
PROGRAMMING WITH OBJECTS: A REXX-BASED APPROACH

E X GIGUERE AND ROB VEITCH
1 JNNERSITV OF WATERLOO

46

Programming With Objects:
A REXX-Based Approach

Eric Gigu6re
Rob Veitch

Computer Systems Group
University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

giguereQcsg.uwater1oo.ca
rgv0csg.uwaterloo.ca

Introduction

The emergence of graphically-oriented user interfaces (GUIs) on a variety of multitasking platforms gives
rise to a whole new set of problems for REXX language implementors. What do you do when a console-
oriented language like REXX is to be ported to an environment like Microsoft Windows that lacks any
kind of command-line environment? How does a user access the GUI from REXX to create dialogs?
What changes are required to a REXX interpreter for it to function in a multitasking environment?

These are some of the issues we tackled in implementing a REXX interpreter, WRexx, for use in the
Microsoft Windows environment. This paper discusses our approaches to solving these problems, con-
centrating for the most part on the REXX-to-GUI interface, where we feel the interesting and original
work of this implementation lies. (Readers with no Windows programming experience may wish to read
the appendix for a quick overview of Windows.)

Note: Throughout this paper, Windows refers to the Microsoft Windows environment, X11 refers to
the base X Window System, X t refers to the X Toolkit and DOS refers to MS-DOS/PC-DOS.

1. Adapting The REXX Console Model

The REXX language assumes the existence of a console through which it can interact with a user. The
SAY instruction is the most obvious example:

say "Please enter your name:"
p u l l name

47

Programming With Objects: A REXX-Based Approach

This model works well on systems like DOS, CMS, Unix (text mode) and OS/2 (text mode), where a
console is the normal mode of operation. It also works well on hybrid systems like X11 and the Amiga,
where virtual consoles coexist within the GUI environment. Systems like the Macintosh and Windows,
however, do not provide operating system support for consoles. Consoles become the responsibility of
the REXX environment.

WRexx uses a virtual console to handle user interaction and tracing, and a separate virtual console for
displaying error messages. The consoles are windows that can be moved and resized like any conventional
window. Users can also scroll through the console's contents using the cursor keys or the scrollbars.
Neither console is displayed until input or output occurs, and once visible remains onscreen until explicitly
closed.

WRexx also adds a virtual console stream type to the REXX 1/0 model:

c a l l l i n e o u t 'con:My Window', 'Hello, world'

The consoles can be used with any of the stream-based functions.

2. UI Options for REXX

While virtual console support allows a REXX interpreter to function in a GUI environment, the inter-
preter will be more useful if it can also use the environment. Instead of consoles, REXX programs can
use windows, buttons, edit fields and other user interface objects to interact with the user.

When designing WRexx we considered three options for adding GUI access to REXX:

1. Language extensions. Extending the REXX language to include new instructions and program-
ming structures for building dialogs, menus and so on.

2. UI-oriented funct ions. Adding functions like CreateMenu(), CreatePushButton(),
ShowWindow(), etc., as BIFs or through an external function library.

3. Object-or iented functions. Adding functions like UICreate (), UISet (), U I G e t (), etc. These
functions work on generic user interface objects.

There are advantages and disadvantages to each approach. Language extensions make it easy to connect
individual objects and events with REXX code:

menu "Fi le"
item "Open. . . "

c a l l OpenFile
item "Exit"

e x i t
endmenu

But such extensions are also completely non-portable and may require other changes to the REXX
language. We rejected this approach because we wanted to remain faithful to the language as defined
by Cowlishaw's book [Cowlishaw 901.

Programming With Objects: A REXX-Based Approach

Once the function-based approach was chosen, it became a matter of choosing between the two kinds of
function libraries: very specific, UI-oriented functions, or more generic, object-oriented functions. We
eventually settled on the object-oriented approach (described in the next section) because we felt it
would be a more consistent and extensible interface, even though UI-oriented functions are the more
traditional approach for REXX extensions.

3. The OOUI Library

The WRexx GUI library is known simply as the “OOUI” (object-oriented user interface, pronouced oo-
ee) library. It is implemented as a Windows dynamic link library (DLL) and is only needed by REXX
programs that wish to access the Windows GUI.

3.1 Objects and Classes

The OOUI library implements a hierarchical class structure of window objects such as edit fields, but-
tons and various containers, Each object has a set of properties that determines its current state and
behaviour, as well as a set of methods to alter that state. The properties, methods and behaviour of an
object are defined by its class. The library is hierarchical in the sense that each class inherits properties,
methods and behaviour from a parent class or superclass. The subclass usually adds new properties or
methods to those of the superclass. The current OOUI class hierarchy is shown in Figure 1. It is based
for the most part on the window types defined by Microsoft Windows.

C programmers can also use the facilities provided by the OOUI DLL to write their own DLLs to
implement new cIasses and subclasses.

3.2 Object Manipulation

Objects are manipulated from within WRexx using five functions. UICreateO creates an object of a
given class and UIDestroy() destroys an object. UISet () and UIGet () are used to set and retrieve
property values, while UIMethodO invokes a method. Objects are identified by handle (returned by
UICreate()) or by name (assigned by the user).

Objects are also created hierarchically. Except for objects called Forms, each object has a parent object
on the screen which affects the child’s positioning and other properties. Each object tree is rooted on a
Form, which is a top-level (application or dialog) window.

For example, the following code creates a blank Form on the screen and immediately centers it:

f = UICreate(’Form’ , ’ v i s i b l e ’ , ’ t r u e ’ , ,

c a l l UIMethod f , ’centerwindow ’
’he igh t ’ , 100, ’width’, 200)

This example attaches some text and a button to the Form:

f = UICreate(’Form’ , ’ v i s i b l e ’ , ’ f a l s e ’)

49

Programming With Objects: A REXX-Based Approach

Figure 1: Viewing the OOUI Class Hierarchy

t = UICreate(f, ’TextBox’, ’caption’, ’This i s some t e x t ’
p = UICreate(f, ’PushButtonJ, ’capt ion’ , ’Press He! ’)
c a l l UISet f, ’ v i s i b l e ’ , ’ t r u e ’

Because the Form is the parent object for both the TextBox and the PushButton, neither child object
will be shown until the Form itself is made visible.

Note: Form and GroupBox objects include behaviour (which may be turned off) for automatically
resizing and positioning their children, thus freeing the programmer from having to specify absolute
coordinates when positioning objects.

When finished with an object, a call to UIDestroy () recursively destroys an object and all of its children.

3.3 Events and REXX

Objects will generate events whenever something interesting occurs; for example, when a pushbutton is
clicked. These events must be passed to the REXX program that created the objects so that the program
can respond to the user. This is done using event strings for each object’s events. The event string is
merely a string that is associated with a specific event. The string will be returned to the REXX program
whenever that event occurs. The REXX program checks for pending events by calling the UIEvent ()
function, which will return the next event string. For example, the PushButton object has a “click”

50

Programming With Objects: A REXX-Based Approach

Figure 2: Running ‘click.rex’

event signifykg that the user has clicked on the button. The following program demonstrates the use
of event strings:

/* c l i c k . r e x */

do fo reve r
interpret UIEventO

end

F i r s t p r e s s :
c a l l UISet p , ’ cap t ion ’ , ’You pressed me
count = I
c a l l UISet p , ’ c l i ck ’ , ’ ca l l Nex tp res s ’
return

once ! ’

Nextpress:
count = count + I
c a l l UISet p , ’ cap t ion ’ , ’You pressed me’ count ’times!’
r e t u r n

The program creates a form with two pushbuttons and then enters an event loop, waiting for user events
to occur. When the user presses a button, an event string is returned to the program and the program
executes it using the i n t e rp re t statement.

Notice that no language modifications or extensions were necessary to add GUI support to
REXX, only clever use of t he i n t e rp re t instruction.

In some cases it may not be obvious to which object an event belongs. The UIInfo() function can be
used to obtain this and other information on the string most recently returned by UIEvent ().

51

Programming With Objects: A REXX-Based Approach

o . l . - . ~ . : ~ Graphical REXX Application D$elopm,ent ',. a

, . . : > ,>,-.

- File Edit Ioo ls Code

Figure 3: The GRAD Tool

4. Programming With OOUI

After using the OOUI library and REXX, three things become apparent:

1. The traditional REXX program s t r u c t u r e i s no longer suitable. REXX programs typically
consist of a single file, augmented with external (and independent) functions. However, even the
simplest REXX application under Windows may display several Forms with numerous objects on
each form. The single-file approach in this case leads to monolithic programs that take longer to
load and are harder to debug. Performance is improved and debugging made simpler (and code
reuse encouraged) if an OOUI-based program is split across multiple small REXX files.

2. Exposing variables across files is extremely useful. Splitting a program into several files is
much more tolerable if variables can be exposed across files. WRexx has been extended so that
procedure expose will expose variables across file boundaries. (This feature becomes invaluable
to the programmer in a very short time.)

3. OOUI programming is ugly, so automated tools are needed. Adding object-oriented con-
cepts to a procedural language almost always seems to lead to ugly code, and REXX is no exception
to the rule. Writing the REXX programs to display complicated dialogs is itself a complicated
process if all the programmer has is a text editor to work with. Tools such as the class browser
(Figure 1) and GRAD' (Graphical REXX Application Development, Figure 3) can be of immense
help.

An issue that also comes up when using the OOUI library is that of multiple independent (i.e., modeless)
Forms. There is only one call to UIEvent 0 active at any time (because there is only a single thread
of execution within a REXX program), and it may be in a different file or procedure. Problems can
then arise due to scoping issues. Luckily, there are few situations where modeless Forms are required.
(Problems do not arise with modal Forms because the previously active Form is always disabled before
the new one is made active.)

'The reader may find it interesting to note that both the browser and the GRAD tool are themselves written in REXX.

52

Programming With Objects: A REXX-Based Approach

5. Conclusions

Virtual consoles and the OOUI function library allow WRexx to thrive in the Windows environment.
With them, REXX can be used both as a general-purpose scripting language (which Windows lacks) or
for implementing real applications.

Appendix A. A Crash Course on Windows Programming

Readers with no GUI programming experience will discover that there is a substantial learning curve
involved in developing for systems such as Microsoft Windows. This section is intended to provide you
with enough information to understand the rest of the paper, but for more complete treatments of GUI
programming models please refer to the bibliography. (Note: The Windows programming model is
almost identical to the model used by the O S / 2 Presentation Manager. Readers with PM experience
should have little trouble understanding the terminology used throughout this paper.)

What is Microsoft Windows?

Windows is a multitasking environment built on top of DOS. It provides a windowing environment,
device-independent graphics and inter-application communication (IAC) facilities. Windows applications
will not run under DOS, as they use a completely different application programming interface (API) and
a different programming model. Windows can emulate a DOS environment (the so-called “DOS box”)
in which to run DOS programs, but such programs cannot take advantage of Windows’ features.

The multitasking model used by Windows is often termed cooperative multitasking: each Windows
application will run until it voluntarily releases control of the CPU, at which time Windows will switch
control to another application. Well-behaved applications must ensure that they give up the CPU at
small time intervals. Unlike OS/2, Windows is not a preemptive system, nor does it support threads
(lightweight processes). Because of this there are no semaphores or other means of task synchronization.

Programs and User Interaction

Like other GUI platforms, Windows uses an event-driven programming model. Applications create one
or more windows, to which are attached user interface objects such as buttons and menus. The programs
then wait for user events (such as clicking on a button or pressing a key) to occur. When an event occurs,
Windows sends a message to the application that “owns” the event. The message is added to the end
of a queue which the application continually checks for new messages. Each Windows application has a
loop in it to do this (in pseudo-code):

do forever
get next event
process event

end

53

I

Programming With Objects: A REXX-Based Approach

The same type ofloop is used in Macintosh, Amiga and X11 applications. In Windows (and PM) the loop
serves mainly to demultiplex the application message queue, dispatching messages to the appropriate
window procedure. When you create a window (or more accurately, a window class) you register a
window procedure to handle that window’s events, including those that bypass the application message
queue.

do fo reve r
get next event
d i spa tch event

end

window procedure:
case message i s BUTTONDOWN

e t c .
....

end procedure

Note that Xt applications (this includes Motif applications) take this demultiplexing one step further by
registering callback routines for each event of interest.

Dynamic Link Libraries

The Dynamic Link Library (DLL) is a method for sharing code and resources between Windows appli-
cations. (Windows itself is implemented as a set of DLLs.) A DLL is a run-time library that is loaded
into memory on demand and dynamically linked to an application. Applications can call DLL routines
just like normal (statically-linked) library routines.

One important feature of a DLL is that it has its own dataspace, shared by all tasks using the DLL.
(Note: OS/2 has DLLs as well, but OS/2 DLLs have a separate dataspace for each process.)

Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a form of inter-application communication. Applications communi-
cate by setting up DDE “conversations” using invisible windows and a well-defined protoc.01. Communi-
cation is done by sending messages to these windows. The DDE protocol includes facilities for sending
commands and for maintaining data links.

References

[Cowlishaw 901 M. F. Cowlishaw. The REXX Language: A Practical Approach to Programming, 2nd
edition, Prentice-Hall, 1990.

54

