
REXX AND UNlX PANEL DISCUSSION

JEFF LANKFORD, NORTHRUP; SAM DRAKE, IBM; JONATHAN JENKINS, AMDAHL;
SCOTT OPHOF, CONSULTANT; ALAN THEW, UNIVERSITY OF LIVERFOOL

222

I

REXX and UNIX Panel Discussion
Moderator: Jeff Lankford

Panel: Sam Drake, Jonathan Jenkins, Scott Ophof, Alan Thew

Moderator’s Note: The complete session was taped, but the
recordings are being withheld pending filing of formal charges.
What follows is a collection of prepared notes, not necessarily
as ful l of wit as the delivered presentations; you simply had
to be there.

Introduction
Jeff Lankford

Good Afternoon, Ladies and Gentlemen ...
On behalf of the participants, welcome to the panel discus-

sion “REXX and the UNIX Environment”. We are fortunate
today to have panelists outstanding in their fields and who
have occasionally been found out standing in other people’s
fields.

A common theme is addressed by all the panelists: why
use REXX with UNIX - and how to do so effectively. The
first speaker, Alan Thew of the University of Liverpool Com-
puter Laboratory, will discuss “REXX and awk: how does
REXX fit in with existing programming tools?”, in which he
compares the various interpreted languages commonly used
in the UNIX environment and contrasts their capabilities
with those of REXX. The next speaker, Jonathan Jenkins
of Amdahl Corporation will present a practical perspective
on “UNI-REXX use a t Amdahl”. The third panelist, Scott
Ophof, formerly of Delft Hydraulics, will discuss portability
concerns when using “REXX on any System”. The conclud-
ing speaker, Sam Drake of IBM Research in San Jose will
raise the question “REXX and UNIX ... what’s the point?”,
and examine the issue of finding REXX’s proper niche in the
UNIX environment.

Before proceeding, I’d like to exercise my prerogative as
moderator to discuss something completely different, by rais-
ing a perennial question that has converted many doctors of
philosophy into cabbies (and vice versa): “What am I doing
here?” The special case is clearly more interesting, namely:
“What am I PERSONALLY doing here?”

I am neither a chronic nor habitual user of REXX; my
use is best characterized as recreational. In fact, I haven’t
touched a piece of REXX code in nearly six months; if I stay
clean a whole year, the doctors tell me I’ll be cured. My
first experience with REXX occurred a few years ago when
I undertook a project to implement international standard
networking protocols in the IBM VM environment. Enter-
ing the VM environment from a UNIX background was trau-
matic, partly due to the paucity of convenient-to-use program
development tools.

I soon learned of REXX and found it unlike any other
standard VM utility: it was easy to learn and to use, it
supported rapid prototyping, it supported personal tailoring

of the system command language, and the string process-
ing functions promoted its use as a macro processor. Using
REXX, in about a month I built the core of a UNIX-like
program development environment that provided networked
hierarchical file reference, compatible file, device and inter-
job I /O, asynchronous job initiation, and implementation of
nearly one hundred UNIX-like commands front-ending either
VM commands or custom built REXX functions. Without
REXX, program development in a heterogeneous networked
environment targeting applications for compilation and ex-
ecution in the VM environment would have been much less
productive.

In his 1984 paper published in the IBM Technical Jour-
nal, Mike Colishaw succinctly described one of the major rea-
sons for REXX’s popularity in the IBM world: “The design
of REXX is such that the same language can be effectively
and efficiently used for many different applications that would
otherwise require the learning of several languages.” While
certainly true of many IBM environments, this is less true of
the UNIX environment, where several stream editors, com-
mand language and macro processors offer complimentary
and compatible features.

Hence, there are potential barriers to acceptance of REXX
in the UNIX environment. A rudimentary classification
scheme distinguishes between barriers of style and barriers
of substance. The former category includes the stylistic dif-
ference between the UNIX philosophy of making each tool
do one thing well, together with the anticipation that tools
should interact via “piped” data streams, versus the typi-
cal VM practice. Substantive barriers include differences be-
tween external 1/0 models, for example between the UNIX
system’s three distinct data streams for input, output, and
error messages versus REXX’s single-threaded d a t a buffer
chains or stacks. Also, the lack of regular expression manip-
ulation built-in functions as a standard part of the language
could be considered a barrier to the acceptance of REXX.
Another barrier is the rudimentary signaling and event han-
dling mechanism. Stylistic barriers can be addressed by ac-
culturation of REXX application programmers to the UNIX
environment, but substantive barriers require innovative im-
plementations or even extensions to the evolving standard
to provide REXX program accessibility to standard, popular
UNIX features. While there are many excellent reasons sup-
porting the use of REXX in the UNIX environment, the real
challenge, for you the audience, as much as for the panelists,
is to seize this opportunity to cooperate in the uncovering of
potential barriers and to begin to formulate reasonable solu-
tions.

On behalf of the sponsors of this second REXX Symposium
I want to thank the panelists for subjecting themselves to the
mercy of the crowd and most especially to thank you, the

223

crowd, for making this session memorable.

REXX and AWK/ksh -
Can the former learn from the later?

A. J. Thew

I am an applications programmer a t the University of
Liverpool Computer Laboratory, U. K. We currently run a
VM/CMS service for most users but are moving t o Unix and
by late 1993 will base all our user service on Unix.

I have used REXX for about 5 years. At present this
is primarily in conjunction with the SQL/DS RDBMS us-
ing RXSQL. REXX is used extensively in data manipulation
along with CMSPIPES (a major contribution to REXX on
CMS). This represents the bulk of my job. My Unix expe-
rience started about 2 years ago and now that I’ve passed
some of the worst part of the learning curve, my main activi-
ties here are investigation of public domain (and other) tools,
e.g. a n e-mail for a new Unix system and editors. I have used
all major shells to some degree. Some work with C has been
done and familiarity with other tools is increasing. I have also
used to some degree all major Unix’s (BSD, SunOS, HP-UX,
System V Releases 2 and 3).

I want to try to say something about some existing tools
on Unix and how they might relate to REXX and vice-versa.
These tools are the other interpreted programming languages.
This emphasis partly reflects my job and interests at this
present time.

My first reactions on seeing the shells from the program-
ming point of view was that they seemed very primitive com-
pared to REXX. It was as if REXX was removed from CMS
and EXEC1 was the command interpreter and general pro-
gramming language. No free format and plenty of chances for
error.

David Korn (of AT&T) (1) and Morris Bolsky say “no
unquoted spaces or tabs are allowed before the ‘=’ or af-
ter”. Poor manipulation of strings and almost no arithmetic
were additional first impressions. Others coming from a CMS
background around the world felt similarly but were met with
unsympathetic responses such as “sh does all you need” from
the existing Unix community. The obvious “problems” were
visibly demonstrated by Neil Milsted (2) during last year’s
symposium.

Times change and I now feel I can use vi faster for some
operations than XEDIT (I should point out that this was
partly out of necessity). In addition I have had plenty of
opportunity to look at what interactive programming tools
Unix provides. This has mainly centered on AWK abut also
the Bourne Shell (sh) and the Korn Shell (ksh).

My attention was grabbed by AWK since on face value
it offers a concise simple syntax like C, but without data-
typing, semi-colons, memory management, pointers but with
real arrays, proper string manipulation functions, arithmetic,
simple assignments (no dollar signs in most cases), and some
ability to interact with Unix. Arrays are associative which
seemed similar to REXX compound variables. It seemed to
offer the best of C and shells without any of the pain and
with functionality that I’m used to with REXX on CMS.

I have attempted to take a serious look a t shells, and
have recently standardised on the Bourne Shell, in partic-
ular the version dating from System V Release 3. Apart from

BSD systems and older System V releases, this is reasonably
widespread. It offers more compatibly with other tools, allows
redirection on the read statement, more built-ins for better
performance and improved parameter checking/substitution
and above all functions (though not recursion without pain).

In addition David Korn has produced a shell that is largely
compatible with the System V Release 3 sh but enhanced a
great deal. This offers:

much better performance than existing shells,

greater functionality,

more general I/O,

built in arithmetic,

some string functions,

local variables in functions (i.e. recursion),

limited array capabilities,

co-processing features,

and better security.

This shell is gaining in popularity. To illustrate its capabil-
ities, Morris and Korn’s book present a powerful subset of the
Rand Mail message handler. This is not the “Word processor
in FORTRAN” type application but a realistic project. They
even claim that the show and next commands are faster
than the C equivalents. However, the code is not nice to look
at in my opinion (although it is probably easier to understand
than the “real thing” in C) but it’s very compact, being less
than a 1000 lines of code and comments.

AWK derives its name from its designers Alfred Aho, Brian
Kernighan and Peter Weinberger. An additional interest was
that the Free Software Foundation provided a version that
worked on a P C which was exactly the same apart from pipe
support and was constrained by 640K. This is also available
for Unix and implements all the latest functionality.

I should stress that I’m referring to what is commonly
called “new AWK” or nawk and references to AWK will refer
t o nawk unless stated. This version has been available since
1985 and is available as standard (with the old awk) from
most vendors.

The original language was written in 1977 and its basic
action was to “scan a set of input lines in order, searching
for lines which match a set of patterns which the user has
specified”(3). An action (code section) can be taken when
lines match a pattern (default is print). The “patterns may
be more general than those in grep, and the actions allowed
more involved than merely printing the line”. The language
was designed for ease of use rather than speed.

AWK provides implicit and explicit data input, the latter
not being required for a working program and some books do
not present any treatment of the explicit input until toward
the end. When given a file to read as an argument AWK reads
it sequentially, as records which where the record separator
defaults to a newline. The original was designed for short
programs of one or two lines. They designers “knew” what
the language was designed for but many users, often first
time computer users found that the ease of use made it a
general programming language and used instead of others.
This “shocked and amazed” the designers who assumed that
compiled languages (presumably) would be used for anything
longer than a few lines. Users often seem willing to sacrifice

221

performance when ease of use is available, BASIC was/is an
example of this.

The AWK users had their demands met and the 1985 ver-
sion contained dynamic regular expressions, new built in vari-
ables and functions, multiple input streams with more explicit
I/O, and user functions. The AT&T System V Release 4 ver-
sion makes some additional enhancements in the spirit of the
1985 release but not so numerous. Function libraries do not
have explicit support but are easy to implement.

Examples of major applications which use awk are a nroff
type text formatter (written for early versions of Unix which
did not bundle nroff with them) and small Lisp interpreter.

It is interesting that Aho, Kernigan and Weinberger men-
tion REXX in a discussion about “similar” languages (men-
tioning SNOBOL4 and ICON) (4). This statement was a
small prod for my topic, 1’11 have to admit.

There are built in software limitations (4) [to AWK]:

0 1 open pipe,

0 15 open files,

0 100 fields,

0 3000 chars per input record,

0 and 1024 chars per field.

These were designed in or not designed out since the perfor-
mance would have degraded substantially for one thing. But
the main thing that AWK users miss/need is that the lack of
any debugging facilities. nawk and the Free Software Foun-
dation’s gawk give better error diagnostics when the program
fails which is an improvement to old AWK’s “bailing out ...”
error. Debugging has to be done on the lines of any other
language without built in tracing or a n available interactive
debugger.

The Unix shells both provide builtin tracing, ksh allows
command scanning without execution and something like
REXX’s TRACE R command although no interactive trac-
ing. AWK is poor at replacing the shell command interpreter
functions since it’s use of pipes is restricted to either input
or output (remember the one open pipe limit). It has no
interrupt handling facility like the [sh] trap command, and
there are other limitations but this is not “pushing” the lan-
guage as much as abusing it. AWK’s real strength is as a
data processing language.

AWK passes arrays to functions by reference and not by
value and scalars by reference. It is possible t o have local
variables by effectively hiding them on the function line:

function fred(a, b, locl , loc2)

Functions can be recursive.
Users requiring extra performance can buy the awkcc pro-

gram from AT&T which converts the program to C and then
compiles it. awkcc does not come with any vendor versions
of Unix that I know of. A company even provides a proper
compiler but only for the PC.

The design goals [of REXX] were/are very different. They
make REXX a bigger language than AWK, the latter is often
referred to as one of Unix ’s little languages. REXX was
“designed for generality” (5) which makes it suitable for many
tasks, one of which is a command processor:

readability,

0 no explicit data-typing,

good diagnostics via limited span syntactic units,

0 low astonishment factor (predictable results even when
features accidentally misused),

0 language kept small in sense of number of commands,

0 and no defined size or shape limits.

A feature of REXX that has always impressed me as a user
was the debugging facilities, just add the required trace com-
mand and go.

Goal was to have good performance as well. CMSPIPES
as well as performance tips has enabled us to double perfor-
mance of critical execs on CMS.

REXX 4.0 goals(2): Still to “keep the language small”,
enhancements chosen on “high power-to-complexity ratio”.
This last phrase sums up REXX for me in that it is small in
some aspects and when interpreted slow on very large pro-
grams but otherwise without limit.

Some additional functions are required by REXX to al-
low it to communicate in the most basic way with the shell
which exec’d it and pass commands to a shell to execute [on
UNIX]. These were listed by Neil Milsted of the Workstation
Group at the last Symposium (2) and provide enough, cwd,
getenv/putenv, etc.

One missing feature is currently regular expression sup-
port, a feature of many Unix tools which do some pattern
matching. This allows the shells to have some ability to ma-
nipulate strings without any inherent string functions. This
“lack” is not so apparently bad when one examines the wealth
of functions available with REXX, many more than AWK. It
was an interesting exercise to see which functions could be
implemented as user functions in AWK. Only JUSTIFY and
VERIFY looked hard. REXX’s parser is more generalised
than AWK’s but AWK’s use of a simple user definable field
separator which itself can be a regular expression should not
be underrated. AWK has math functions and substitution
functions (type of line edit) that REXX does not have al-
though only the math functions would need a function pack-
age to get good performance.

Some shell features are missing such as interrupt handling
and some of the advanced features of the ksh but these could
be provided possibly by function packages without making
the core language on Unix non-standard and the manuals
twice the size. REXX is easily the language to replace some
shell programs and become a major command language for for
Unix. However, if REXX becomes just another language for
scripts that would seem rather limiting since it was designed
to be a general purpose language. C and ksh (where avail-
able) can do a better job in some cases, although a REXX
compiler for Unix would be very interesting.

The standard should prevent REXX becoming a mono-
lithic Unix tool which could be tempting but dangerous in my
opinion for the above reasons and most importantly would go
against proven design objectives. Unix already has a public
domain tool which possibly provides this monolithic function-
ality in Larry Wall’s PERL but his design goals were different.

AWK is a programming language in its own right, even
taught on some software engineering courses apparently. It
was designed to fit in with the Unix philosophy of being a
tool to do a job, a tool of many. This philosophy lets other
languages do other jobs such as sorting, or better handling
of command line arguments (shell wrappers). While REXX

225

is better suited to cover more ground than AWK and “who some of which I have begun to write. These items seem to
wants to learn many programming languages when they can fall into three separate categories.
learn one?”, REXX could be seen as providing morelbetter
facilities rather than just a replacement language which ig- System Monitoring
nares as much of Unix as possible and re-invents the wheel Periodic checking of the system. Items which fall into this
many times. category are:

References: 0 Checking the status of System Accounting processing.
Bolsky, M. I. and D. G. Korn. T h e K o r n S h e l l - Com-
mand and Programming Language, Prentice-Hall, 1989.

Proceedings of the 1st R E X X Symposium for Deve lopers
and Users, SLAC, 1990.

Aho, A. V., B. W. Kernighan and P. J. Weinburger.
A W K - A Pattern Scanning and Programming Language,
Unix Programmer’s Manual, Vol. 2, 1978.

Aho, A. V., B. W. Kernighan and P. J. Weinburger. T h e
A W K Programming Language, Addison-Wesley, 1988.

Colishaw, M. F. T h e REXX language A pract ical Ap-
proach to programming, prentice-Hall, First Edition,
1985.

Uses of REXX under Unix at Amdahl’s
Corporate Computer Center

J. L. Jenkins

Hi! My name is Jonathon Jenkins and I work for Amdahl
Corporation. I’d like to talk to you today about some of the
practical applications that we created under our Unix systems
using REXX. Please feel free to contact me if you have further
questions, or would like to see copies of this code.

Currently 43 uses have been determined for REXX under
Unix. Categories include:

0 System Monitoring

- Check for the completion of system accounting

- Dump Management

- Checking console logs for system and device errors

- Daily cleanup of temporary filesystems

- Continuous montoring of permanent filesystem us-
age

0 Security

- Checking for unauthorized superuser access

- Checking for incorrect users in the /etc/passwd file

- Checking for unauthorized members in system
groups

0 Disaster Recovery

- Backing up of critical system files to root and /usr

When I attended the 1990 REXX Symposium, I learned of
a product, called Uni-REXX that is a REXX interpreter for
Unix systems. After returning to work I recommended that
we purchase this product. I was asked to provide a justifica-
tion as to why we needed this product and how we could use
it on our UTS systems at the Corporate Computer Center. I
began to make a list of ways to use REXX under UTS. Since
that time, the list has grown to contain 43 separate items,

-
System accounting generates usage reports on UTS each
night. Sometimes the processing software encounters
unrecoverable errors. Stewards should check daily to
ensure that all of the accounting data from the previ-
ous day has been processed. If this is not done, critical
charge-back d a t a is not processed to bill CCS UTS cus-
tomers.

0 Check for successful completion of accounting. This can
be automatically checked by a program which notifies
the system steward only if problems were detected.

0 Dump Management:
The /dump and /usr/amdahl/dump filesystems are used
t o hold the current dump file and previous system
dumps. When a UTS system panics (abends), an image
of system storage is written into a file named dump in
the /dump directory. Due to the storage sizes of some
of the UTS systems, this filesystem can typically hold
only one dump at a time. Previous system dumps are
copied into the /usr/amdahl/dump filesystem for exami-
nation. Here are some of the things that may be checked
automatically using REXX are:

- Make sure that a dump file is on this directory.
Create one using the makedump(ln1) command if
dump not found.

- Make sure that the dump file is the only file in this
directory. All other files associated with dumps
should be placed in the /usr/amdahl/dump direc-
tory. Files found which are not associated with
dumps should be removed.

- Check the %full (blocks and inodes) of the filesys-
tems.

- Ensure that the following directory scheme is
adhered to for each of the files found in the
/usr/amdahl/dump directory: a README file
that contains a description of why the system was
down, the dump file, a copy of the related ker-
nel (/uts at the t ime of the dump), a copy of the
console log (/usr/spool/console/<dump-date>), a
copy of the /etc/devicelist.

Following is an example of how the directory structure un-
derneath /usr/amdahl/cump could be organized. Note that
the ”0304” in the ”/dump0304” represents the date of the
dump 03/04 of the current year.

0 Checking console logs for system and device errors. The
system console log contains information about current
and significant events on the UTS system. Sometimes it
contains sensitive information such as passwords, admin-
istrative commands, and system operation information
which is not suitable for clients. Some of the important
pieces of information contained in the console process
stack error messages, unsuccessful logon attempts.

226

several things to be checked daily, concerning these di-
rectories: /usr/amdahl/dump

I
+-------------------+-------------------+ - Remove all files and directories older than a pre-

I I I determined amount of time.

I I I (blocks and inodes) is greater than a predetermined
/dump0201 /dump0304 /dump0310 - Warn system stewards and operators when %full

+--+--+--+---+ +---+--+--+---+ +--+--+--+---+ threshold and again a t 90%.
I I I I I I I l l I I I I I I

I I I I I I
dump I uts I d e v l s t dump I uts I d e v l s t dump I u t s I d e v l s t

README console README console README console

- When 90% full (blocks and inodes) and files greater
than 3 days old have been removed, remove those
over 2 days and then those over 1 day old. If it is
still full, then start removing files in reverse time
order. (1s -It ... older files first)

- Unsuccessful login attempts Continuous montoring of permanent filesystem usage.
From time to time (at least one per day), filesystems

- Device Data Checks, Equipment Checks, and Unit on UTS run out of blocks or inodes. The kernel only
Checks places a message on the console once the filesystem is

- Line timeouts and restarts (PVM, 3274e) full. Through the use of programs and the df(1m) com-

- Missing Interrupts mand, we can continually monitor the usage of filesys-
tems and alert the appropriate personnel when they be-

- Process error messages (ie. Stack too Large) gan to become full.

- Tape mount request information

Following are some the things which may be checked au- Security
tomatically and responded to/reported on via programs.

- Permissions, owners, and groups of files in the
/usr/spool/ directory. These files/directories may
be checked daily and may correct the problem as
well as report it to the system steward.

- System Error Messages such as those listed be-
low, may be collected and delivered to the ap-
propriate groups. Note that the possible groups
are listed after each message: Data Checks
(UTSISSS), Unit Checks (UTS/SSS), Equipment
Checks (UTS/SSS), Unsuccessful logon attempts
(Computer Security), RSCS shutdown/restarts
(UTSITSG), PVM shutdown/restarts
(UTSITSG), Line timeouts (UTS/TSG), Process
stack too large (UTS/TSG), Out of paging/swap
space (UTS/TSG, UTS/SSS), Ethernet network
unavailable (UTS/TSG)

- The console log contains information about tape
mounts. It shows when a mount request was re-
ceived, when the request was satisfied, and when
the tape user completed use of the tape. From this
information, we can generate the following types
of reports: How many tapes were requested for
the day, How long (including average times) tapes
were mounted, How many tapes were mounted
over 3 shifts (grave, day, swing), How long it
took to satisfy mount requests (including average
mount times), Flagging of tape mounts which take
longer than a predetermined threshold (currently
10 min.).

Daily cleanup of temporary filesystems like /tmp,
/usr/tmp, and /free. These directories are used to hold
temporary information on our UTS systems. All users
are able write to these directories, and don’t always re-
move their temporary files when they are done. Because
of this, these directories run out of space. Following are

227

Checking for unauthorized superuser access. On UTS,
the super-user account has complete authority over the
system. This user can read or write any file on the sys-
tem, it can change anyone’s password without security
restrictions, it can kill any process on the system, mod-
ify the kernel and system source code, and write directly
to any device on the system. Each of these priviledges
is something that should only be available to a select
number of system users, therefore access to super-user
should be monitored daily to make sure that only autho-
rized users have this ability. Information about super-
user access is logged by the system. It is possible to
check this log for unauthorized accesses and unsuccess-
ful attempts. This information can be delivered daily to
the system stewards for action.

Checking for incorrect users in the /etc/passwd file. The
/etc/passwd file contains a list of the users who are valid
to UTS. This file should be checked for inconsistancies
and potential security holes.

- Find users with home directories and .login, .cshrc,
and .profiles that are accessible to others. No-
tify these users of the problem, and of the poten-
tial problems of having these files open to others.
Change these settings after two weeks/month of
notification.

- Make sure that expired users have a login shell of
/usr/dirm/bin/bye

- Check users no passwords.

Checking for unauthorized members in system groups.
The group permissions of files play a large part in deter-
mining who can access them. It is important that the
permissions of these files are set correctly and that the
members of certain groups are checked regularly.

- Valid system groups and users kept in the control
file.

- Groups to check are: bin, mail, adm, oper, sys,
tape, dev, uidadm

Disaster Recovery
Backing up of critical system files to root and /us1 Due to

the importance of some system files, it is necessary to have
a backup online in case the file is inadvertantly changed or
destroyed. It is possible to have this function done via a
program which runs daily. These files should be backed up
onto two separate disk volumes to minimize the chances of
both copies being destroyed.

Should be kept backed up both on root and USI volumes.
(/.critsave and /usr/dirm/tsg/.critsave)

The files to be backed up are as follows: /etc/devicelist,
Jetc Jpasswd, /etc/group, /etc/identity,
Jetc/identitydefs,
/etc/inittab, /etcJhosts, /etcJservices, /etc/netinfo.db,
/etc/netstart, Jetc/profile, /etcJrc, /etc/bcheckrc,
JetcJbrc, /etcJlocal.rc, Jusr/spool/cron/crontabs/root

These should be written to tape weekly.

Examples

I tmpfsc1n.rex I
I I
I C leans up the1
I temporary I
I f i l e s y s t e m s . I
I I

I daemonchk.rex I
I I
I Ensures tha t I
I a l l system I
I daemons a r e I
I running. I

I su logchk.rex I
I I
I Checks f o r I
1 unauthor ized I
I super-user I
I a c c e s s . I
+--------------+

c r i t i c a l s a v I I f indem.rex 1
I I t a p e i n f o . r e x I

Backs up I I I
c r i t i c a l I I Finds mount I
system f i l e s . I I t imes of t a p e I

I I mounts. I
I I I

The next example demonstrates how the system is put to-
gether. These routines are called from the cron(1m) com-
mand. They are executed at regular intervals and typically
produce exception reports. I have included a copy of the
source code of the daemonchk.rex program which checks to
make sure that all of the system daemons listed in the control
file are actually running on the system. I have also included
the lines from the control file which this exec uses to initialize
the daemonlist variable as well as a copy of the crontab file
used to automatically execute these execs. This exec demon-
strates the power of using the functions of Unix along with
the power of the REXX language.

Sample crontab file:

min hour day month day-of-week command

#(0-59) (0-23) (1-31) (1-12) (0-6
Sunday=O)

#---

System Steward
#---

-> Check d i s k f u l l p e r c e n t a g e s a n d n o t i f y c o n t a c t s .
0 6,16 * * 1-5 rexx /autoops/steuards/diskperc

-> Check d i sk fu l l pe rcen tage eve ry hour du r ing day
0 7-14 * * 1-5 rexx /autoops/stewards/diskperc
0 16-18 * * 1-5 rexx /autoops/stewards/diskperc

Check d i s k f u l l p e r c e n t e v e r y h o u r d u r i n g o f f s h i f t
0 20.22 * * 1-5 rexx /autoops/stewards/diskperc
0 0 , 2 , 4 * * 1-5 rexx /autoops/stewards/diskperc

-> Check t o make s u r e that system daemons are running
-> every 5 min. during the day.
0 ,5 ,10,15 6-18 * * 1-5 r e x x /autoops/stewards/daemonchk
20,25,30 6-18 * * 1-5 r e x x /autoops/stenards/daemonchk
35,40,45 6-18 * * 1-5 r e x x /autoops/stewards/daemonchk
50,55 6-18 * * 1-5 rexx /autoops/stewards/daemonchk

-> Check t o make s u r e that system daemons are running
-> every 15 min. d u r i n g o f f s h i f t .
0,15,30,45 19-5 * * 1-5 rexx /autoops/stewards/daemonchk

Automated Operations
#---

0 0 * * 0-6 rexx /autoops/tpmnts/findem

S e c u r i t y
#---

31 2 * * 1 rexx /autoops/.security/passwdchk mail nomsg
35 0 * * 1-5 rexx /autoops/.security/criticalsav
0 5 * * 0-6 rexx /autoops/.security/grpchk
#O 5 * * 0-6 rexx /autoops/.security/tmpfscln
#O 3 * * 0 ,3 ,5 r exx /autoops/.security/sulogchk

Control file lines:

s t e w a r d j l j 5 0
daemon <swap> < i n i t > <wss-dmn> <wss-steal> < f l u s h >

228

daemon <sys-O> <sys-l> <sys-2> <sys-3) osmcat
daemon cron nadaemon admin802 tpdaemon
daemon l p s c h e d r e r e a d s p l s tdmr dbspvsr
daemon portmap
daemon adminllc ipadmin tacomad biod
daemon mountd nfsd sendmai l ine td sts
daemon s l i n k m r dbcopyd rscsd
daemon errdemon

DAEMONCHK.REX Program Code:

/* REXX .
* *
* Name: daemonchk *
* Date: 02/04/91 *
* Time: 03:59:40 *
* Auth: Jonathon Jenkins *
* *
* This exec will check t o make sure t h a t a l l *
* of the system daemons l i s t e d in the c o n t r o l *
* f i l e are running on the sys tem. It will *
* p r i n t them i f more than 5 copies a r e running *
* *
.
* Change His tory *
------------+----------------------------------
* Date I D e s c r i p t i o n of Changes * *------------+----------------------------------*
* *
* *
* *
.

addres s un ix
=x .
found.=O
daemonlis t=”
control-file=’/autoops/control-file’

do queued0 ; p u l l ; end
x=popen(’/bin/grep system-daemons ’control-file)
do while queuedO>O

p a r s e p u l l keyword . 1 r e s t - o f - l i n e
if keyword=’system-daemons’ t h e n do

p a r s e v a l u e r e s t - o f - l i n e with . daemons
daemonlist=daemonlist daemons
end

end

do q u e u e d o ; p u l l ; end
x=popen(’/bin/ps -e I /bin/grep -v g e t t y ’)
do while queuedO>O

p a r s e p u l l . . . daemon
daemon=translate(daemon,’-’,’ ’)
if wordpos(daemon,daemonlist)/=O t h e n

found.daemon=found.daemon+i
end

do count=l t o nords(daemon1ist)
daemon=word(daemonlist , count)
if found.daemon=O t h e n

say ’daemonchk: ’daemon’ was no t found’ ,
’ running on the system.’

i f found.daemon>25 t h e n
say ’daemonchk: ’found.daemon daemon’ were’,

found t o be running i n the sys t em. ’
end

e x i t

My management is currently planning to purchase the Unix-
REXX product from Wrk/Grp pending the availability of
funds. I used a copy of the product that was used to port
the interpreter over to UTS to test this code.

REXX on any system
F. S. Ophof

I’m basically a CMS user on the systems maintenance side,
trying to find out what UN’X means (kicking and screaming
all the way...).

My introduction to REXX was on an IBM 4331 running
CMS a few months after starting to program in EXECZ. This
was at DELFT HYDRAULICS, my employer at the time.
EXEC2 did not really seem an attractive one to write XEDIT
macros in, so I took to REXX like a fish to water and never
looked back.

Personal REXX and Kedit made the P C a more attractive
tool for the CMS users. This led to problems porting applica-
tions from CMS to the PC and more people were using both
versions of REXX, one on the mainframe, the other on their
PC.

A new policy at DELFT HYDRAULICS dictated that
VMS, CMS, NOS-VE, and PCs were to be replaced by UN*X
where possible. The CMS users wouldn’t really be happy
with vi (which they spelled Y-U-K). So from the user sup-
port point of view I looked around for a UN*X version of
REXX and XEDIT, mainly via e-mail.

It was Alan Thew who mentioned uni-REXX and uni-
XEDIT. My hope was the implementors hadn’t followed
the “include everything but the kitchen-sink’’ philosophy.
Well, the Workstation Group was distributing a very clean,
CMS-like version of REXX and XEDIT. Cleaner than I first
thought. But it wasn’t available yet for the HP 9000 series
800, the machine in use at DELFT HYDRAULICS.

In the meantime Alan and I were discussing REXX (and
XEDIT) on UN*X with Ed Spire. My main contention was,
and still very much is, that what functionality doesn’t belong
in a program should not be included. This is in line with the
UN*X philosophy of making each tool do its own thing well.
I would like to add “and only its own thing”.

Uni-REXX and uni-XEDIT for the 800 model arrived, were
installed at DELFT HYDRAULICS, and have been in use a
couple of months. The last I heard is that they were very
happy with these UN*X versions.

REXX on any system - What a wonderful idea.
REXX has been implemented on a respectable number of

operating systems. And there is no problem using REXX, as
long as programs built for a specific operating system stay
there.

But when interoperability is needed ...

229

Each operating system has its own peculiarities. So each
REXX implementation needs to be adapted to that environ-
ment. The result is that no two implementations are identical.
The main differences are in:

0 1/0 models (byte streams on UN*X, records on CMS),

e file specification (/dir/subdir/partI.part2.etc on UN*X,
FILENAME FILETYPE FMD on CMS),

0 and operating system philosophy (filters in UN*X, eier-
legende MilchSau in CMS, “hog all memory and do it
m y way” in DOS).

So when an application is copied from one operating system
to another, it comes down to virtually rewriting the whole
thing.

This is not my idea of “REXX on any system’’ ...
To be able to have interoperability apply to REXX, the

following might need to be done:

0 Make REXX programs completely independent of oper-
ating systems.

Modify REXX so it can recognize for which opsys the
program was originally written and interpret accord-
ingly.

Opsys independency - Beautiful! Can it be done? If so,
what is needed? Externalize the 1/0 model? Modify the 1/0
model so the syntax is valid for any conceivable system?

Would a complete rewrite of REXX be necessary? Or could
it be done with a number of additions/extensions? What
about current users of REXX?

A lot of questions ...
Recognize the opsys: this could be done with an exter-

nal set of functions and procedures. Con: Each new imple-
mentation of REXX would create the need for new sets of
translators (being twice the number of already existent im-
plementations). Pro: One would only need the translation
set(s) for those opsyses on expects to translate from.

Any change to REXX i tself to achieve this would of course
need to be independent of implementation, since one cannot
expect the user to buy a new version of REXX for each new
implementation to become available.

A logical extension would be to create a “neutral” set of
functions and procedures to bring down the number of trans-
lations sets. And so we are just about back at the first pos-
sibility (independency of opsys).

As to the Uni-REXX implementation, it’s quite “clean” (in
uni-REXX the cd function is necessary). Some of the other
implementations could use a bit of clean-up as to modularity.

Statements and functions which are not REXX specific
should be relegated to external programs [or] function pack-
ages.

The manuals should state clearly which are standard
REXX statements/functions, which are implementation de-
pendent, and which are add-ons the implementor offers.

Examples:

DIAG() in the CMS implementation.

0 The whole hardware and DOS groups of functions in
Personal REXX.

Add-on due to presentations already here:
230

UN*X has multi-tasking. How does this affect the SIG-
NAL statement? Would SIGNAL need to be enhanced
for UN*X? And, how does this affect interoperability?
Would implementing the enhancements in UN*X (even
as NOP) be a good idea to copy to other implementa-
tions?

Replacing, inserting, deleting a line within a CMS file
is very easy without destroying the rest of the file. But
using LINEOUT() looses everything after the last line
worked on. My reaction was major panic. So on the P C
I use EXECIO, not the REXX 1/0 facilities.

Since regular expressions are dependent on the operating
system, why include it in REXX? It’s not part of REXX
itself.

REXX on UNIX ... what’s the point?
S. Drake

Moderator’s note: Sam’s well-groomed slides appear sepa-
rately in these proceedings.

Moderator’s Note: The poor was opened for audience com-
ment, and a l ively discussion ensued. A splendid t ime was
had by all.

REXX in UNIX
What’s the Point?

Sam Drake

IBM Almaden Research Center
650 Harry Road

San Jose CA 951 20-6099
BITNET: DRAKE at ALMADEN

Internet: drake@almaden.ibm.com

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

Sun Jose CA 951 20-6099

231

mailto:drake@almaden.ibm.com

My Predjudices

Former "VM Bigot"
4t Used REXX as programm ing

language, macro language under
XEDIT and other programs

Couldn't survive without it
Now an "AIX Bigot"

// 4t Tried to make a "clean break
46 After four years, I still can't write a

shell script
And I'm darned proud of

IBM Almaden
Research Center

650 Harry Road

REXX Symposium

Sun Jose CA 951 20-6099

232

UNlX state-of-the-art

Two "classic" shell script languages
* Bourne Shell, C-Shell

language
* AWK

One "classic" data manipulation

Two 'modern" languages
* Korn shell
* Per1

No unified macro languages
All are powerful, crypfic, unfriendly

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

San Jose CA 951 20-6099

233

Korn shell example

case $1 i n
1) # keep current

pr int -r - " $PwD "
return

n=x+${l}-1 type=2
i f ((type<3))
then x=4
f i

#default

esac

dir

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

San Jose CA 951 20-6099

234

Per1

Relatively new language
By Larry Wall
Implementation, documentation

Combines:
publically available

4@ Good interpreted shell script
language

Good data man
Excellen

ipulation language
t access to native UNlX

facilities
I can think in REXX and write PERL!!!!!!!!

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

Sun Jose CA 951 20-6099

235

Per1 Example (in REXXish Style)

$name =
while (<>) {

\\ \\ 0

I

$line = $ - ;
chop ($line) ;
@words = split ($line) 0

I

$lastword = $words[$#words];
print "Last word = $lastword";

1

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

Sun Jose CA 951 20-6099

236

Why REXX in UNIX

Existing shell sc r
arcane

'ipt languages are very

Port existing REXX programs to UNIX
Universal macro language 1 1 1 a R€XX

exclusive

IBM Alrnaden
Research Cenfer

REXX Symposium
650 Harry Road

San Jose CA 951 20-6099

237

Issues with REXX in UNIX

Existing shell languages are rich,

REXX “looks foreign” in UNlX
powerful, universal

* The C heritage of UNIX pervades

4t REXX doesn’t look like C
EXECCOMM . . difficult!?!?!?
What should the default

Access to UNlX built-in features

everything.

subcommand environment look like?

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

Sun Jose CA 951 20-6099

238

Summary
~~

REXX in UNIX can play two key roles:
Portable, easy to use shell script

language
Common embedded

language
There is stiff competition

macro

for the former,

REXX cou d dominate the latter,

IBM Almaden
Research Center

REXX Symposium
650 Harry Road

Sun Jose CA 951 20-6099

239

