
PRACTICAL  APPLICATION OF REXX 
IN THE UNlX ENVIRONMENT 

ED  SPIRE 
THE  WORKSTATION  GROUP 

151 



PRACTICAL  APPLICATION OF 
REXX I N  THE UNIX ENVIRONMENT 

152 



1. COMMERCIAL USERS MIGRATING TO UNIX. 
2. UNIX HAS A LEARNING CURVE. 

3. REXX CAN EASE THE  TRANSITION.BY  PROVIDING  A  FAMILIAR 
F A C I L I T Y -  

4- REXX BRINGS A NEW LEVEL OF FUNCTIONALITY TO UNIX.  

153 



TYPES OF REXX APPLICATIONS IN UNIX: 
1. UNIX COMMAND MACROS 

2. MACROS  FOR OTHER U T I L I T I E S  WHICH SUPPORT REXX DIRECTLY 

3. GENERAL  PURPOSE  PROGRAMMING I N  REXX 
4. EMBEDDED REXX APPLICATIONS 

154 



UNIX COMMAND MACROS: 

1. RECORD RESEARCHED TECHNIQUES FOR FUTURE USE 

2. SIMPLIFY UNIX COMMAND SYNTAX.  

3- AUTOMATE REPEATED USAGE OF RELATED UNIX COMMAND SEQUENCES 

4. PROVIDE ACCESS TO FEATURES THAT ARE OTHERWISE DIFFICULT TO 

5 .  EXTEND THE OPERATING SYSTEM'S FACILITIES 

USE 

1.55 



UNIX COMMAND MACROS: RECORD RESEARCHED TECHNIQUES FOR FUTURE USE 

INSTEAD OF CAT < F I L E >  I RSH SCOTTY LPR 

ALLOW RLP 'FILE, 

#!/usr/local/bin/rxx 
/* * rlp - print on a printer on another machine 
* rlp  filename machine traceopt 
* 
* * filename is the name of the file to be printed. * machine is the machine that  has the deslred printer  (defaults * to scotty) * traceopt  is a rexx trace option, defaults to no tracing. 
*/ 

parse arg  fn machine traceopt 
trace  value  traceopt 
if machine=#"  then machine="scotty" 
"catn fn " 1  rsh' machine "lpr" 

156 



UNIX COMMAND MACROS: SIMPLIFY UNIX COMMAND SYNTAX 

INSTEAD OF F I N D  /USR -NAME <THINGY>  -PRINT 

ALLOW F I  (THINGY’ 

Y!/usr/local/bin/rxx /* * fi - run  find on just /ur, where  everything is anyway. 
* this helps you not run find  on the  root, which  would go out  and * look through all your nfs mounts. It also helps you not  have to * remember the find  command’s syntax... 
*/ 

* 

rse arg  name 
Qind /usr -namen name “-printn 

157 



U N I X  COMMAND MACROS: AUTOMATE REPEATED  SEQUENCES 

INSTEAD OF PS  -U  (USERID, 
(VISUALLY LOOK FOR A LINE REFERRING TO 
<PGM> AND  REMEMBER ' I T S  'PROCESS I D > )  
DBX -A  (PROCESS-ID> 

ALLOW DBXW <PGM> 

#!/usr/local/bin/rxx 
/* * dbxw - run dbx on the program running in another window. * This is useful when the program  in the other window is a curses * application and the dbx output would mess up its "screen"  display. 

* dbx programname 
* will run a ps -u userid and  look for a process running programname, * and then dbx -a processid. 
* Note that you should probably cd to the directory where the program * resides before you dbxw. 
*/ 

* 
* 

* 

parse arg programname traceopt 
trace value traceopt 
call popen "ps -uw userid() " 1  grepw programname 
select 
when queued()=O ' 

when queued()=l 
then say "can't find"  programname 

then  do 
parse pull  processid . 
"dbx  -a"  processid 
end 

when queued()>l 

end 
then say "more than one" programname "runningl" 

158 



UNIX COMMAND MACROS: ACCESS TO OTHERWISE HARD TO USE FEATURES 

INSTEAD OF ?????? 
(TO  SET < T I T L E >  AS THE T I T L E  OF  AN x 
WINDOW AND ITS ICON) 

ALLOW SETNAMES < T I T L E >  

Y!/usr/local/bin/rxx 
/* * setnames - change the name associated with an X window. 

* The name of the window or its icon can be changed by sending * a specific escape sequence to the terminal window... 
*/ 

* 

escape = x2c("lbm) 
parse arg name /* charout avoids the */ 
call charout 8 escape "11' name escape /* unwanted 'cr' that */ 
call charout escape I I "]La I Inamel lescape /* lineout would send */ 

Typical usage of setnames: 

f!/usr/local/bin/mx 
/* * rl - rlogin to another system, changing the names in the cterm window * and icon to' reflect that system's name 
*/ 

parse arg system /* who to rlogin to */ 
"setnames" system /* put his name up */ 
%-login" system /* rlogin to him */ 
call popen "hostname" /* who are  we? */ 
parse pull hostname 
"setnames" hostname /* restore this system's name */ 

159 



UNIX COMMAND MACROS: S I M P L I F Y   U N I X  COMMAND SYNTAX (LARGE SCALE) 
REXX U T I L I T Y  TO PARSE  LARGE NUMBERS OF OPERANDS 

(CALLING SEQUENCE SHOWN) 

160 



UNIX COMMAND MACROS: SIMPLIFY UNIX COMMAND SYNTAX (LARGE SCALE) 
SOME UNIX COMMANDS (ESPECIALLY THOSE ASSOCIATED WITH THE X 
WINDOWS SYSTEM) CAN HAVE LOTS OF OPERANDS- 

-ah] [ -ar] [ -b NumberPixels] [ -bd Color] [ -bg Color] 
-bw NumberPixels] [ -ccCharRange:Value[,...]] 
-cr Color] [ -CUI [ -display  Name:Number] [ -dw] 
-fb Font] [ -fg Color] [ -fn Font] [ -fr Font] 
-fullcursor] [ -geometry Geometry] [ #Geometry] [ -help] 
-i] [ -ib File] [ -j] [ -keywords] [ -1ang Language] [ -11 
-leftscroll] [ -If File] [ -Is] [ -mb] [ -mc Number] 
-ms Color] [ -n IconName] [ -name Application] 
-nb Number] [ o Number] [ -ps] [ -reduced] [ -rv] 

-sl NumberLines] [ -sn] [ -st] [ -suppress] [ -T Title] 
-ti] [ -tm String] [ -tn TerminalName] [ -ut] 
-VI [ -vb] [ -W] [ -xrm String] [ -1321 [ -e Command] 

- r ~ ]  [ -SI [ -S -E ] [ -sf] [ -si] [ -sk] 

Examples 

The followinq example can be used to create an xterm, 
specifying the size and location  of the window, using a font oth- 
er  than  the default, and also specifying the foreground color to 
be used of the text. It then runs a command in that window. 

xterm  -geometry 20x10+0+175 -fn  Bld14.500  -fg DarkTurquiose 
-e  /tmp/banner-cmd 61 

161 



UNIX COMMAND MACROS: SIMPLIFY UNIX COMMAND SYNTAX (LARGE SCALE 1 
SIMPLIFIED XJERM, WITH NEW DEFAULTS AND EASY SPECIFICATZON 
OPERANDS 

#!/usr/local/bin/rxx 
/* * xt - start an xterm window 
* The positional parms comprise a Unix command that is to be run in this * window.  If none is speclfied, then your normal shell is run instead. 

* optional parms: * 1 # - number of lines (default 25) * x # - x component of window location * y # - component of window location 

* fr # - reduced screen font size (default 14, the typical default * for normal aixterm  windows.) * fn # - normal screen font size (default'lo, small than typical for * aixterm windows). * The above two default settings make for normally small * windows, which can be temporarily enlarged  back to their * traditional size by selecting nreducedlt frora the alt- * left button menu. 
* s  - if  present,  xterm is run synchronously. * test - if present, the options line is shown on the screen and * aixterm invocation is supressed. 
*/ 

* 

* 

* 1  - If present, window starts as an icon. 

/******************? PARSE SEQUENCE PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/*************e***** START OF P m S E  SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . .  /* MODIFY THE  THIRD LINE AS YOUR "PROTOTYPE" SHOWING PARMS AND DFLTS */ 
parse arg a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 all a12 a13 a14 a15 a16 a17 a18 
interpret cparse(, 
"cl()  c2()  c3() c4()  c5()  c6() ( l(25) x() y() i fr(14) fn(l0) test sf', I I "  )@I a1 a2 a3 a4 a5 a6  a7 a8 a9 a10 all a12 a13 a14 a15  a16 a17  a18) 

cmd=cl c2 c3 c4  c5 c6 /* build the desired command */ 
if cmd=1811  then command = @)It /* build the required  xterm option */ 
if s = " ~  then amp="&" /* build the required background execution option */ 
options=ln-fullcursor -sb -sl 999 oar -Isn /* initial  xterm options set */ 
options-co tions n-geometry 8 0 ~ ~ ~ 1  /* number  of llnes o tion*/ 
if 7 y<>Ien then do /* if position specif P ed, */ 

if X="* then x=O /* fill in  remaining defaults */ 
if Y=)'@~ then y=O 

' optlons=options I I n+" I I x I I "+" I I y /* position option */ 
end 

options=options "-fn  Rom" " . 500'' /* normal font option*/ 
options=options 'I-fb Rom" I I ii I 1 I. 500" /* bold font option*/ 
options=options'"-fr Romn n.  500" /* reduced  font option */ 
if i="in then options=optrons -in /* if req, then start as an icon */ 
call chdir(n/u/etsH) /* back to home directory */ 
then n/usr/lpp/Xll/bin/aixtermH options command amp 
else say options command amp 

. . . . . . . . . . . . . . . . . . . . .  END OF PARSE SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

else command = "-elr cmd 

else amp="" 

if test=" 1) /* show it or do it */ 

162 



UNIX COMMAND MACROS: SIMPLIFY UNIX COMMAND SYNTAX (LARGE SCALE) 
EXAMPLE USAGE OF XT:  

#!/usr/local/bin/rxx 
/* * xi -r initialize xterm  environment 

* this just creates my standard set of windows, with their normal * positions, but leaves them all as icons at  first. 
*/ 

* 

"xt 1 x 0  y o  i 1 6 4 "  /* large  primary window */ 
"xt 3 x 680 y 0 in ' /* 1st alternate window */ 
"Xt ] x 680 y 395 in /* 2nd alternate window */ 
"xt rl wrkgrp 3 x 0 y 390 in /* window on wrkgrp (Sun-3) */ 
"xt rl drwho ] x 575 y 630 in /* window on drwho (Sparc) */ 
"xt rl scotty ] x 600 y 590 in /* window on scotty (SCO/Unix) */ 
"xt rl orac ] x 0 y 545 in /* window on orac (HP-9000/300  HP-UX */ 
"xt rl  worf ] x 0 y 545 ill /* window on orac (HP-9000/300  Domain-OS* 
/* * orac and worf are in the same spot, since they are the same machine, * and  only one will be up at  a time. The other will die quitely * after a few attempts to rlogin */ 

163 



UNIX COMMAND MACROS: EXTEND UNIX FACILITIES 

INSTEAD OF UNDERSTANDING YOUR LOCAL NFS NETWORK AND HOW TO 
TRANSLATE LOCAL FILENAMES ON  ONE SYSTEM TO THE  CORRESPONDING 
LOCAL  FILENAME ON  YOUR SYSTEM-. .  

ALLOW FILENAME SYNTAX OF 

NODE : /LOCAL/FILE/NAME 

THROUGHOUT A SET OF UNIFORM U T I L I T I E S -  

Filesystem 
/dev/hd4 
/dev/hd2 
/dev/hd3 
/dev/hdl 
wrkgrp:/home 
wrkgrp:/usr 
wrkgrp: / 
drwho:/home 

drwho : /usr 
scotty : / 

Total KB 
49152 
225280 
32768 

249856 
47946 
213313 
7608 

326519 
99037 
183439 

free %used 
11356 76% 
37716 83% 
31700 3% 

223444 10% 
5832 87% 
18127 91% 
2635 65% 
66998 79% 
4694 95% 
47344 74% 

iused 
1146 
6367 

26 
1292 - 

%iused 
9% 
11% 
0% 
2% - - 

Mounted on 
/ 
/usr 
/tmP 
/u 
/sun 
/sunusr 
/sunroot 
/drwho 
/odt 
/whousr 

164 



UNIX COMMAND MACROS: EXTEND UNIX FACILITIES 

INSTEAD OF UNDERSTANDING YOUR LOCAL NFS NETWORK AND HOW TO 
TRANSLATE  LOCAL  FILENAMES ON ONE SYSTEM TO THE  CORRESPONDING 
LOCAL FILENAME ON  YOUR SYSTEM-. .  

ALLOW FILENAME SYNTAX OF 

NODE :/LOCAL/FILE/NAME 

THROUGHOUT A SET OF UNIFORM U T I L I T I E S .  
/* * fn  filename 
* fn  accepts a filename  in a system  independent  form,  and  generates * a local  filename  which  will  provide  (probably NFS) access to  the * desired  file. 
* filename  has  the  form 
* host:/filename/on/that.host 

* note:  if  host: is omitted,  then  no  translation  is  done,  assuming * that a local  filename  was  really  specified  in  the  first  place 

* 

* 
* 
* 

*/ 
parse  arg  host ':' file 
call  popen  'hostname' 
parse  pull  currenthost 
select 
when f ile=at8 /* if  no  gfihost:88  parse  will  have ut  it  all */ 
then  o=host /* in  Lost,  and  file  wil ? be  null. */ 
when  host=currenthost /* if  explicitly  referring to a file  on  this  host */ 
then  o=file /* just  use  that  file  name */ 
otherwise do 
call  popen 'df' 

do while  queued()>O 
lm=" 11 /* will  become  the  saved  df  line  that  matches. */ 
parse  pull 1 
parse  var 1 dfhost ':' dfhostdir  dfjunk '/' dflocaldir 
if  length(dfhostdir)>O , /* weeds  out  header  and  locals */ 

& dfhost==host /* weeds  out  other  systems */ 
then do 
if  dfhostdir==lt/" /* for  root  file  system */ 
then  lm=l /* save  this  line  in  case  we  find  no  other */ 
else  if left(file,length(dfhostdir))==dfhostdir /* right  line? */ 
then do 
lm=l 
leave 
end 
end 
end 
if  length(lm)>O /* if  we  found  something, */ 
then  do 
parse  var  lm  dfhost ':' dfhostdir  dfjunk '/' dflocaldir 
if dfhostdir̂ =='/' /* if not root  filesystem, */ 
then file=right(file,length(file)-length(dfhostdir)) /* trim rmt  dir */ 0='/'1 Idflocaldirl /file /* add  correct  local  dir */ 
end 
else do /* if we found  nothing,  fail  with  error  message */ 

say  'sorry,  no  path  from  here to'  host':'file 
return /* return  with  no  value  is a failure */ 
end 

end 165 
end 
return o /* non-failure  return */ 



UNIX COMMAND MACROS: EXTEND UNIX FACILITIES 

INSTEAD OF UNDERSTANDING YOUR LOCAL NFS NETWORK AND HOW TO 
TRANSLATE  LOCAL  FILENAMES ON  ONE SYSTEM TO THE CORRESPONDING 
LOCAL  FILENAME ON  YOUR SYSTEM... 

ALLOW FILENAME SYNTAX OF 

NODE : /LOCAL/FILE/NAME 

THROUGHOUT A SET OF UNIFORM U T I L I T I E S -  

Typical usages of fn allow the user to access files on other systems without knowing the details of the NFS links  that connect these systems. 

#!/usr/local/bin/mx 
/* 

p:' 
* nfl - invoke flist with system  independent filename 
rse arg  dir 
dir=fn(dir) 

say 'flist' ldir 
'flist' ldir 

#!/usr/local/bin/mx 
/* 
'xe' fn(arg(1)) 

* nxe - invoke  xedit with a system  independent filename 
*/ 

166 



MACROS FOR OTHER U T I L I T I E S  THAT SUPPORT REXX 
1. RECORD RESEARCHED TECHNIQUES FOR FUTURE USE 

2. EXTEND THE FEATURES OF THAT UTILITY 

3. INTEGRATE THE UTILITY WITH OTHER UNIX OPERATIONS 

167 



MACROS FOR OTHER U T I L I T I E S :  RECORD RESEARCHED TECHNIQUES 

T O  P R I N T  PART OF THE CURRENT XEDIT F I L E J  

INSTEAD OF !RH TEMP 
PUT (TARGET, TEMP 
!RLP TEMP 

ALLOW RLP 'TARGET, 

/* * rip-xedit - an xedit macro to print  part of an xedit file 
* rlp target 
* is  the same as 

* !rrn temp 

* rlp  temp- 

*/ 

* 
* 
* 
* P ut target temp * 

parse arg target 
address unix 'rm temp' 
address xedit 'put' target 'temp' 
address m i x  'rlp  temp' 



MACROS FOR OTHER UTILITIES: EXTEND FEATURES 

PROVIDE PARAGRAPH REFORM CAPABILITIES IN XEDIT 

/* FLOW  MACRO. 
This macro aligns two  or more lines of  a  text-type  file 
being edited (such  as a  NOTE).  It tries to lace as many 
words as possible on a  line, within the rig R t margin 
defined by XEDIT SET TRUNC. 

USE : 

FLOW <target> 

where <target>  is a standard Xedit target defining the first line 
not to be flowed. Typically, the alignment process  will result in 
there being fewer lines in the block than there were before  alignment. 
This will not always be true. 

UNIQUE CAPABILITY, OF THIS PROGRAM: 

This  macro can, unlike other parts of XEDIT, shorten lines.  If you 
SET TRUNC to a value shorter than some of the lines in  your file, 
they will be handled correctly by this macro.  Elsewhere  in  XEDIT, 
results are unpredictable and  will  likely involve data loss. 

MODIFICATION HISTORY: 

11/16/86 - Roger Deschner - Original version 
01/02/88 - Roger Deschner - Replace call to "JOIN", for performance 
02/14/88 - Roger Deschner - Allow lines to be shortened: use PUTD 
10/24/89 - Roger Deschner - Protect from LINEND character 
10/04/90 - Roger Deschner - Changed to FLOW: moved to RS/6000 
*/ 
/* Do it to it */ 
doit: 
PARSE ARG targ -. - -- 

169 



1 
doit: 
PARSE  ARG  targ 
tempfile = 'JJ.TEMP' 
ADDRESS  UNIX 'rm  -f' tempfile 
'PUTD'  targ  tempfile 
'UP 1' 
'EXTRACT  /TRUNC' 

rotbuf = I f  /* initialize  rotating  buffer */ 
DO  FOREVER 
IF  (LINES(tempfi1e) = 0) THEN  LEAVE /* EOF? */ 
ibuf = LINEIN(tempfi1e) 
IF  (SUBSTR(ibuf,l,l) = ' )  THEN  DO /* Paragraph  break,  either  kind */ 
IF  (rotbuf ' ' )  THEN  DO /* Anything  left  in  buffer? */ 
'INPUT'  rotbuf /* put  it  out */ 
rotbuf = 

END 
END 
IF  (ibuf = ' )  THEN  'INPUT /* Blank  line */ 
ELSE  DO /* duit  tuit */ /* concatenate  the  new  stuff */ 
IF  (rotbuf = " )  THEN  rotbuf = STRIP(ibuf,'T') 

SELECT 
ELSE  rotbuf = rotbuf  STRIP(ibuf,'T') 

WHEN  (LENGTH(rotbuf) = trunc.1)  THEN DO /* perfect  fit */ 
'INPUT'  rotbuf 
rotbuf = I '  

END 
WHEN  (LENGTH(rotbuf) > trunc.1)  THEN  DO /* more  than  enough */ 
DO FOREVER. /* Find  last  blank,  starting  at  TRUNC.1+1,  working  backwards */ - 
i = trunc.l+l 
DO  WHILE  (SUBSTR(rotbuf,i,l) *= ' '1  

i z i - 1  
IF  (i = 0 )  THEN  SIGNAL  word-too-long /* word > trunc */ 

END 
'INPUT'  SUBSTR(rotbuf,l,i-1) 
rotbuf = STRIP(SUBSTR(rotbuf,i),'B') 
IF  (LENGTH(rotbuf) < trunc.1)  THEN  LEAVE /* Split  enough? */ 

END 
END 
OTHERWISE  NOP /* not  long  enough - read  another  line */ 

END /* end  of  select */ 
END 

END 
IF  (rotbuf ' )  THEN  DO /* Anything  left  in  buffer? */ 
'INPUT'  rotbuf /* put  it  out */ 
rotbuf = ' 

END /* Clean  up  our  toys  and  go  home */ 
ADDRESS  UNIX 'rm -ff tempfile 
RETURN 

EXIT : 
PARSE  ARG  orc . 
EXIT  orc 170 



MACROS FOR OTHER UTILITIES: INTEGRATE WITH UNIX OPERATIONS 
PROVIDE BACKGROUND COMPILATION INITIATED FROM THE ED'ITORJ WITH 
THE  RESULTING  COMPILER E R R O R  MESSAGES  DISPLAYED I N  A POP-UP x 
WINDOW 

/* * mk.xedit 
* Runs  make out of an xedit  session. 
* Default name  is  taken from source filename assumed to be of * the form %ame.somethingN. So if you are -editin7 key.c, this * routine will kick off %ake keyN. You can  also issue "mk elsell * if you want to make another target. 
* The  real  work is done in a background task, and its output is * presented in a separate window. 

* 
* 

* 

*/ 
parse  arg name 
if  name=' /* if name not specified, generate the default */ 
then do 

"extract /fnameN 
name=left(fname.l,pos(N.~,fname.l)-l) 
end 

NsaveN /* make sure  the  disk file is up to date */ 
address  unix  ggxemake@g name /* kick off the background task */ 

#!/usr/local/bin/rxx 
/* * xemake - run a make and display the  results in a window. Normally * invoked from with xedit  via mk.xedit. 
*/ 

parse arg name /* get  name of make tarvet */ 
Nmaken name InZlvjinameI  In.makeout 2>&1" 

/* run maket output to a file */ 
"xt  xe"  getcud( /Ill Inamel IN.makeoutN /* display the  results */ 

171 



GENERAL PURPOSE PROGRAMMING IN REXX 
1. REUSABLE FILTERS WRITTEN IN REXX vs. IN-LINE AUK OR SED 

PROGRAMMING 

2. SMALL APPLICATIONS CAN BE CRAFTED BY PULLING TOGETHER 
E X I S T I N G  SYSTEM F A C I L I T I E S ,   I N T E G R A T E D  THROUGH REXX 
PROGRAMMING. 

3. No HIGH PRODUCTIVITY LANGUAGE NORMALLY AVAILABLE IN UNIX. 
ALTERNATIVES ARE USUALLY C AND FORTRAN. 

4. REXX APPLICATIONS CAN BE PORTED TO UNIX FROM OTHER 
PLATFORMS- 

172 



GENERAL  PURPOSE  PROGRAMMING: FILTERS 

#!/usr/local/bin/rxx 
/* * both - find lines containing both strings within a specific number * of  words. 
*/ 

parse arg first second distance /* two strings and  a min. distance */ 
do while lines()>O 

line=linein() 
fpos=wordpos(first,line) /* position of  first  word or 0 */ 
spos=wordpos(second,line) /* position  of  second word or 0 */ 
if fpos>0 & spos>O & abs(spos-fpos)<distance 
then call lineout(,line) /* write matching lines */ 
end 

call lineout() 
exit 

/* close output file */ 

#l/usr/local/bin/rxx 
/* 
parse arg strings /* all words to be searched for */ 
do x=l while lines()>O /* X= only for leave instruction below */ 

line=linein() /* line is a candidate to be tested */ 
do i=l to words(strings) /* try all words  in string. */ 

if wordpos(word(strings,i),line)=O /* 0 means  not found */ 
then leave x /* terminates outer loop */ 
end /* end  of  all tests */ 

call lineout(,line) /* if all found, write it out. */ 
end 

call lineout() /* close output file */ 
exit 

* mult - find lines containing all input strings */ 

173 



GENERAL  PURPOSE  PROGRAMMING: INTEGRATION OF E X I S T I N G   F A C I L I T I E S  

T H I S  SAMPLE IMPLEMENTS A "PHONE DIRECTORY" BY USING )(EDIT, DRIVEN 
BY A REXX PROGRAM. "PH (NAME," POPS UP AN x WINDOW SHOWING AN 
EDIT   SESSION THAT HAS BEEN  PRE-POSITIONED ON THE F I R S T   L I N E   I N  
THE  DATASET  THAT  CONTAINS <NAME>. 

#!/usr/local/bin/rxx 
arse arg name 

ph2" name r&n 
/* get the name he wants to find */ /* pass it along to the background */ 

#!/usr/local/bin/rxx 
parse arg strinq /* 
"cp  $HOME/,proflle.xedit  ph.xeditn 
call lineout 'ph-xedit',  8ncl/'string8n' 
call lineout 'ph.xedit' 
"xt xe -p  ph  $HOME/phone/dir ] sn 
"rm  ph.xedltn /* cleanup after 

get the name he wants to find /* copy his .profile.xedit /* add  a search command to it /* close new profile /* xe phone/dir  in  a window 
synchronous window teminates 

*/ */ */ */ */ */ 

174 



GENERAL  PURPOSE  PROGRAMMING: HIGH PRODUCTIVITY LANGUAGE 

No HIGH PRODUCTIVITY ALTERNATIVE IS USUALLY PRESENT IN UNIX. 
ALTERNATIVES ARE USUALLY LIMITED TO C AND FORTRAN. 

#!/usr/local/bin/rxx /* * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * 
* * 

vptrim - a  utility to trim  ventura publisher markup from a word 
processing file. 

vptrim inf ile traceopt 

infile  required,  specifies the input file  containing a 
word processing file  that  contains ventura publisher 
markup string. 

traceopt  optional,  a  trace  instruction  operand to turn on 
REXX tracing. 

The  output is sent to STDOUT, and may be redirected to a file. 

Example: vptrim  xehelp > xehelp2 

Most *I@... = and <...> sequences  are simply removed from the 
file. 

<T> is changed  into  three blanks. 

@FUNCTION = text is appended to  the start of the next line, with 
a - placed between the  two chunks of  text. 

<< and >> are  translated to < and > respectively. 
Room for improvement: 

We  could  define  our  own  set of tab stops and try to handle (T) 
in some  smarter way. 

@FUNCTION  trick  should  maybe be extended to handle  multiple  such, 
through  a  table of special functions. 

*/ 

175 



GENERAL  PURPOSE  PROGRAMMING: HIGH PRODUCTIVITY LANGUAGE 

No HIGH PRODUCTIVITY ALTERNATIVE I S  USUALLY  PRESENT IN UNIX. 
ALTERNATIVES ARE USUALLY LIMITED TO C AND FORTRAN. 

parse  arg fn traceopt 
trace  value  traceopt 

if fn="n 
then do 

say Itusage: vptrim fn traceoptII 
exit 
end 

lag=Hn 

do while lines(fn)>O /* push the  entire  file  through  this  loop */ 
line = linein(fn) 

do 

do 

do 

do 

while  pos(ll<T>n,line >O /* turn  <T> into white  space */ 
line=overlay(" w,l 1 ne,pOs(n<T>ll,line)) 
end 

while pos( It<<", line) >O /* turn << into ~'01' to hide  them */ 
line=left(line!pos(II<<II,line)-l)l I'ol'xl I ,  
end 

right(llne,length(line)-pos(n<<H,line)-l) 

~'02' to hide them */ 

end 

while pos ( a<11, line) >O /* take out  all other <..anything..> */ 
if pos ( 11>11, line) >O 
then line=left(line,pos(ll<ll,line)-l)l I ,  
else do 

right ( line, length( line)-pos ( line) ) 

say ,********* VPTRIM ERROR: Unmatched in the following line.' 
leave 
end 

end 

line=translate(line,n<>n,1~O10211x) /* unhide  translated << and >> */ 
if left(line,l)=n@H /* check for paragraph  tag */ 
then do 

type=left(line,lO) /* remember tag  type */ 
line = r ight ( l ine , l ength( l ine ) -ps ("=" , l ine ) -1 )  /* remove it */ 
if type=ll@FUNCTION I1 
then do /* for @FUNCTION tag */ 

lag = line 11-11 /* save  text  for next line */ 
iterate /* and skip putting it out now */ 
end 

end 

say lag line /* put  out current line plus  any  lag data */ 
end 
1 ag= 11 

176 



GENERAL  PURPOSE  PROGRAMMING: PORTABILITY 

REXX ON UNIX ALLOWS FOR PORTING APPLICATIONS DEVELOPED ON OTHER 
PLATFORMS. SPECIFIC AREAS OF CONCERN: 

- 0s COMMANDS 

- I/o F A C I L I T I E S  

FOR LARGE PROGRAMS, THESE AREAS CAN EASILY BE A MINOR PART OF THE 
CODE- 

177 



doit: 
PARSE  ARG  targ 
tempfile = 'JJ.TEMP' 
ADDRESS  UNIX 'rm -f8 tempfile 
'PUTD' targ  tempfile 
'UP 1' 
'EXTRACT  /TRUNC' 

rotbuf = /* initialize  rotating  buffer */ 
DO FOREVER 
IF (LINES(tempfi1e) = 0 )  THEN  LEAVE /* EOF? */ 
ibuf = LINEIN(tempfi1e) 
IF  (SUBSTR(ibuf,l,l) = ' )  THEN  DO /* Paragraph  break,  either  kind */ 
IF  (rotbuf ' )  THEN  DO /* Anything  left  in  buffer? */ 

'INPUT' rotbuf /* put  it  out */ 
rotbuf = 

END 
END 
IF  (ibuf = ' )  THEN  'INPUT ' /* Blank  line */ 
ELSE  DO /* duit  tuit */ /* concatenate  the  new  stuff */ 
IF  (rotbuf = ' ') THEN  rotbuf = STRIP(ibuf,'T') 

SELECT 
ELSE  rotbuf = rotbuf  STRIP(ibuf,'T') 

WHEN  (LENGTH(rotbuf) = trunc.1)  THEN DO /* perfect  fit */ 
'INPUT' rotbuf 
rotbuf = 

END 
WHEN  (LENGTH(rotbuf) > trunc.1)  THEN DO /* more  than  enough */ 
DO FOREVER /* Find  last  blank,  starting at TRUNC.1+1,  working  backwards */ 

i = trunc.l+l 
DO  WHILE  (SUBSTR(rotbuf,i,l) ' )  

i = i - 1  
IF  (i = 0 )  THEN  SIGNAL  word-too-long /* word > trunc */ 

END 
'INPUT'  SUBSTR(rotbuf,l,i-1) 
rotbuf = STRIP(SUBSTR(rotbuf,i),'B') 
IF  (LENGTH(rotbuf) < trunc.1)  THEN  LEAVE /* Split  enough? */ 

END 
END 
OTHERWISE  NOP /* not  long  enough - read  another  line */ 

END /* end  of  select */ 
END 

END 
IF  (rotbuf ' )  THEN DO /* Anything  left  in  buffer? */ 

'INPUT'  rotbuf /* put  it  out */ 
rotbuf = 

END /* Clean  up  our  toys  and  go  home */ 
ADDRESS  UNIX 'rxu -f8 tempfile 
RETURN 

EXIT: 
PARSE ARG orc . 
EXIT orc 178 



EMBEDDED APPLICATIONS 

1. BUSINESS APPLICATIONS 

2- UTILITY SOFTWARE 

EMBEDDED APPLICAT-IONS 

- . . R E Q U I R E  A ROBUST API- 
UNI-REXX'S API WAS MODELED  AFTER THAT  USED BY TSO/E REXX. 
1. REXX PROGRAM INVOCATION FROM A C-BASED APPLICATION 

2. ABILITY TO CREATE ADDRESSABLE ENVIRONMENTS (I- E. SUBCOM) 
3.  VARIABLE POOL INTERFACE 

4. C-BASED EXTERNAL FUNCTIONS (YET TO BE DELIVERED) 

179 



PRACTICAL APPLICATION OF REXX IN THE UNIX ENVIRONMENT 
- SUPPORTS MIGRATION OF EXISTING STAFF TO UNIX 
- BRINGS NEW LEVELS OF INTEGRATION AND EASE OF USE TO 

UNIX 

180 



2nd  Annual SLAC  REXX  Symposium 
Asilomar  Conference  Center 
Pacific  Grove,  California 

May 9, 1991 

Presented  by: 
Ed Spire 
The  Workstation  Group 
Rosemont,  Illinois 

As  commercial  users  migrate  from  proprietary  IBM  mainframes to Unix, 
they  are  often  brlnging  REXX  with  them.  REXX  not  only  aids  in  the 
migration  process,  but  also  brings  new  functionality to the  experienced 
Unix  user.  In  many  cases,  you can use  a  single  REXX  Program  or  macro 
where  a  native  Unix  solutlon  would  require a combinatlon of tools 
(one of  several shells, awk, grep, sed, etc.)  each  of  which  has  its 
own  syntax  and  ideosyncracies. 

This  presentation  will  discuss  the  applicability of REXX  to  various 
tasks in the  Unix  environment,  and  show  examples  where  appropriate. 

General  types  of  applications: 

1. Unix  command  macros 

2. Macros  for  other  utilities  that  use REXX, perhaps in 
combination  with  Unix  facilities  (primarily  XEDIT) 

3 .  General  purpose  programming  in  REXX 

custom  filters 

entire  applications 

4 .  Embedded  REXX  applications 

181 



UNIX COMMAND MACROS are  written to provide  shorthand  notations  for  often 
used, hard to remember,  or  lengthy  sequences. 

For  example,  sending  something to a printer  may  require  Some  local  rain 
dance.  Once  you  figure  out  what  that  particular  rain  dance is, you  could 
IccanIt that  research  in  a  simple REXX program 

#!/usr/local/bin/rxx 
/* * rlp - print  on  a  printer  on  another  machine 
* rlp  filename  machine  traceopt 
* 
* * filename is the  name  of  the  file to be  printed. * machine  is  the  machine  that  has  the  deslred  printer  (defaults * to scotty) * traceopt  is  a  rexx  trace  option,  defaults to no tracing. 
*/ 

parse  arg fn machine  traceopt 
trace  value  traceopt 
if  machine=""  then machine=ttscottytl 
8gcatt1 fn I rsh"  machine  II1prtt 

The  command  syntax  for  some  Unix  commands  can  be  less  than  obvious. 
Once  again,  when  you  figure  out  a  command  syntax,  you  might  want to 
I1coverl1 the  command  with  a REXX program  that  has a  syntax  that  you  find 
more  intuitive. 

Further,  sometimes  you  find  Unix  commands  that  can  be "misused11. 
"find /It (i:e.,  find  starting  from  the  root  directory)  is  often  a 
really  bad Idea,  since  it  will  be  looking  through  many  relatively  slow 
(i.e.,  remotely  mounted NFS) file  systems. 

#!/usr/local/bin/rxx 
/* * fi - run  find  on  just  /usr,  where  everything is anyway. * 
* this  helps  you  not  run  find  on  the  root,  which  would  go  out  and * look through  all  your  nfs  mounts, It also  helps  you  not  have to * remember  the  find  command's  syntax ... 
*/ 

parse  arg  name 
"find  /usr  -name"  name "-printtt 

Users  who  are  migrating to Unix  from  proprietary  IBM  mainframe  platforms 
are  normally  conversant  enough  with REXX to use  it  in  the  above  manner 
as part  of  their  migration  efforts. Or, a  thorough  effort  on  the  part 
of a  support  group  could  easily  provide  a  series  of  such  utilities 
that  could  ease a  migration. 

182 



Some  often  used  sequences  are  a  bit  more  complex.  In  this  case 
REXX is  useful  even  for  the  experienced  Unix  user. 

For  example,  when  debugging  an  application  which is usin7  a  terminal 
window  in  a  fullscreen  mode  (perhaps  via  the  curses  termlnal 1/0 
package), it is nice  to  run  the  trace/debug  package  (dbx)  from  another 
window, so the  debugging  information won't interfere  with  the 
'lfullscreen'l 1/0 from  the  application.  Normally, to do this, you 
display  the  list  of  active  processes,  scan  it to find the process  which 
represents  the  fullscreen  application,  and  then  invoke DBX supplying  it 
with  that  process ID number. A fairly  simple REXX program  can  automate 
that  task for you. 

#!/usr/local/bin/rxx 
/* * dbxw - run  dbx  on  the  program  running  in  another  window. * This  is  useful  when  the  program in the  other  window is a  curses * application  and the dbx  output  would  mess up its  "screen"  display. 

* dbx  programname 
* will  run  a  ps -u userid  and look for a process  running  programname, * and  then  dbx  -a  processid. 
* Note that  you  should  probably  cd  to  the  directory  where  the  program * resides  before  you  dbxw. 

* 
* 

* 

*/ 
parse  arg  programname  traceopt 
trace  value  traceopt 
call  popen  "ps -u" userid( ) It  1 grep"  programname 
select 
when  queued()=O 

when  queued()=l 
then  say I1can't find"  programname 

then do 
parse  pull  processid . 
"dbx -ar1 processid 
end 

when  queued()>l 

end 
then  say  Itmore  than oneg1 programname  "running!" 

183 



Some facilities  are  present  but  not  easily  used  without  special  support. 
REXX is a  convenient  way to provide  that  support. 

For  example,  the X windows  system  lets  you  control  various  aspects  of 
the system  by  sending  special  character  sequences to the terminal. It's 
pretty  unlikely  that  someone is going to remember the special  sequence 
that  changes  a window's title,  for instance.  But a REXX program  could 
make it very  easy to use  this feature. 

#!/usr/local/bin/rxx 
/* * setnames - change  the  name  associated  with  an X window. 

* The  name  of  the  window or its  icon can be  changed  by  sending * a specific  escape  sequence to the  terminal  window... 

* 

*/ 
escape = x2c ( l1lb" ) 
parse  arg  name /* charout  avoids  the */ 
call  charout , escape /* unwanted 'cr' that */ 
call  charout , escape  escape /* lineout  would  send */ 

Typical  usage  of  setnames: 

#!/usr/local/bin/rxx 
/* * rl.- rlogin to another  system,  changing  the  names  in  the  cterm  window * and  icon to reflect  that  system's  name 
*/ 

parse  arg  system /*  who to rlogin to */ 
ltsetnamesll system /* put  his  name  up * /  
ffrlogin"  system /* rlogin to him */ 
call  popen llhostnamegl /* who  are  we? * /  
parse  pull  hostname 
*9setnames1t  hostname /* restore  this system's  name */ 

After  a  while  you  will  have  assembled  a  series  of 9vlocal tools",  building 
one  upon  the  other,  which  can  vastly  improve  the  usability  of  Unix; 
and  without  climbinq  the  rather  steep  learning  curve  associated  with 
the  various  Unix  utllities  and  filters  which  you  would  have  to  put 
together to accomplish  all  this  without REXX. 

184 



Sometimes  you  might  want  to  cover  a  Unix  command  that  has  many  operands, 
with  a  syntax  that  makes  the  most  often  used  operands  more  accessible. 
Now we're starting to write  REXX  programs  with  more than just  one  or 
two  operands. 

Before  we  proceed,  let  me  mention how  we  write  REXX  macros  that 
accept  many  operands, so that  the user  can  invoke  them  with  the 
same  flexibility  usually  found  in native  commands. 

Complex REXX programs  at  our  installation  use  CPARSE to bring  in 
operands ... 

Cparse  is  an  external  REXX  subroutine  that  accepts  a  string  describing 
the  model  syntax  of the REXX  main  program's parameter list, followed 
by the  parameters  that  were  actually  passed to the main  program. 
Cparse  returns  a  string of  assignment  statements which, when 
interpreted  by the  main  program,  will  place  the  appropriate  symbols 
in the main  program's  symbol  table  to  reflect the  arguements  that  were 
passed to the  main  program (as parsed  against the model  syntax.) 

Note  that  CPARSE  was  ported  directly  from  CMS  with no changes  (other  than 
case  considerations),  and  hence  implements  a  CMS-style  command  operand 
syntax.  It  could  easily be  modified  to  support  a  Unix-style  syntax. 

CPARSE  makes  it  easy to write  REXX  proqrams that  accept  several  operands, 
providing  the  flexibility  found  in  natlve  commands.  This  allows  a  REXX 
program  to  easily llcoverlt a  basic  Unix facility,  reorganizing  the 
parameter  structure to the user's  liking. 

XTERM  is  one  such  command,  with  many  operands,  most  of  which  you  want  to 
have  standard  values for, and a few  which  you  might  want to be  able  to 
change  easily.  XTERM  has  **lots**  of  operands ... 

xterm [ -ah] [ -ar].[  -b  NumberPixels] [ -bd Color] [ -bg Color] 
[ -bw  NumberPlxels] [ -ccCharRange:Value[,...]] 
[ -cr  Color] [ -CUI [ -display  Name:Number] [ -dw] 
[ -fb  Font] [ -fg  Color] [ -fn  Font] [ -fr  Font] 
[ -fullcursor] [ -geometry  Geometry].[  #Geometry] [ -help] 
[ -i] [ -ib  File] [ -j] [ -keywords] [ -1ang  Language] [ -13 
[ -leftscroll] [ -If  File] [ -Is] [ -mb] [ -mc  Number] 
[ -ms  Color] [ -n  IconName] [ -name  Application] 
[ -nb  Number] [ -PO Number] [ -ps] [ -reduced] [ -rv] 
[ -rw] [ -SI [ -sb] [ -sf] [ -si] [ -sk] 
[ -sl  NumberLines] [ -sn] [ -st] [ -suppress] [ -T  Title] 
[ -ti] [ -tm  String] [ -tn  TerminalName] [ -ut] 
[ -VI [ -vb] [ -W] [ -xrm  String] [ -1321 [ -e  Command] 

Examples 

The  following  example  can  be  used to create  an xterm, 
specifying  the  size  and  location  of  the window, using a font  oth- 
er than  the  default, and  also  specifying  the  foreground  color  to 
be  used  of the  text.  It  then  runs  a  command  in  that  window. 



Now  if you want to establish  local  defaults  for some  of  these and  make 
the  few  operands  you  would  normally  use  more  accessible,  you  can  cover 
XTERM  with  a  REXX  program  like  this.. . 
#!/usr/local/bin/rxx 
/* * xt - start  an  xterm  window 
* The  positional  parms  comprise  a  Unix  command  that is to be  run  in  this * window.  If  none  is  specified,  then  your  normal  shell is run  instead. 

* optional  parms: * 1 # - number  of  lines  (default 2 5 )  * x # - x component  of  window  location * y # - y  component  of  window  location 
* i  - if  present,  window  starts as an  icon. * fr # - reduced  screen  font  size  (default 14, the  typical  default * for  normal  aixterm  windows.) 
* fn # - normal  screen  font  size  (default 10, small  than  typical  for * aixterm  windows). * The  above  two  default  settings  make  for  normally  small * windows,  which  can  be  temporarily  enlarged  back to their * traditional  size  by  selecting tvreducedpv from  the  alt- 

* s  - if  present,  xterm is run  synchronously. 
* aixterm  invocation is  supressed. 
*/ 

* 

* 

* left  button  menu. 

* test - if  present, the  options  line is shown  on  the  screen  and 
. . . . . . . . . . . . . . . . . . . .  PARSE  SEQUENCE  PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . .  START OF PARSE  SEQUENCE f ***** f i * f **************** /  
/* MODIFY  THE  THIRD  LINE  AS  YOUR  "PROTOTYPE1'  SHOWING PAWS AND  DFLTS */ 
parse  arg  a1  a2  a3  a4  a5  a6  a7  a8  a9  a10  all  a12  a13  a14  a15  a16  a17  a18 
interpret  cparse(, 
"cl() c2()  c3()  c4()  c5()  c6() ( l(25) x() y() i fr(14)  fn(l0)  test s", I I 1 I  ) I 1  a1  a2  a3  a4  a5  a6 a7 a8  a9  a10 all a12  a13  a14  a15  a16  a17 a18) 

cmd=cl c2 c3 c4 c5 c6 /*  build the desired  command * /  
if  cmd=""  then  command = /* build the  required  xterm  option */ 
if s=llf1 then /*  build the required  background  execution  option */ 
options="-fullcursor  -sb -sl 999 -ar -1s" /* initial  xterm  options  set */ 
options=o  tions  If-geometry 8 0 ~ ~ ~ 1  /* number of  lines  option*/ 
if x<>"" 7 y<>lltt  then do /* if  position  specified, */ 

if x=ft11 then  x=O /* fill  in  remaining  defaults * /  
if  y=Irll  then  y=O 
options=options I I ~c+ll I I x I I l ~ + ~ l  I I y /* position  option */ 
end 

options=options  "-fn  Rom1I fn I1.50Ott /*  normal  font  option*/ 
options=options  "-fb  Rom" It . 500" /*  bold  font  option*/ 
options=options  "-fr Rom" 1 1 f :  1 1 . 500" /* reduced  font  option * /  
if i=tlill then  options=optlons ll-ill /* if req,  then  start  as  an  icon */ 
call  chdir ( *f/u/etstt) /*  back to home  directory */ 
if test=9t11 /* show it or  do  it * /  
then l~ /usr / lpF/Xl l /b in /a ix te rml l  options  command  amp 
else  say  options  command  amp 

. . . . . . . . . . . . . . . . . . . . .  END OF PARSE  SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

else  command = tl-elv cmd 

else amp=t111 

186 



Typical  use  of xt, others  further  below. 

#!/usr/local/bin/rxx 
/* * xi - initialize  xterm  environment 
* this  just  creates  my  standard  set  of  windows,  with  their  normal * positions,  but  leaves  them  all  as  icons  at  first. 
* 

*/ 
"Xt 3 x 0  y o  i 1 6 4 "  /* large  primary window */ 
"Xt ] x 680 y 0 ill /* 1st alternate window */ 
"Xt 3 x 680 y 395 ill /* 2nd  alternate window */ 
"xt rl wrkgrp 3 x 0 y 390 ill /* window  on  wrkgrp  (Sun-3) */ 
"xt  rl  drwho 3 x 575 y 630 ill /* window  on  drwho  (Sparc) */ 
"Xt rl scotty 3 x 600 y 590 ill /* window  on  scotty  (SCO/Unix) */ 
"xt  rl  orac ] x 0 y 545 ill /* window  on  orac  (HP-9000/300  HP-UX */ 
'*xt rl  worf ] x 0 y 545 it* /* window  on  orac  (HP-9000/300  Domain-OS* 
/* * orac  and  worf  are  in  the  same spot, since  they are the  same  machine, * and  only one  will  be  up  at  a  time.  The  other  will  die  quitely * after  a few  attempts to rlogin 
*/ 

Sometimes,  you  might  want  to  extend  the  operating system's  facilities. 
Here's an  example  associated  with  Network  File  System (NFS) usage. 
NFS can  make  remote  machine  file  systems  appear as local  systems  on 
your  machine.  You  can  see  the  relationships  between  local  aliases 
for  remote  file  systems  in  the df  command  output: 

Filesystem Total KB free %used  iused  %iused 
/dev/hd4 49152 11356 76%  1146 9% 
/dev/hd2 225280 37716 83%  6367 11% 
/dev/hd 3 32768 31700 3% 26 0% 
/dev/hdl 249856 223444 10% 1292 2% 
wrkgrp:/home 47946 5832 87% - 
wrkgrp:/usr 213313 18127 91% - 
wrkgrp : / 7608 2635 65% - 
drwho:/home 326519 66998 79% 

drwho:/usr 183439  47344  74% 

- - - - - 
scotty: / 99037  4694  95% - - - - 

Mounted  on 

/usr 
/ 
/tmP 
/u 
/sun 
/sunusr 
/sunroot 
/drwho 
/odt 
/whousr 

So, in this  example, if you  are  told  that  the file you need is 
available  on  machine  drwho  as  /usr/local/bin, you  would  need 
to access  the  file  as  /whousr/local/bin.  The  aliases  in  use  might 
vary  from  machine to machine. 

We  use  the  concept  of a ttsystem independent" filename, and  have a 
routine  that  will  compare  the  filename  you  specify to a 'df' command 
output,  returning  the  local  filename  that  will  access the desired  file 
from this  machine.  We  then  cover  typical  utility  programs  with  a REXX 
invocation  program  that  translates  the  filename  through  this  routine, 
so that  the  user  could  refer to the  above  file  as  drwho:/usr/local/bin 
from  any  platform on  the network. 

187 



/* * 'fn filename 
* fn  accepts  a  filename  in  a  system  independent * a  local  filename  which  will  provide  (probably * desired  file. 
* filename  has  the  form 
* host:/filename/on/that.host 

* 

* 
* 
* 

form, and  generates 
NFS) access  to  the 

* note: if  host: is omitted,  then no  translation is done,  assuming * that  a local  filename  was  really specified  in the first  place 
*/ 

parse  arg  host ':' file 
call  popen  'hostname' 
parse  pull  currenthost 
select 
when  f ile=tltl /* if no Ithost:",  parse  will  have  put  it  all 
then  o=host /* in  host,  and  file  will  be  null. 
when  host=currenthost /* if  explicitly  referring to a  file  on  this  host 
then  o=file /* just  use  that  file  name 
otherwise do 
call  popen 'df' 

do  while queued()>O 

'parse  var  1  dfhost ':' dfhostdir  dfjunk '/' dflocaldir 

lm=" II /* will  become  the  saved  df  line  that  matches. 
parse  pull 1 

if  length(dfhostdir)>O , /* weeds  out  header  and  locals 
& dfhost==host /* weeds  out  other  systems 

then  do 
if  dfhostdir==It/lt /* for  root  file  system 
then lm=l /* save  this  line  in  case  we  find  no  other 
else  if left(file,length(dfhostdir))==dfhostdir /*  right  line? 
then  do 
lm=l 
leave 
end 
end 
end 
if  length(lm)>O /* if  we  found  something, 
then  do 

*/ * /  * /  * /  

*/  

* /  * /  
* /  * /  * /  

* /  
parse  var  lm  dfhost ':' dfhostdir  dfjunk '/' dflocaldir 
if  dfhostdir^=='/' /* if not  root  filesystem, * /  
then file=right(file,length(file)-length(dfh0stdir)) /* trim  rmt  dir */ 
o='/'I ldflocaldir]  lfile /* add  correct  local  dir */ 
end 
else  do /* if we  found  nothing,  fail  with  error  message * /  

say  'sorry, no path  from  here to'  hostf:'file 
return /* return  with  no  value  is a failure */ 
end 

end 
end 
return o /* non-failure  return */ 

188 

I 



Typical usages  of fn allow  the user to access  files on other  systems wlthout knowing the details of the NFS links that  connect  these  systems. 

#!/usr/local/bin/rxx 
/* 

parse  arg  dir 
ldir=fn(dir) 

* nfl - invoke  flist  with  system  independent  filename 
*/ 

say 'flist'.ldir 
'flist' ldir 

#!/usr/local/bin/rxx 
/* 

'xe'  fn(arg(1)) 

* nxe - invoke  xedit  with  a  system  independent  filename 
*/ 

MACROS  FOR  OTHER  UTILITIES  THAT  USE  REXX  can  serve  similar  purposes. 

We  will  use  XEDIT  as  an  example of a  utility  that  uses  REXX  as  its 
macro  processor. 

Once  again,  when  you  have  figured  out  how  to  do  something  like  print 
part of the  edit file, you  can rlcanll that  procedure  in  a  trivial 
REXX  program. 

/* * rlp.xedit - an  xedit  macro  to  print  part of an  xedit  file 

* rlp  target 
* is the  same  as 

* 
* 
* * !rm temp * put  target  temp * !rip temp 

*/ 
* 

parse  arg  target 
address  unix 'rm  temp' 
address  xedit 'put' target 'temp' 
address  unix 'rlp  temp' 

189 



A  utility,like  XEDIT  can  also  have  significant  functional  extensions 
added  to it via  REXX  programming. A typical  requirement  for  a  text 
editor is the  ability to reform  a  modified  paragraph to more  nicely 
fit  within it's margins.  Here's a  REXX  macro  that  adds  this  function  to 
XEDIT.  Note that  it  was ported  from CMS  with  minimal  changes (to exactly 
three  out  of 66 lines  of  code.) 

/* FLOW  MACRO. 
This  macro  aligns two or more  lines  of  a  text-type  file 
being  edited  (such as a NOTE). It tries to place as many 
words as possible on a  line,  within  the  right  margin 
defined  by  XEDIT SET TRUNC. 

USE : 

FLOW  <target> 

where  <target> is a  standard  Xedit  target  defining  the  first  line 
not to be  flowed.  Typically,  the  alignment  process  will  result  in 
there  being  fewer  lines  in the block  than  there  were  before  alignment. 
This  will  not  always  be  true. 

UNIQUE  CAPABILITY  OF  THIS  PROGRAM: 

This  macro can, unlike  other  parts  of  XEDIT,  shorten  lines.  If  you 
SET  TRUNC to a  value  shorter  than  some of the  lines  in  your  file, 
they  will  be  handled  correctly  by  this  macro.  E-lsewhere  in  XEDIT, 
results  are  unpredictable  and  will  likely  involve  data  loss. 

MODIFICATION  HISTORY: 

11/16/86 - Roger  Deschner - Original  version 
01/02/88 - Roger  Deschner - Replace  call to l*JOIN1l, for  performance 
02/14/88 - Roger  Deschner - Allow  lines to be  shortened;  use  PUTD 
10/24/89 - Roger  Deschner - Protect  from  LINEND  character 
10/04/90 - Roger  Deschner - Changed to FLOW; moved to RS/6000 
*/ 
/* Do  it to it */ 
doit: 
PARSE  ARG  targ 
tempfile = )JJ.TEMP' 
ADDRESS  UNIX 'rm  -f' tempfile 
'PUTD' targ  tempfile 
'UP 1' 
'EXTRACT  /TRUNC' 

rotbuf = /* initialize  rotating  buffer */ 
DO  FOREVER 
IF  (LINES(tempfi1e) = 0 )  THEN  LEAVE /* EOF? */ 
ibuf = LINEIN(tempfi1e) 
IF  (SUBSTR(ibuf,l,l) = ' ' )  THEN  DO /* Paragraph  break,  either  kind */ 
IF  (rotbuf ' ' )  THEN DO /* Anything  left  in  buffer? */ 

'INPUT'  rotbuf /* put  it  out */ 
rotbuf = 

END 
END 
IF  (ibuf = ' ' )  THEN 'INPUT ' /*  Blank  line * /  
ELSE  DO /* duit  tuit */ 

/* concatenate  the  new  stuff */ 
IF  (rotbuf = ' I )  THEN  rotbuf = STRIP(ibuf,'T') 

ELSE  rotbuf = rotbuf  STRIP(ibuf,'T') 
SELECT 190 



WHEN  (LENGTH(rotbuf) = trunc.1)  THEN DO /* perfect  fit */ 
'INPUT' rotbuf 
rotbuf = I '  

END 
WHEN  (LENGTH(rotbuf) > trunc.1)  THEN DO /* more  than  enough */ 

DO FOREVER /* Find  last  blank,  starting  at  TRUNC.1+1,  working  backwards */ 
i = trunc.l+l 
DO  WHILE (SUBSTR(rotbuf,i-'1) '1  
i Z i - 1  
IF (i = 0 )  THEN  SIGNAL word-too-long /* word > trunc */ 

END 
'INPUT'  SUBSTR(rotbuf,l,i-1) 
rotbuf = STRIP(SUBSTR(rotbuf,i),") 
IF (LENGTH(rotbuf) < trunc.1)  THEN  LEAVE /* Split  enough? */ 

END 
END 
OTHERWISE NOP /* not long  enough - read  another  line */ 

END /* end  of  select */ 
END 

END 
IF  (rotbuf ' )  THEN  DO /* Anything  left  in  buffer? */ 

'INPUT'  rotbuf /* put  it  out */ 
rotbuf = I f  

END /* Clean  up  our  toys  and  go  home */ 
ADDRESS  UNIX 'rm  -f' tempfile 
RETURN 

EXIT : 
PARSE ARG orc . 
EXIT  orc 

The  use  of  extensive  REXX  macros  in  a  setting  such as  XEDIT  becomes  more 
viable  on  fast  RISC  processors,  where  the  relatively  low  speed  of 
its  interpretive  execution  is  not  a  problem.  We  expect to see  REXX 
macros  adapt  XEDIT to many  widely  varied  tasks  (such  as  true  word 
processing  with  automatic  paragraph  reform,  LEXX-style  live  parsing,  etc.) 
Such  applications  would  be  far  too  slow  on  the  previous  generation  of 
computlng  platforms. 

191 



/* * mk.xedit 
* Runs  make  out  of an xedit  session. 

* Default  name is taken  from  source  filename  assumed to be of * the  form  llname.somethingll. So if you  are  editin?  key.c,  this * routine  will  kick off "make key".  You can also  lSSUe %k else" * if you  want to make  another target. 
* The  real  work is done  in  a  background  task,  and  its  output is * presented  in  a  separate  window. */  

* 
* 

* 

parse  arg  name 
if  name=' ' /* if  name  not  specified,  generate  the  default */ 
then  do 

"extract  /fname" 
name=left(fname.-l,p~s(~~.~~,fname.l)-l) 
end 

save /* make  sure  the  disk  file  is  up to date */ 
address  unix llxemakell name l l & l l  /* kick  off  the  background  task * /  

#!/usr/local/bin/rxx 
/* * xemake - run  a  make  and  display  the  results  in  a  window.  Normally * invoked  from  with  xedlt  via  mk.xedit. 
*/ 

parse  arg  name /* get  name of make  target */ 
llmakell name ll>tr I I name I 1 .makeout 2>&111 /* run make, output to a  flle */ 
"xt  xe"  getcwd( ) 1 1 / 1 1  I 1 name I I .makeout*l /* display  the  results */ 

GENERAL  PURPOSE  PROGRAMMING  IN  REXX  fits  quite  nicely  with  the  Unix 
philosophy  of small, reusable  pieces  of  code.  Custom  filters  are  easily 
written  in  REXX.  These  programs  read  STDIN  and  write  part of the  output 
file to STDOUT. 

The  Unix  style  of  programming  often  uses  data  sources  and  filters  in a 
multi-tasking  *lpipefl to achieve  a  particular  result.  Often  custom 
filters  are  required,  and in  many  cases  they are  created Ifon the spot11 
with  utilities  like sed, awk  or  perl.  REXX can be  used to write 
general  purpose  filters  which  can  be  documented  and  retained  for 
future  use. 

192 



Here  are  two  examples,  which  filter  a  file,  passing  only  lines  that 
contain  specific  string  combinations. 

#!/usr/local/bin/rxx 
/* * both - find  lines  containing  both  strings  within  a  specific  number - * of  words. 
*/ 

parse  arg  first  second  distance /* two strings  and  a min. distance */ 
do  while lines()>O 

line=linein() 
fpos=wordpos(first,line) /* position  of  first  word or 0 */ 
spos=wordpos(second,line) /* position  of  second  word or 0 */ 
if fpos>0 &I spos>O & abs(spos-fpos)<=distance 
then  call  lineout(,line) /* write  matching  lines */ 
end 

call  lineout() 
exit 

/* close  output  file */ 

#!/usr/local/bin/rxx 
/* 

parse  arg  strings /* all  words to be  searched  for */ 
do x=l while  lines()>O /* x=  only  for  leave  instruction  below */ 

line=linein() /* line is a  candidate to be  tested */ 
do i=l to  words(strings) /* try  all  words in string. * /  

if wordpos(word(strings,i),line)=O /* 0 means  not  found */ 
then  leave  x /* terminates  outer  loop * /  
end /* end  of  all  tests */ 

call  lineout(,line) /* if all found, write it out. * /  

* mult - find  lines  containing  all  input  strings 
*/ 

end 
call  lineout() 
exit 

/* close  output  file */ 

Often,  small applications  can  be  crafted by  pulling together  pieces 
of REXX code which  bring  existing  system facilities together. 
Here's a  sample  which  implements  a  "phone  directory"  using XEDIT,  
driven  by  a REXX program.  I1ph  name"  pops  up  an X window  showing  an 
edit  session  that  has  been  pre-positioned  on  the  first  line  in the 
dataset  that  contains "namevf. 

#!/usr/local/bin/rxx 
parse  arg  name 
@!.rxx ph2  name ft&ll 

/* get  the  name  he  wants to find */ /* pass  it  along to the  background */ 

#!/usr/local/bin/rxx 
parse  arg  strinq /* get  the  name  he  wants to find */ 
Ilcp $HOME/.profile.xedit  ph.xedit" /* copy  his  .profile.xedit */ 
call  lineout  /ph.xedit',  'flcl/'string'llt /* add  a  search  command to it */ 
call  lineout  'ph.xedit' /* close  new  profile */ 
"xt  xe -p ph  $HOME/phone/dir 3 SI! /* xe  phone/dir  in  a  window */ 
"rm  ph.  xedit" /* cleanup  after  synchronous  window  terminates */ 

193 



And,  as  always,  low  volume  applications  can  be  developed  and 
maintained  much  more cost  effectively  with REXX than  with  many  other 
languages. This is especially  true  in  the  Unix  world  where the only 
universally  available  language  is C, and  the  most  likely  alternate is 
FORTRAN,  and  BASIC is not  usually  present. 

#!/usr/local/bin/rxx 
/* * vptrim - a  utility to trim  ventura  publisher  markup  from  a  word * processing  file. * 
* vptrim  infile  traceopt * * infile  required,  specifies  the  input  file  containing  a * word  processing  file  that  contains  ventura  publisher * markup  string. 

* traceopt  optional,  a  trace  instruction  operand to turn  on * REXX tracing. 

* 

* 
* The  output is sent to STDOUT, and  may  be  redirected to a file. * * * * * * * * * * * * * * * * * * 

Example:  vptrim  xehelp > xehelp2 

Most I t @ . . .  = and <...> sequences  are  simply  removed 
file. 

<T> is  changed  into  three  blanks. 

@FUNCTION = text  is appended to the  start  of  the  next 
a - placed  between  the  two  chunks  of  text. 

<< and >> are  translated to < and > respectively. 

Room  for  improvement: 

We  could  define  our  own  set of tab  stops  and  try to 
in  some  smarter  way. 

from the 

line,  with 

handle (T) 

* @FUNCTION  trick  should  maybe  be  extended to handle  multiple such, * through  a  table of special  functions. * 
*/  

parse  arg fn  traceopt 
trace  value  traceopt 

if  fn=tf" 
then  do 

say  flusage:  vptrim fn traceopt'l 
exit 
end 

1  ag= 11 

do  while  lines(fn)>O /* push  the 
line = linein(fn) 

entire  file  through  this  loop */ 

do  while  pos("<T>",line)>O /* turn <T> into  white  space */ 
line=overlay( I I ,  line ,pas ( ll<T>tl , line) ) 
end 

do  while p~s(~~<<~~,line)>O /* turn << into ~'01' to hide  them * /  
194 



to hide  them */ 

end 

do  while  pos ( line) >O /* take  out  all  other <..anything..> */ 
if pos ( I f > t l ,  line) >O 
then line=left(line,p~s(~~<~~,line)-l)l I ,  

right(line,length(line)-pos(ll>tl,line)) 
else do 

say '********* VPTRIM  ERROR: 
leave 
end 

end 

line=translate ( line, ll<>lr, ff01021tx) /* 
if  left( line,l)=vl@ll /* 

Unmatched vr<tl in  the  following  line. 

unhide  translated << and >> */ 
check  for  paragraph  tag */ 
remember  taq  type * /  then do 

type=left(line,lO) /* 
line = right(line,length(line)-pos(~f=~~,line~-l)--/*'remove it */ 
if  type="@FUNCTION 
then do /* for  @FUNCTION  tag */ 

lag = line I1-lf /* save  text  for  next  line */ 
iterate . - / *  and skip  putting  it out now */ 
end 

end 

say  lag  line /* put out  current  line  plus  any  lag  data */ 
end 
lag= 11 11 

The  largest  such  application  we  have  seen  ported to Unix  is  a 
"silicon  compiler1'  used  to  design  microchips - a  **very**  large  REXX 
program that  was ported  with  minimal  difficulties to Unix, and  would  have 
required  a  major  rewrite  in C or  Fortran  had  REXX  not  been  available. 

These  applications  require a robust API, Similar to that  found  in W/CMS 
or MVS/TSO. The  uni-REXX API includes  REXX  program  invocation,  the 
ability  to  create  an  addressable  environment (i-e., SUBCOM),  and  the 
Variable pool Interface.  Still to come  are  external  functions  written 
in C. 195 



The availability of REXX in the Unix environment not only supports 
the migration of existing staff from  proprietary mainframes to Unix, 
but also brings a new level of integration and ease of use to  the 
Unix  environment. 

196 


