
REXX LANGUAGE PARSING CAPABILITIES

KEITH WAlTS
KILOWATT S O W A R E

1 S i

REXX language parsing capabilities
Keith Watts (Kilowatt Software)

Abstract
The REXX language has several powerful features which distinguish it from other programming languages
that are generally available. Among these are the language’s intricate collection of parsing capabilities.
These enable the programmer to easily divide character strings by a diversity of methods. Herein, the
syntax and semantics of these methods are described in detail. This paper is intended to help
programmer’s of varying proficiency gain a commanding grasp of these concepts. Many examples are also
brovided.

One of the more powerful features of REXX is its ability to parse. However, if you are like many
others who are learning REXX you are unfamiliar with the word ”parse”. Webster‘s New World
Dictionary contains the definition:

parse vt, vi parsed, pars’ing [Now Rare1 1
1 .to separate (a sentence) into its parts, explaining the grammatical form, function,
and interrelation of each part 2. to describe the form, part of speech , and function
of (a word in a sentence)

The above definition has little in common with the REXX parsing capability. The key phrase is: ”to
separate into its parts”. For the word ”parse” is computer science parlance for the act of separating
computer input into meaningful parts for subsequent processing actions.

REXX is one of few languages which provides parsing as a fundamental statement. Most
languages merely provide lower level string separation capabilities, leaving the preparation of
parsing capabilities as user developed enhancements. Within REXX, these capabilities are
immediately available, and as you will soon find, very powerful.

Let us learn about parsing by analyzing the following:
phrase = II I think, therefore I am [I think]. Ill

If you scrutinize the above, you will notice that there are extra blanks at various points within the
phrase. These extra blanks and the punctuation characters within the phrase complicates the parsing
process.

The words within the phrase could be traditionally extracted as follows:
/* try1 [the brute force approach1 */

/* trace ?i */ /* turn on the trace to see how this code works */
remaining-words = phrase
do i=1 by 1 while remaining-words < >

remaining-words = strip(remaining-words , ItLeadingtt 1 /* skip lead blanks */
end-pos = pos(It, remaining-words) /* locate blank after current word*/
word-i = substr(remaining-words, 1, end-pos) /* extract a word */
remaining-words = substr(remaining-words, end-pos) /* step over word */

end

h i s adaptation of Descartes famous insight is from ”On the Threshold of a Dream”, by the Moody Blues.
1

B REXX language parsing capabilities

198

Alternatively, REXX contains built-in functions which are excellent for extracting words from
phrases, as follows:

/* try2 */
/* trace ?i */ /* turn on the trace to see how this code works */
do i=1 for words(phrase)

word-i = word(phrase, i
end

Finally, an approach which uses REXX parsing is:

/* try3 */
/* trace ?i */ /* turn on the trace to see how this code works */
rest = phrase
do i=1 while rest < > IIII

parse var rest word1 rest
end

Of the 3 approaches shown above, the second is clearly the best choice for separating a string into
words. However, the second approach is specifically capable of accessing words, it is inadequate
for other parsing tasks. The third approach is slightly more intricate than the second, and is
occasionally preferrable. All that can be said about the first approach is that it successfully obtains
individual words, and the method used is familiar to those who have programmed with other
languages; though the subroutine names are probably different.

Let REXX know what you mean

Notice that words within the phrase above are generically captured by relative position into the set
of word .i symbols. Now you will see how phrases can be parsed into symbols which are
syntactically significant.

For example, we can divide our phrase into meaningful constituents as follows:

parse var phrase precondition consequence IC' qualifier '1'

This results in the following symbol assignments:
precondition "1 think Ii
consequence "therefore I am
qualifier I think"

[Please observe that there are extra spaces within the consequence and qualif ier symbols].

Notice how easy it was to divide our phrase with the parse statement.. This partitioning can not be
done by modifying the try2 example shown earlier. The try1 example can be modified with
considerable effort to extract the precondition, consequence, and qualifier symbols based on
syntactic dividers. However, the resulting code would be far more intricate than the simple parse
statement above. Furthermore, revision of the brute force method requires similar complexity and
effort as other parsing challenges arise.

B REXX language parsing capabilities

199

For a more familiar example consider the following:

parse value "Sam likes green chili pizzas" with subject verb entree

The result of this parsing operation leads to the following symbol assignments:
subject S am"
verb lllikesll
en tree "green chili pizzas"

Syntactic elements are now associated with meaningful symbols, instead of generic symbols
word. 1 , word.2, etc.

How does parsing work

The REXX parse statement divides a source string into constituent parts and assigns these to
symbols as directed by the governing parsing template. The parse statement has the following
general form:

parse2 [upper] source - identification symbol - and - rule - template

Where:

upper
This is an optional keyword. When it is present, all values assigned to symbols are
converted to upper case.

source - i d e n t i f i c a t i o n
This identifies where the source string for parsing is obtained. This is one of the
following:

0 ARG

Example: parse arg al.1 a1 .rest , a2, a3.1 . , a4

The ARG keyword indicates that one or more procedure arguments are to be processed
as source strings. This is the only keyword which can have multiple source strings.
Each argument passed to an internal or external procedure corresponds to the clauses
separated by commas in the template pattern above. However, only 1 argument string is
available for processing by the topmost procedure level associated with an EX
command.

In the example above, the first word in the first argument string is assigned to symbol
a l . I and the remainder of the first argument string is assigned to symbol al.rest . The

2The PARSE keyword itself is omitted in ARG and PULL statements, which are actually shorthand forms for
PARSE UPPER ARG ... and PARSE UPPER PULL ... respectively. Both of these forms assign uppercase values
to associated symbols. The longer forms PARSE ARG and PARSE PULL must be used when you want to preserve
mixed case values during assignment.

REXX language parsing capabilities B
200

I

entire second argument string is assigned to symbol a2 . The first word in the third
argument string is assigned to symbol a3. I . The entire fourth argument string is
assigned to symbol a4. Additional argument strings are ignored.

Empty strings [""I are assigned to all remaining symbols that appear in the template
when insufficient source argument strings are available.

0 LINEIN

Example: parse linein first-letter 2 o whole-line

The LINEIN keyword indicates that the source string is obtained by reading one line
from the default input stream.

In the example, the first letter within the line is assigned to symbol fimt_leffer and the
entire line, including the first letter, is assigned to symbol whole-line . When an empty
line is read, then the empty string "" is assigned to fimt_letter.

0 PULL

Example: parse pull qline

The PULL keyword indicates that the source string is obtained by extracting the
topmost line from the external data queue.

If there are NO lines within the queue a line is obtained from the default input stream
instead. This can be troublesome in numerous ways. First. if your program uses other
stream functions to process lines from the default input stream, it is easy to overlook
lines that are accidentally acquired by a PARSE PULL or PULL request.

Second, in many REXX environments, there is no indication that your REXX program
is expecting input from the keyboard. This will cause you to MISTAKENLY believe
that your session is HUNG ! Rather than automatically restarting your session, always
try to type characters at the keyboard first. If you can type, your program is reading
keyboard input. It is strongly recommended that you always precede keyboard input
requests with prompt messages. And, you should assert that lines remain in the queue
before perfonning PARSE PULL and PULL requests as follows:

if queued0 = 0
then

if lines0 = 0
then do

say "No more terminal input is available for parsing"
exit 86

end
else

say a-meaningful-prompt-message

parse pull keyboard-wdl etc

Finally, when end of file has already been reached in the default input stream, the
source string for parsing is the empty string [""I. This assigns the empty string to all

REXX language parsing capabilities

20 1

B

symbols that appear in the template. This can lead to unusual difficulties later during
your program’s execution.

You should activate the trace facility when you are developing programs that use the
PARSE PULL and PULL statements, or perform other default input stream operations.
Then, a helpful trace message will let you know that your program is waiting for
keyboard input to complete.

0 SOURCE

Example:

parse source environment proc-kind src-f i l e proc-name implementation

The SOURCE keyword indicates that the source string is internally prepared by REXX
with information describing the procedure’s execution environment.

Within PortabldREXXTM the following symbol assignments can be expected:
en vir0 nmen t PCDOS I PCWIN
pr oc-k ind COMMAND [top level procedure]

FUNCTION [procedure executing as function]
SUBROUTINE [procedure was invoked by CALL statement]

CALLONTRAP [procedure servicing CALL ON error handler]
src-f il e the name of the file containing procedure source statements
pr oc-n ame the current procedure’s name
implementation PortabldREXX [always]

0 VALUE expr WITH

Example: parse value getkey() with scan-code 2 key-code

The ”VALUE expr WITH form establishes the result of any REXX expression as the
source string to parse.

In the example above, the special Portable/REXXTM Getkey built-in function is used to
obtain the double-byte code for a keyboard input action. The parse template indicates
that the first byte is assigned to symbol scm-code and the second to symbol key-code
If the user had pressed function key ”FI” then scan-code would be ”3B”x and
key-code would be ”00”x.

REXX language parsing capabilities

202

B

0 VAR variable-name

B

Example: parse var rest wordl rest

The VAR keyword indicates that the value of a symbol is the source string to parse.

In the example above, the source string is the value of symbol rest. The first word in
this string is assigned to symbol wordl . The remainder of the string is reassigned to
symbol rest. Thus, every time this statement is executed, the first word is extracted,
and the number of words associated with symbol rest is reduced by one.

0 VERSION

Example: parse version lang-ident lang-level release-date

The VERSION keyword indicates that the source string is internally prepared by
REXX with information which distinguishes the language implementation.

Within PortabldREXXTM for MS-DOS@ the symbol assignments of the following
form can be expected:

l a n g i dent REXX-KilowattSoftware-Portable-BV 1 12 [or later release]
lan g l e vel 4.00 [or higher]
release-date 9 May 1991 [or later]

symbol - and - rule - templa te

This is the template which specifies how to parse the source string, so that symbol values
can be assigned. The template can be omitted from the parsing statement. When the template
is absent, the source string to parse is STILL prepared! This preparation may remove a line
from the external data queue, perform a file input operation, or compose associated values
when PULL, LINEIN, and VALUE are requested.

REXX language parsing capabilities

203

B

The parsing template has the following general form. Some templates can be significantly
different. For example, the leading item can be a division specifier, and multiple division
specifiers can appear without an intervening symbol name.

parse temDlate form

symbol- 1 division-specif i er- 1 symbol-2 division-specif i er-2 etc . . .

The first character of each parsing template element is sufficient to distinguish whether it is a
symbol name or a division specifier. The element is a symbol name, when the first character
is an eligible symbol name character. Division specifiers are one of the following, with
examples of each shown underneath:

0 space - delimiter

Example: subject verb entree

When spaces separate symbol names within a template, then each word of the source is
assigned to each corresponding symbol identified in the template. If there are more
words in the source than there are names in the template, then the remainder of the
source is assigned to the last symbol. All spaces within the remaining portion of the
source string are preserved in this last symbol's value. If there are insufficient words in
the source string for all template symbols, then words are assigned on a one-to-one
basis to the leading symbols, and the empty string '"' is assigned to all remaining
template symbols.

Tabs are considered equivalent to spaces with respect to the space-delimiter division
specifier. Tabs are preserved by all other division specifiers.

0 literal - pattern

Example: II ,It consequence IC' qualifier '1'

Literal patterns are quoted strings within the pattern. These strings usually contain a
single character, but may include many characters as well as spaces. In the example
above, these are separated from other template items by spaces. However, these spaces
are not necessary. Literal patterns can be immediately adjacent to other terms, as in the
following example. Presume:

ti me0 15:27: 14

Then

parse value time0 with hour" :l'minutell:llsecond

Causes the following symbol assignments:

B

hour 15
minute 27
second 14

R E M language parsing capabilities B
204

B

The source string is searched from the current position until an exact match with the
literal pattern is located. If the literal pattern is found within the source string, then the
prior symbol is assigned all characters, including spaces, up to the last character
preceding the matching source position. The characters in the source which match the
literal pattern are skipped. The next character to be assigned is that which immediately
follows the last character in the source string that matched the literal pattern.

0 variable - pattern

Example: before (delim) after

Variable patterns are very similar to literal patterns. The only difference is that the
pattern to match is the value of the parenthesized symbol name.

In the example, the value of symbol delim is used as a pattern. The part of the source
string which precedes the pattern is assigned to symbol before, and the part which
follows the pattern is assigned to symbol after. Presume the following:

rel-da te 19 Dec 1990

de l im Dec

Then

parse var rel-date before (delim) after

Causes the following symbol assignments:

be fore 19-
after - 1990

[The ’-’ characters above indicate invisible spaces in assigned symbol values].

0 column#

Examples:

hour 3 4 minute 6 7 second 9 [parses: 12:44:37]

first-letter =2 1 whole-line

head =(offset) tail

Absolute columns are distinguished as numbers within the template, numbers preceded
by an equals marker [=I, or a variable reference which is also preceded by an equals
marker. Absolute column 1 prepares for subsequent access to the 1st character in the
source string, column 2 for the second character, etc. A column specification of 0,
causes the 1st character to be accessed. Column specifications which exceed the source
string length are truncated to the number of characters within the source string.

REXX language parsing capabilities

205

p5

In the first example above, the following assignments occur:

hour 12
minute 44
second 37

In the third example, the value of symbol offset identifies where the source string is
partitioned for assignment to symbols head and tail .

0 relative - column

Examples:

hour +2 +I minute +2 +I second +2 [parses: 12:44: 371

first-letter +I 0 whole-line

item1 +(wid thl) item2 +(wid th2) item3 +(wid th3)

Relative columns are distinguished as signed numbers within the template, or variable
references preceded by plus and minus signs. Negative relative column motions can not
access character positions less than the first, and positive motions can not access
characters after the last.

In the first example above, the following assignments occur:

hour 12
minute 44
second 37

In the last example, symbols item1 , item2 , and item3 receive values from the source
string according to the values of the corresponding width variables.

0 period

Example: file-name . revision-date .
Periods within the template act as placeholder symbol names. These absorb values
which would have been assigned to symbol names instead. A trailing period absorbs
the remainder of the source string.

REXX language parsing capabilities

206

B

0 comma

Example: argl-wdl argl-wd2 ., arg2-wdl etc ...
Commas within the template are only used when multiple argument strings are
processed by internal and external procedures. Hence, these are only valid when the
ARG source-identification keyword is in effect. Only one argument source string is
available for the topmost REXX procedure level. A comma in the template indicates that
parsing of the current argument source string is to be discontinued, and processing
ensues from the beginning of the next argument source string.

The following picture may help you to understand how parsing is performed.

I Sam l ikes green chi1 i pizzas I

I Current end posi t ion

Previous start posit ion

While the tempZate is processed from left to right, current positions in the source string are
maintained. The motion of these positions is guided by the division specifiers within the
template. This motion is toward the right, except when an absolute position or negative relative
motion is specified, The initial start position is position 1, which corresponds to the first
character at the leftmost end of the source string. An absolute position less than 1 is revised to
be 1, as are negative relative motions which would precede the first source character. Likewise,
the highest end position is the rightmost end of the source string.

The above picture shows positions associated with the space-delimiter which separates the
verb and object symbol names in the template. The previous start position locates the "1" in
"likes". The current end position locates the space between "likes" and "green". The next start
position locates the "g" in "green". With these positions established, the word "likes" is
assigned to the symbol name "verb". As only the object name remains in the template, the
remainder of the source string from the next start position is assigned to symbol name object.
This is the phrase "green chili pizzas". If there had been multiple spaces between the words

REXX language parsing capabilities B5
207

"likes" and "green" then the next start position would have located the second intervening
space.

Power parsing

Now two common applications of parsing will be studied. The first shows how to meaningfully
extract variable length text information from MS-DOS@ files. The second shows how to extract
fixed length information from files.

Parsing variable width text fields

Assume that you want to analyze information in a name&address file. Each line of information
contains multiple fields of varying length. The fields are separated by tab characters ["09"x]. The
file could have been obtained by extracting rows from a database or spreadsheet program.
Alternatively, it could have been created by a REXX program which wrote lines with the following
request.

The parsing of input lines into meaningful fields has the same structure, and uses the tab symbol
as a variable pattern specification. Fields can be obtained as follows:

parse value linein(IlnadlI) with ,
fname (tab) mname (tab) lname (tab) company (tab) ad&-line1 (tab) ad&-line2 (tab),
city (tab) state (tab) zip (tab) phoneno

Fixed width binary data analysis

Instead of a file containing variable width fields, suppose you have a file containing fixed width
character fields and binary-encoded numbers This file could have been created by a REXX
program which wrote lines with the following request.

call charout Vranfile.db", ,
left(partno, 8) 11 left(serialno, 8) 11 d2c(unitgrice, 2) /I d2c(quantity, 2) 11 ,
d2c(subtotal, 4) 1) d2c(tax, 4) 1) d2c(total, 4)

B REXX language parsing capabilities

208

B

The parsing of this information into meaningful fields has a similar structure, with an extra step to
convert each binary-encoded value to a corresponding decimal value. Fields can be obtained as
follows:

parse value charin(11tranfile.db1177 32) with ,
partno +8 serialno +8 unitgrice +2 quantity +2 subtotal +4 tax +4 total +4

uni +price = c2d(unit-price)
quantity = c2d(quantity)
subtot a1 = czd(subtotal)
tax = c2d(tax)
t o tal = c2d(total)

This concludes the description of how to perform parsing operations in REXX. To fortify your
understanding of parsing you should now try some experiments of your own choosing. You
should also read the section titled ”Parsing for ARG, PARSE, and PULL” in ”The REXX
Language”.

This paper is an excerpt from:
Learning to Program with Portable/REXXTM

which is published by Kilowatt Software at the following address:

1945 Washington St, #410 San Francisco, CA 94109-2968 (415) 346-7353

REXX language parsing capabilities

209

B

