language with the same power?

National Language Sensitivity.

Qur second area for design dialog is National Tanguage Sensitivity. Our meeting
today has a majority of people whose natural language is Iinglish, and REXX is
optimized to pcople who know American-English, so this may scem scem a minor
design issue. However, there are two trends of the nineties that make it increasingly
important. ‘The first is an increasing number of non-English speaking programmers.
The sccond is the explosion in communications which is making our world into a
village and making possible individual applications which have widely spread parts.

We al know this is a hard problem to tackle - the complexities of code pages and
character sets together with the variety of dialects and customs makes a daunting
challenge. Fortunately we are not on our own - all the Programming languages,
the operating systems, and the components like SQI, are involved. An IBM archi-
tecture is emerging - the Character Data Representation Architecture which you can
hear more about at other SITTARIT sessions.

RI:X X has the advantage over some programming languages that it is defined in
terms of characters rather than bytes, and the definition stands up whether the char-
acters are physically represented as one, two or a variable number of bytes. The
extensions in Architected REXX provide for:

1. Source programs written in the characters sets identificd by CDRA. (Thosc
that implementations support - we would expect that to be a large number.)

2. A set of rules for coping with the specialitics of particular character sets - cg
which characters are allowed in names, how substitutes are used for unavailable
character scts, what Uppercasing means. (By the way, [owercasing is in the
design.)

3. Existing keywords, function results remain in Fnghish. To do otherwise would
cause a lot of breakage.

4. New variations on the builtin functions allow, for example the day of the weck
to be returned in Trench. (This by retaining the same names for builtin func-
tions but adding variety to the arguments, cg DATE(7W) for the local form of
weekday.)

5. Run time data which is not in the same character set as the source program is
permitted. TIowever there are no antomatic conversions between character scts.

This design follows CDRA in the idea that data is “tagged” with identification of the
character set that the data is in. Whether these ‘tags” or “attributes” are actually
present will depend on their operating system support. Our design allows for the
character set to be given in a REXX-specific way if the operating system support for
tags is not present.

Some of the NIL.S questions:

116

* Do the trends justify adding these features?

e Is the extent of the support appropriate? Or maybe we nced keywords in non-
Fnglish? Automatic conversions at runtime to some Universal character set?

* What is the best design, given the extent of the support?

Message Driven Processing.

Our next area for design dialog is Message Driven Processing. 1t will be character-
istic of the nineties that many applications will be distributed, with parts of the
applications on different machines and often geographically far apart. Such divisions
need a clear way of specifying what data and functions belong to one part of the
application as opposed to another. The message driven paradigm, also known as
‘Object Oriented’, has proved to be good for this. And of course abject orientation
has also proved good for other things, like manipulating windows on a screen, for
the same reason as it is good for distributed applications - because of the ‘data
encapsulation’.

Architected REXX favors the Object Oriented style developed by the OO-REXX
team. Simon Nash talked about this prototyping cffort at SITARE74 and is giving
an updatc on Wednesday at 0930. There will be an opportunity then for a detailed
discussion. Right now, T will recap on the main featurcs so that we can discuss how
this fits with other parts of Architected RTIXX.

These Message Driven Programming facilities introduce only insignificant breakage
so a programmer who does not want to use them need not know about them. Such
a programmer can continue to program using non-object-oriented features and ter-
minology. It will be a choice for the programmer whether to adopt the OO-REXX
style.

Programs in the QO0O-REXX style use Mcthods, analogous to external procedures,
with a new METTHOD statement analogous to PROCEDURE. Mcthods provide
two related facilitics, the encapsulation of data (variables on a MEETTOD EXPOSIE
are shared only across the methods associated with an object) and a unit of exe-
cution that can be parallcled (the method invocation).

Methods are invoked by a new form of REEXX term, the ‘'message term’, or a new
instruction, the ‘message instruction’. Fach of these has the syntax (in the simplest
case) of a function call preceded by a term and the tilde character. eg rectarea =
myrcet~area; mystack~push('Bill Brown”)

In the Object Oriented terminology, the object on the left hand side of the tilde
responds to the message (on the right hand side) by returning a result object. The
objects may be strings, in which case the newness may be solely in terminology and
syntax.

‘ABC’'~REVERSE = ="CBA’ = = REVERSE(CABC)

However, the objects need not be strings. Objects are characterised by the methods
that can be applied to them, and there are Builtin methods which will create objects
and associatc methods with them. In this way the usual object-oriented features of
powerful objects, inheritance etc. are established mainly by the programmer. Only
the essential primitives have been added to REXX in this enhancement. Any par-
ticular problem oriented solution, eg a windowing scheme, could be provided as a
package of pre-programmed objects but will not be part of this extension.

117

The parallel nature of object activity is achieved by the addition of a REIPLY state-
ment analogous to the RETURN statement. RTEPLY does what RETURN does
but additionally continues execution (with the statement following the REPLY).
Where this might lead to unsynchronized shared access to variables the programmer
should make use of ‘guards’. ‘The guard statement, with syntax GUARD
expression, blocks execution until the expression evaluates to "1,

Some of the high level message driven processing questions:
* Do the trends justify adding these features?

 Is the extent of the support appropriate? Too high because it adds a whole new
set of concepts and extends the character set required for RIIXX? Too low
because it only provides mechanisms, and docs not define a comprehensive set
of useful objects as a part of REXX?

» Should it be viewed as a different language, analogous to the relation of C and
C+ +, oris it right to design it as a compatible component of architected
REXX?

Calling non-REXX code - the Generic Binding.

it has always been possible to call non-REXX code from REXX code; the neces-
sary interfaces are defined and publicized. But it is not the casiest thing to do - it
requires a knowledge of parameter passing details and requires some low-level pro-
gramming. The difficulty hampers the development of applications in which RIIXX
is usced to harness other facilities. This applies whether the facilitics are IBM sup-
plied, like SQI,, or developed by a customer.

The design the board favors has three features:

1. A set of conventions about how to pass arguments to packages. T'or example, if
an array is to be passed the clements of the array should be assigned to
SomeName. 1, SomeName.2, SomeName.3, etc. and the stemmed variable
SomeName. passed.

2. A language in which the developer of a package can describe the entry points of
the package. This language is essentially declarations in the programming lan-
guage 'C".

3. A mechanism in the REXX implementation to convert REXX arguments to
non-REXX format and pass them to non-RIEEXX procedures, without the need
for anyone to program these conversions.

The user of a package only needs to know the conventions. Such a user will not
even be aware of the language in which the package is written. The developer of a
package needs to describe the entry points and make use of a utility program to
convert the specification of the package into a table to be used when the package is
used. Only the developer of a REXX interpreter or compiler needs to know about
how arguments arc actually converted and passed.

Seme key questions arc:

« Is the investment in such a general solution justified, or are the packages and
system components that will need to be accessed sufficiently few to assume they
should hand-craft their own interfaces?

118

e How far can the infinite variety of non-REXX arguments be accommodated?
eg should it be possible to pass a REXX procedure name to non-REXX code
and have the non-REXX code subscquently call that RIZXX procedure?

* If there have to be restrictions on what can be passed, does that make the whole
approach unjustified?

Debugging paradigms.

At this point I am going to mention something that is not part of architected
REXX, but is a suitable subject for dialog. There is a world of difference between
debugging with current REXX trace facilitics and the debugging schemes available
with some other languages. The latter may have multiple windows showing relevant
source, variable values, tracebacks, breakpoints - you know the sort of thing [mean.
I have no specific proposal, but we can discuss:

» Should there be an ambition to debug REXX in this way?

« Should it be regarded as something for the system to provide, for all program-
ming languages, or a REXX facility?

¢ What would the relation to existing TRACE be? A replacement, or in some
way an evolution?

e What are the implications for existing proposals to embellish TRACI?

Other items.

Our final arca for design dialog covers a selection of smaller items which are not so
much driven by changes in the computing scene but are more a matter of filling
gaps in the general data processing capabilitics of REXX. T think you will recognise
them as SITARF requirements although they may not match the exact form of sub-
mitted requests.

1. Herating over associative arrays. Builtin function TAILS returns the number of
tails. NEXTTAIL rcturns a tail, or the successor to a given tail. The sequence
produced by NEXTTAH, is guaranteed to include all tails just once, if there is
no intervening creation or deletion of tails. An example loop to traverse the
tails:

if TAILS('Mystem.')>0 then do

Given = NEXTTAIL('Mystem.');Current=Given

do until Current=Given /* Process Current */
Current=NEXTTAIL ('Mystem.',Current)

end

end

(Design of this feature was made more diffienlt by the fact that there is no string
value which cannot be a tail)

2. String functions more symmetric; negative values for positions are no longer
errors; they define the position as counted from the right end of the string. This
sets direction, and lengths are counted in that direction.

3. More situations are introduced in which the result of an expression is used as a
symbol:

a) call (expression)

119

Expression evaluates to the symbol called. Note that this is not extended to
functions because of the breakage; (abe)(def) is concatenation.

b) (expression)=rhs

Neater than using VALUL. Iixpression evaluates to the symbol that is the
target. There is breakage in theory, but who passes (0 and 1 to the host system?

c) A.(J+1)=99 /* Same as T=J+1;A.T=99 */

There is breakage, but who uses procedure names that end with a dot? 1 should
point out that this item is not as solidly supported by the board as the rest of
architected REXX is. (An arbitarily complex symbol doesn’t fit well with the

structure of existing interpreters; there is a risk that even those who don’t use
the feature may suffer a performance penalty from its existence.)

4. DATLE() and TIME() builtin functions are extended to have conversion,
allowing time arithmetic. Syntax is
DATE(outputformat inputvalue,inputformat). There is no builtin help for
‘carry’ from time calculation into date calculation.
Some of the questions relevant to these features:
* Does the extra complication outweigh their usefulness?

¢ Is the breakage tolerable?

« And since this is the last discussion period, it would be an appropriate time for
you to voice opinions on the total architected REXX design.

120

