
RD~(~OOI--CHOSEN LANGUAGE OF MAN AND MACHINE 

MARC VINCENT (RVIN 
MANAGEMENT  VISIONS  INSTITUTE 

139 



SPEAKER: 

FROM : 

EVENT : 

DATE : 

OBJECTIVE: 

TITLE : 

THESIS: 

PREMISE: 

Marc  Vincent  irvin 

Management  Visions  Institute 

REXX  Symposium 1992 (May  4th  and  5th) 

Copyright 5/92 

Show NL reality, and  power NL can give  REXX 

REXX2001 - Chosen  Language  of Man and  Machine 
Subtle  adjustments to REXX  could  make  it the 
premier  language f o r  intelligent systems 
and  occasional  programmers. 

If  science  fiction is any  barometer,  we are 
heading  toward  computers  able to understand 
what we say, and  say  what  they  understand. 
Many  feel that  day is far  away  because  any 
system  that  smart  requires  human 
intelligence; true human  intelligence, 
according to AI  experts,  won't  be  in  our  life 
times.  Those  experts are wrong. A language 
that  needs  no  programming class, and responds 
coherently to English could, according to my 
experiments  with REXX, Expert Systems (ES), 
and  Natural  Language  (NL) , be on Personal 
Computers  (PCs) in no  time. The secret to 
achieving  the  goal  ahead  of  schedule  lies  in 
purging  all  the  unnecessary  baggage  left  over 
from the evolution  of  computers. 

When  computers  were  first  conceived  they 
were  expected to handle the same kinds of 
information  people  do:  words,  numbers,  and 
symbols.  After  their  invention  reality  set 
in  with bits and  bytes, disks and tapes, 
sequential  and  random files, relative  and 
hierarchical  databases,  and on and  on  and 
on...  REXX  and cover  functions can do away 
with  most of the  junk that waste programming 
time.  Once  purged REXX, ES, and NL can work 
together  to  produce a language  that 
occasional  programmers  will  love,  and 
professional  programmers can build 
intelligent  systems  with. 

140 



EMPOWERING  CODERS  FOR THE 21ST CENTURY 

Hardware computing  power has grown  geometrically  over the 
past  twenty  five  years.  Software  computing  power has grown 
very  little. It is  easy to  see why this is. The hard 
problems in hardware  have  been  bridged  and  standardized 
because  hardware is directed by a  predictable  element - 
computer programs. On the other hand, software has no  such 
luxury. The hard  problems  in software are precipitous  and 
transient  because  software is directed  by an unpredictable 
element - human  programmers.  Achieving similar gains is not 
impossible,  however. The hard  problems in software can be 
bridged  and  standardized if software is directed by 
predictable  elements  that  cultivate the unpredictable 
natures of human  programmers.  Below is a  list of road 
blocks  programmers face, a proposed set of solutions, and  a 
some recent experiments  devoted to empowering  programmers. 

Road  blocks to empowering  programmers  for the 21st Century. 

1. Differing data, field,  and  integer  types. 
2. Differing  call  formats  and  complex  command  syntax. 
3 .  Differing  sub-system  interfaces  and data access methods. 
4. Lack of real-time  development  and  run-time  features. 
5. Lack of interactive  and  friendly  development  methods. 
6. Lack of cognitive  psych,  decision support, and AI models. 

Solutions to empowering  programmers for the 21st  Century. 

1. Dynamic  data  typing by use on words, numbers  and  symbols. 
2.  Common  call  methods  with  toggling  for  special  syntax  use. 
3 .  Cover functions  whose  inputs  look the same to all users. 
4 .  Add  date/time  based  initiators  and  scripts. 
5. Workspaces, smart debug  features,  and  natural  language. 
6. Intergrate  Rule,  Case, Genetic, Object, & Neural  Models. 

My experiments  with  empowering  programmers for 21st  Century. 

1. Using  REXX as a  platform gets around  first  road  block. 
2. RUN() uses  interpret  not CALL, and  ES/NL  options  toggle. 
3 .  FILECHNG,  REXXRDR,  and  REXXWRTR  will  standardize  all I / O .  
4. CLKQUEUE  gives  temporal  power  needed  for smart programs. 
5. REXXCALC w/APL's online  tools  and  PARACODE NL syntax ANS. 
6. All  empowerments put in CLKRULES'  leave  room f o r  more. 

141 (C)Copyright 05/92  By Marc Vincent lrvin 



I 

FILECHNG is a  file  copy  utility  with  options  that: 

1. Finds  fields and  replaces  them  with  other  fields. 
2. Selects  portions of a  file  or  its  records to work on. 
3 .  Input can  be  from  disk,  reader,  or VM  command. 
4. Sequence  checks,  purges  dupes, and writes  change  reports. 
5. Replace  field  can  be  used to select,  purge,  insert  data. 
6. One powerful  option  puts  code  wherever  FINDS  occur. 

One problem,  involving  RACF  based MVS security,  required  a 
list to be made of TSO  users  that  were  given  IDS, but had 
never  used  their  IDS.  Only  two  passes  of  file  change  were 
done on  an input  file  that  contained  all the multi-record 
RACF  reports  of the TSO  IDS  not  used  in the last 60  days.  A 
sample set of records  from  RACF  ID  report  follows ... 
USER=TSOUSR  NAME=TED  BUNDY  OWNER=SYSTEM  CREATED=88.289 
DEFAULT-GROUP=SYSl  PASSDATE=00.000  PASS-INTERVAL=60 
ATTRIBUTES=NONE 
REVOKE  DATE=NONE  RESUME  DATE=NONE 

NO-MODEL-NAME 
LOGON  ALLOWED  (DAYS)  (TIME) 

... 

Below  is  REXX  code  that 1) selects the  records,  and 2) 
formats  them  into  single  lines  for examination  and  display. 

/ *  MVI */ 
IFILECHNG  LISTUSER  ASOF0392  A  PASSDATE  WORK A', 

I*PICKRECSl, / *  IF  REPLACE  FIELD = // THEN  PICK  REC */ 
'USER=(l 15) //I, / *  PICK  RECORDS  WITH  USER'S ID */ 
'SSDATE=OO / / I , / *  PICK  RECS  FOR  NEVER  USED  IDS */ 
'NO-MODEL / / I ,  / *  PICK  REC  THAT  WILL  ACT  AS  RPT  END */ 

IF RC 0 THEN  EXIT 100 
'FILECHNG  PASSDATE  WORK A = = = I ,  

I *RECDLM(NO-MODEL) ' , / *  MAKE  ONE  REC  OF  MANY  RECS */ 
'*PICKRECS', / *  IF  REPLACE  FIELD // THEN  WRITE  REC */ 
ISSDATE=00.000 / / I ,  / *  PICK  NEVER USED  RECORDS  ONLY */ 
/ *  NOTE, // CAN  BE  FOLLOWED  BY  AN  EXITNAME TOO */ 
'*OUTEXIT(PASDAT:)I / *  TELL  FILECHNG NAME OF CHK LGC*/ 

IF RC 0 THEN  EXIT 200 
EXIT 000 

PASDAT: / *  THIS  ROUTINE IS READ/INTERPRETED  BY  FILECHNG */ 
PARSE  VAR  $REC 1 'USER='  UID I ' ,  

1  'CREATED='  ADDAT I I ,  

1 'SSDATE='  PASDAT ' I , 
1  'INTERVAL='  PWINT ' ' 

IF  PASDAT = '00.000' & ADDAT <= '92.004' 61 PWINT = ' 6 0 ' ,  

/ *  TO CHG O/P REC  PUT  VAL IN $REC, TO DEL  PUT IN  $REC */ 
DOC : 
SAY I REXXNAME : PASSDATE 1 

EXIT 000 

THEN  SAY  'USERID  (IUIDI)  NEVER  USED  SINCE  ADD  ON'  ADDAT 

142 ( C X o p y r i g h t  05/92 by  Marc V i n c e n t   l r v i n  



CLKQUEUE is a  scheduling  utility  with  options  that: 

1. Run VM commands  based on "date"  and/or 11time81 requested. 
2 .  Requests may  be  run once  or  requeued  every  n  days. 
3. Commands  can  be  rerun  every  n hours, minutes, or seconds. 
4 .  Time scripts are possible as CLKQUEUE can call itself. 
5. Runs have  return  codes  useable by later  clock  requests. 
6. Its powerful  options  execute  all kinds of REXX code. 

Below  is  a  ad-hoc  sampling of the many ways that REXX code 
can be  invoked on a  date  and  time  basis. 

CHKRTC: 9 2 / 0 3 / 2 2  1 . . 0 I F  L I B S F N D O  THEN  'ERASE U I D  L I B '  
LOVE: 93/02/13 0 9 : O O : O O  l . H 1 * 1 7 : 0 0 . 9 3 / 0 2 / 1 4  0 0 0 ,  

MSG * DON'T  FORGET  THE  VALENTINES DAY FLOWERS. 
VMUSERID 9 2 / 0 3 / 2 2  0 3 : O O : O O  1 . . 0,  

RUN(VMUSER1D:) / *  execute  the  command  beneath EOF */ 
I F  RC = 0 THEN DO 

'STATE  VMUSERID DATA A '  
I F  RC *= 0 

THEN SAY 'ERROR  BUILDING VM U S E R I D   F I L E . '  
ELSE SAY 'VM U S E R I D   F I L E  BUILT  OK. '  

END * RUN NEXT COMMAND ONCE  EVERY WEEK...  
GRPPRTADMBKT: 9 2 / 0 4 / 3 0  1 O : O O : O O  07 9 2 / 0 4 / 2 3   1 0 : 0 4 : 3 4  0 ,  

I F  GRPRPTADMBKT = 0 ,  
THEN DO 

'CMSQ RACFMVS GRPRPORT  GRP ADMBKT' 
I F  RC*=O  THEN  SAY  'CLKQUEUE  ERROR  RUNNING  RACF R P T '  
END 

ELSE SAY  'CLKQUEUE  ERROR  RUNNING  GRPPRTADMBKT AT' ,  
RUNTIME' . '  

* CHECK THE NETWORK EVERY 10  MINUTES. . .  
CHKNET: 9 2 / 0 4 / 2 8  1 3 : l O : O O  01.M10 9 2 / 0 4 / 2 8  13:00:09 0 CHKNET 
CMDl 9 2 / 0 1 / 2 2   1 4 : 3 0 : 0 0  1 0 0 0 DIRLOG  RSCS 
CMD2RC 9 2 / 0 1 / 2 2   2 3 : 5 9 : 0 0  01.M10 0 0 0 C P  QUERY RSCS 

9 2 / 0 1 / 2 2   2 3 : 5 9 : 0 0  01.M10 0 0 0 ,  
I F  CMD2RC = 4 5  THEN MSG O P  *** RSCS IS DOWN! *** 

CMDX: 9 2 / 0 1 / 2 2   2 3 : 5 9 : 0 0  01.M10 0 0 0 , 
I F  CMDl A =  0 & CMD2RC *= 0 THEN DO 

IfMSG Op * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' I  

"MSG OP UNABLE T O  RECOVER RSCS.  . . 'I 
END 

* RUN S P E C I A L   S E T   O F  CLOCK COMMANDS  ON  NEW YEARS DAY. 
ENDOFYEAR: 93/01/01 20:OO:OO 0 0 0 CLKQ EOYCYCLE 
EOF 
VMUSERID: 
/ *  BUILD  THE VM DIRECTORY FROM DIRMAINT  SEGMENTS */ 
' D I R B U I L D '  
'STATE  USER  DIRECT  A'  
I F  RC = 0 THEN RUNRC = 0 ;  ELSE RUNRC = RC 



REXXCALC  is  a  calculator/memory  utility  with  options  that: 

1. Calculate  variables  in  adding  machine or formula  modes. 
2. Manages  workspaces  via SAVE, LOAD,  DROP, & LIST  commands. 
3. Passes commands to VM when  they are not  calculations. 
4. Executes  REXX  code  from  command  line  or  saved  variables. 
5. Keyboard  assistant  via  CLKQUEUE's  intelligent  scheduling. 
6. Many  powerful  options give APL like  capabilities  to  REXX. 

Below is a  sample  session  where the user has to: 

1) Figure  number  of  cylinders  required for a  new  file. 
2) Test how the SUBWORD  command  works as they are 

3 )  Edit  a  function  named  BENEFITS,  change some of the 
developing  a  new  REXX  program. 

formulas, and execute it. 

REXXCALC / *  X;  prompts the user  for  a  response. */ 
REXXCALC - RELOADED 9 VARIABLES  FROM  PROFILE. 
REXX IS ACTIVATED  INTERACTIVELY.. . 
X; vars 
/ *  INIT VARIABLES  FOR  REXXCALC  EXEC */ 
$RSCS = 'CP SMSG RSCS' 
$SMART = 'CP VMC  SMART' 
$AUTOLOG = 'CP SMSG AUTOLOGl  AUTOLOG' 
$ULOG = $SMART ' D  ULOG' 
FMTDATE = TRANSLATE('34756812',910522'//','12345678') 

UTC-BFRTX = 3746 + 530 + 0 + 0 + 242 + 36 + 1015 
BEN ALLOW = 4112 
PER-CHECK - = (UTC-BFRTX - BEN_ALLOW)/24 
X; Sop  Peter  please  mount  tape 3003 on 580, Thx mvi. 
X;  $rscs q sysprtx q 
X; ben-allow / *  ask  what co paid  beny  portion is? */ 
4112 
X;  rexx  say  subword('a b c1,4) 

sop = 'CP  MSGNOH  OP' 

X;  rexx  say  subword('a b c1,2) 
B C  
X; * next  line  does  calculation  within  another  workspace. 
X; rexxcalc  ofcspace my  area = (deska+grade6space-isle) 
442 
X; weekhours = 8.5 + 9.0 + 8.0 + 8 . 0  + 9.5 
43 
X;  reccnt = 327000 
X; blksize = 4096 / *  no.  of  bytes  per  block */ 
X; bpc = 180 / *  blocks  per  cylinder */ 
X; reqcyls = forrnat(((reccnt*132)/blksize/bpc)*2,1,0) 
X; save / *  will  save  prior 5 variable. */ 
X;  xedit  benefits  calcrexx 
X;  run(benefits 5050 ben - allow) 
X; quit 
INTERACTIVE  REXX  IS  CANCELLED BY USER. 

- 

REXXCALC - SAVED 14  VARIABLES  IN  PROFILE  WORKSPACE. 

144 C)Copyright 05/92 By Marc V i n c e n t   l r v i n  



NODELOAD  is  a  tool  for  building  natural  language code that: 

1 
2 
3 

.. Compensates  for  user  spelling  errors  based on context. . Maps input  vocabulary  and  loads  them into node words. . Values  that  follow  keywords  are  put  in  its  node  word. 
4. Node  words  once set are useable  by  REXX  based  rules. 
5. REXX  based  rules can be  coded as pseudo  English. 
6. After  registration  first  node word represents  call  tag. 

Below  is  a sample of the  NODELOAD catagories, keywords, and 
basic  vocabulary  used  in  mapping  pseudo  English  grammar. It 
was inspired by an  article  written by  Richard  Brooks  titled 
''A Natural  Language  Interface to MVSfl published  in the 
October 1991 issue of the  TECHNICAL SUPPORT JOURNAL. 

INITQUES: / *  node type = node  names  allowed to follow it. */ 
TYP.START = CMND  NOISE 
TYP.  CMND = PREP TYPE ORD TGT 
TY P . PREP = 'CHK  ADDR: ORD TGT ADDR  NOISE' 
TYP.TYPE = TYPE-PREP TGT NOISE 
TY P . ADDR = PREP 
TY P . TGT = 'CHK  ADDR: PREP  ADDR TGT' 
CHK.  CMND = SHOWME SHOW  LIST GIVE PRINT DISPLAY 
CHK . PREP = AT  ON  IN TO FROM  FOR OF 
CHK . TYPE = TAPE ALLOCATION  RECORD  UR UNIT ONLINE TSO 
CHK. TGT = DISK  CPU TAPE STORAGE  MEMORY  PATH DRIVE 
CHK.NOISE = ME ADDRESS  PLEASE THE A  INFORMATION  FOR AN 
CHK  ADDR: 
PARSE VAR RUNSTR $PS $ST 
IF VER1FY(WORD($ST,$PS) , ' 0123456789ABCDEF1)  > 0 

THEN  RUNRSPNS = I 

ELSE  RUNRSPNS = 'ADDR' / *  TELL LGC  WORD IS AN  ADDRESS */ 
WHEN  FIND(ITAPE  DISK  DRIVE',TGT) > 0 THEN RUN(D0DU:) 
WHEN FIND('MEM0RY  CPU  PATH',TGT) > 0 THEN RUN(D0DM:) 
OTHERWISE  SAY TGT 'NOT  RECOGNIZED  AS  A  TARGET. 
END 

CMND: SELECT 

RUN  (ISSUECMD: ) 

Sample user  input  follows  with  diagnosis  options  turned on. 
PLS  SHOW ME THE ALLOC  INFO ON DISK 6C1 TO 6C4! 
(PLS)  miswritten,  (PLEASE)  set  instead. 
(ALLOC)  abbreviated,  (ALLOCATION) set instead. 
(INFO)  abbreviated,  (INFORMATION) set instead. 
Attribute  (NOISE)  automatically  set to (PLEASE). 
Attribute  (CMND)  automatically  set to (SHOW). 
Attribute  (TYPE)  automatically set to (ALLOCATION). 
Attribute  (NOISE)  automatically set to (INFORMATION). 
Attribute  (PREP)  automatically set to (ON) . 
Attribute  (TGT)  automatically  set to (DISK). 
Attribute  (ADDR)  automatically  set to (6C1) . 
Attribute  (PREP)  automatically  set to (TO). 
Attribute  (ADDR)  automatically  set to (6C4). 
FINALCMD = D U, DASD,  ALLOCATION, 6C1,4 

145 (C)Copyright 05/92 By Marc Vincent l rv in  



NL THEORY FOR NODELOAD 

The directed  graph  SHOW-ME  grammar  explained by Richard  Brooks 
for  developing  natural  language  commands  published  in the October 
1991 issue  of the TECHNICAL  SUPPORT JOURNAL has been  automated. 

Below are a  list of sentences  that  the  experimental  NODELOAD 
logic  can  handle  and  the  a  sample  grammar  graph. 
G l A f l t l A R  
mAPH Lst a1 usrs.  Dsply  tape 001. 

Gv  usx  dxsk  7al  for 16. 
P l s  print  me the cpu  memory, 
starting  at  address  e000. 

s in  building the llMissouri, Show 
Me"  natural  language  command  parser.  When  working  with  rule 
based PARACODE all  of the following steps are  automatic,  and 
require  no  direct  coding by the  user. The NODELOAD  example shows 
how  natural  language  is  done  without  resorting to rule  based 
code. 
1. 

2 .  

3 .  

4 .  

5 .  

6 .  

A Grammar  Graph  is  made to depict  how  the  parts of each 
sentence  will  interact.  For  example,  what type of word  can 
begin the sentence. The basic  words in the vocabulary are 
going to be  loaded  into  these  words so they  should  be 
descriptive.  Nouns,  verbs,  and  modifiers are basic  parts of 
speech  common in SVO grammars. TYP variables are used to 
fully  represent  grammar  graphs  like  the one shown above. 

TYP.attribute = attribute  names  that  can  follow 
A Vocabulary  Definition is done  using the CHK variable 
where  each  attribute  get  attached to it  all the valid  words 
that may  be  loaded  into  it. 

CHK.attribute = list  of  valid  words or symbols. 
Spelling  Verification is done  first by context  then 
against  all  attributes.  For  example, if the unrecognized 
word  follows  a  verb  and  then  only the attributes.valid after 
verbs  are  checked f o r  transposed  letter  and the like. 
Registration,  when  a  parsed  word is successfully  found 
in a  valid  CHK.attribute  list  and the word is loaded  into 
its  corresponding  attribute  for  later  use. 
Construction,  when  all  the  words  have  been  successfully 
registered  into  attributes  the  name of the first  attribute 
registered  is  used in a RUN()  statement. Thus if a  VERB 
like llShowll was the first  word  in the NL  command  then the 
user  would  code  get  control  via  routine  called: 

VERB: / *  process all registered  words  via  REXX */ 
Execution,  when  the  user  has  fully  constructed the command 
he must  then  execute  it  in  such  a way that the user  may 
customize  or  override its  use. 



PARACODE is a  natural  language  programming  system  that: 

1. Allows  users to code ES rules  using  pseudo  English  code. 
2.  Uses  multi-word  synonyms to give  English  flexibility. 
3 .  Allows  grammatical  use  of  probabilities  and  fuzzy  logic. 
4. Allows  user to converse  logically  with  knowledge  bases. 
5. Has frame  attributes  like ask, why, how,  check, & doc. 
6. Many  powerful  options  put  code  wherever  users  need  it. 

Below is a sample  Expert  System (ES) rule  written  in  Paracode. 

VCRADVSR: / *  This rule  advises  what  model  VCR to purchase */ 
If the VCR  type is VHS  and heads is over three and  FX  wanted 

then the best  purchase is probably  a  super  VCX 1000 
else the best  buy is likely to be  a  dumb  Recora-Mate99 

INITGOAL: The maingoal is best buy and  a  three  is a 3 
INITQUES: / *  These  entries  set  synonyms  and  frame  values. */ 

syn(FX  FX:is  'specia1:effects  special-effects') 
syn(VCR  CAM  'video:machine  video:recorder') 
syn(buy  purchase);  syn(type  model);  and  syn(heads  tracks) 
syn(FX-wanted  'FX:wanted  FX:neededI)  and  syn(: super  dumb) 
syn(VCR-type  'VCR:type')  and  syn(best-buy  Ibest:buyl) 

The ask.mainexit  is  'The  VCRADVSR says buy  a'  best buy'.' 
The ask.VCR-type is 'Enter  preference: VHS or BETA.' 
The chk.VCR-type is VHS  BETA / *  check  allowed  values */ 
The dft.VCR type is  VHS / *  default  value is VHS */ 
The chk.  FX-wanted is "CHK  YESNO:" / *  a  dynamic  call */ 
The chk.heads is 2 3 4 5 
The  fmt-heads is 1 1 numeric / *  one byte  numeric  only */ 
The  why-heads is "Because  better  VCR's  have 4 or more.ut 

Below is a sample  dialog  with  VCRADVSR... (R; is user  reply.) 

- 

Enter  preference:  VHS or BETA. 
R; VHS 
Please  enter  value  for  (HEADS) . 
R ;  which 
Your  input  options  are 2 3 4 5. 
R; 4 
Please  enter  value  for (FX-wanted). 
R; yes 
BEST  BUY = CNF(0.80)  VCX 1000 
The VCRADVSR  says  buy  a VCX-1000. 
R; video  machine  model 
VCR TYPE = VHS 
R; special  effects  needed 
FX-WANTED = 1 
R; reset 
Enter  preference:  VHS or BETA. 
R; The CAM  model is VHS; tracks is 4; and  FX  needed is not  true 
BEST-BUY = CNF(0.70)  Record-Mate99 
The VCRADVSR says buy  a  Record - Mate99. 

- 

14i 



NL THEORY FOR PARACODE 
'$ 

The Subject, Verb,  and  Object  AI  paradigm  works  well  with  REXX. 

REXX  it  could  be  expanded to enter NL mode  if  a  switch is set. 

RULENAME: / *  basic clauses: I F  antecedent THEN consequent */ 
[ I F  s v o [ conj s v o etc.. .] THEN] s v o [ conj s v o etc.. . 3 

V 

0 

[ I  Means  fields  within are optional.  Only s v o required. 

s v o  Subject, verb,  object  can  be  represented by a  single 

S Subject  can be up to three  distinct  words if the 

IF Valid  conditionals  are  IF  and WHEN. 

symbolic  such  as  with  true/false  values  and  task() 
executions, or as separate  multi-word  phrases  beneath. 

Computer  Oriented  Dialog SYN() synonyms  have  specified 
a  single  root word.  They are the equivalent  to  nouns 
or noun  phrases (NP) in  English  and  basic  ATN  theory. 
Verbs  can  be  up to three  distinct symbols and/or words 
if the S Y N O  synonyms  have  specified  a  root  word.  They 
imply the action to take  against  its  subject  and 
object,  and are referred to  as verb  phrases in  basic 
ATN  theory.  Normally  verbs are compare symbols,  but  in 
advanced NL may be  called  tasks that have boolean  RCs. 
Objects  can  be  a  literal  or symbol, or a  phrase  up to 
three words if the S Y N O  synonym's  root is defined. It 
represents  a  noun  and may be  preceded or followed by a 
fuzzy  logic or confidence  factor  (Ie.  big/little or 
probably/definitely). If the object  value,  after 
synonym  substitution is found  to  be  unknown  translation 
is  interrupted,  and the object  is  put  into  a  queue  for 
resolution.  Resolution  occurs by first  looking  for  a 
RULE  that has a  consequent  clause that sets the value. 
Next,  framed  variables are checked to  see if their  is  a 
defined  procedure to solve the rule.  For  example, 
doing a database  retrieval.  Finally,  a  previously 
specified text is  used  or  a text is manufactured that 
asks the user  to  supply the value or choose the 
default. 

their  character  equivalents.  They can be three word 
phrases,  but  no  logical  use has been  found  for  using 
multi-word  phrases as conjunctions. 

con j Conjunctions  are  limited  to  and, or, exclusive  or,  and 

NOTES : 1. Advanced  synonym  substitution can handle  antecedents 

2 .  Rules  can  have  any  number  of  consequent or 

3 .  The RUN() can  dynamically  invoke  any  task  at  will. 
4. REXX  and  its NL equivalent  can  coexistent  in 

PARACODE. 
5. All s and o values,  otherwise known as, nouns  can 

be  easily  updated  using  NODELOAD  directed  graph 
substitution. 

separately  from  consequents. 

antecedent  consequent  combinations. 

148 
(CICopyright 05/92 By Marc Vincent I r v i n  



I 

PARATALK is a  natural  way to  show  properties  and  relationships, 

1. Users  can  easily  encode  semantic  net  diagrams of knowledge. 
2. Encoding  may  consist of pseudo  English  facts,  rules,  and  acts. 
3 .  Acts  invoke  scripts,  models,  and  step by step  operations. 
4. Backward  reasoning will try  to  resolve  unmatched  phrases. 
5. PROLOG  deep  structure  sample:  does  well  in(Student,Discipline) 
6. Conditionals  (ie. =<>) can  now  be  relationals  or  operationals. 

Below is a  sample  expert  system  rule  written in Paratalk. 

MAJORADV: / *  This rule  advises  student in selecting  a  major */ 
If a  student is interested  in a specific  discipline, 

and student  does well in the  subject, 
and the subject is important  in discipline, 
and the discipline is in demand, 
then  student  should  major in the  discipline 

else  student  should  not  major in the  discipline 
and  forward  student  transcript  to  Dean  of  discipline 

INITGOAL: The maingoal is student  should  major in discipline / *  Examples  below  show  how  facts  may  be  initially  entered. */ 
John does  well in  math  and John is interested in business 
Math is important in business  and  business is in demand 
Bill does  well in math  and  Bill is not  interested in business 
INITQUES: / *  These  entries  set  synonym  and  frame  values. */ 

syn(is interested-in  'is:interested:inI) 
syn(does-well-in  'does:well:in')  and  syn(is in 'is:in') 
syn(is-important  in  1is:important:in') 
syn(shou1d-major-in  'shou1d:major:in') 
syn(not:should  sEould  not)  and  syn(student  'name:of:student') 
syn(send  transfer  mail  forward) / *  keyword  for  action  logic */ 
syn(discip1ine  'specific:discipline') 

- 

The unknowns  are  'student  discipline  subject' 
The  variables  are  'student' / *  if symbol  not set than  infer  it */ 
The relations  are 'is interested-in  does-well-in is in' 
The  relations  are  relations 'is important in should-major-in' 
The actions  are  'send' 
The ask.student is "Please  enter  the  student's  first  name." 
The ask.mainexit is "Enter  'reset'  to  get  some  fresh  advice." 
SEND:  say  "Transcript  is  being  forwarded  to"  discipline lIDean.'l 

- - - 

Below  is a  sample  dialog  with  MAJORADV... ( R ;  is user's  reply.) 

Please  enter the student's  first name. 
R ;  John 
student  should  major  in  discipline = JOHN should  major-in  BUSINESS 
Transcript is being  forwarded  to  BUSINESS  Dean. 
Enter  'reset'  to  get  some  fresh  advice. 
R; reset 
Please  enter  the  student's  first name. 
R; Bill 
student  should  major-in  discipline = BILL should-major-in BUSINESS 
Enter  'reset'  to  get  some  fresh  advice. 
R; quit 

- 

- not 



ADVANCED NL THEORY IN PARATALK 

In PARACODE  a NL syntax  was  demonstrated that allowed  a  user 
to write  conventional  programming code in subject, verb, and 
object (SVO) based  pseudo  English. In NODELOAD  a NL syntax 
was shown  that  facillitated  the  building  of  context  free 
grammars.  Using  PARACODE  and  NODELOAD  together  it  was 
suggested  that  pseudo  English  code  and  dialogs  could  be 
achieved as a  side  affect of  Expert  System  development. 

PARATALK  takes  the  expression  of  NL  code  and  queries  to a 
higher  plain by  incorporating  pattern  matching,  dynamic  verb 
manipulation  and  execution,  and  dynamic  variable  entry  and 
assignment. 

Wherever, SVO phrases  are allowed, so too are  SRO (subject, 
relation, object)  clauses and  ARC  (action request commands). 

SRO Subject  relation  object  clauses  put  pseudo  English 
consequents  into  a  pattern  table  for  interrogation a s  
antecedents.  "John  likes sodav1 is a  typical  SRO 
clause.  Unlike  PARACODE  the  central  word does not  have 
to get converted  to I ( =  > <I1 symbols. In PARATALK 
anything  goes,  just  tell  the  interpreter  how to 
recognize  your SRO clauses by loading  its  relational 
word or predicate  into  a  variable  named  RELATIONS.  For 
example,  to  be  able  to  say  "If John likes  soda  then 
soda  tastes good11 you do the  following  in the 
INITQUES:  section. 

SRO  clauses  may  be  any  length.  When S R O s  are in an 
IF/WHEN  (eg.  antecedent)  statement the associated 
symbols  get  looked  up  in  a  clause  table.  If  found 
the IF/WHEN  condition  is  set  to  true,  otherwise it's 
set to false.  If  not  part of an  IF/WHEN condition the 
clause  is  put  into a table.  Matching  clauses  with 
previously  stored  clauses  is  called  pattern  matching. 
In the  clause  "John  likes sodall all the words  are  taken 
literally.  Now  imagine  having 10 lllikes sodall clauses 
in the table,  but  for  different  people. To refer to 
all  those  people  the  following  can be done in  PARATALK. 

RULE:  Unknowns = 'Who'; and Relations = 'likes' 
If  who  likes  soda  then do x is 1 for  words(who) 

In the above  example  all 10 names of people  who  like 
soda  would  be  put  into WHO. Sometimes  a  simple 
variable,  set  elsewhere in the  logic,  needs to be  used. 
In that  case  enter  the word  within  quotes.  For 
instance, if soda  were  a  variable  filled  with  words 
like  PEPS1  or  COKE  then  the  PARATALK  way to express  it 
would  be.. . "If  anyone  likes  'soda'  then go buy sodan1. 

RELATIONS = 'likes  tastes' 

say  word  (who,  x) I likes  soda ; end 

150 
(C)Copyright 05/92 By Marc Vincent lrvin 



I 

ADVANCED NL THEORY  IN  PARATALK 

In SRO PARATALK we were  shown  how to enter  pseudo  English 
assertions  and  interrogations  like  those that follow: 

John likes  soda 
If John likes  soda  then  soda  tastes  good 
If who  likes  soda  then do x is 1 for words(who) 

say word  (who,x) I likes  soda' ; end 
If anyone  likes  'soda'  then go buy  soda. 

I n  addition to writing  programmable code in English,  and 
interrogating  stored  English  clauses  for  truth  there is another 
option.  You  can  invoke  special  AI  functions that carry out 
scripts or models of various  scenes,  events, speech, manual 
operations,  and/or  machine  components.  For  instance,  the 
consequent  clause Itgo  buy soda" is an  imperative  statement  that 
requires  a  direct  action. 

ARC Action  request  command  clauses  have  two  parts. The first is 
the action  part  which  corresponds to the  program  name  used 
during  CALLS  from  normal  procedural  code. The second is 
the request  part  which  corresponds to the variables  passed 
during  normal  procedural  calls.  However, for scene or 
model  invokations to occur  using  pseudo  English  statements 
something  must  tell the PARATALK  interpreter that this is 
an ARC  phrase,  rather  than  an SVO or SRO one. That 
something  way is to load the  primary  action  word  (ie.  verb) 
into  a  variable  named  ACTIONS.  Since  actions  speak  louder 
than words  below is a  sample  of  what  I'm  talking  about, 
full  blown  PARATALK. 

ACTIONS are 'go  walk get  fasten  drive' 
RELATIONS  are 1 ikes'; and  soda is PEPS1 
GOBUYSODA:  If  anyone  likes  'soda' then go buy soda 
additional  backward or forward  chaining  rules... 
/ *  Basic  script  follows  for  going to the store */ 
GO: Parse  var  runstring  whattodo  withwhat . 
If whattodo is 'buy'  then  do 

Item  is  withwhat / *  comments are allowed  too */ 
Walk to  car;  get in car; and  fasten  seat  belt 
Drive  to  store  and  exit  from car 
Walk  into  store  and  purchase store 'item' 
Drive  back  home 
end 

/ *  The actions  below  can be external  programs  too. */ 
WALK:  etc.. . 
EXIT: etc... 
DRIVE:  etc... 
FASTEN: etc ... 

Basically, the above  example  neatly  mixes  all  three NL methods: 
SVO,  SRO,  and ARC. It's pretty natural,  wouldn't you say? 



ADVANCED NL THEORY  IN  PARATALK 

In  SVO, SRO, and  ARC we were  shown  how  well  PARATALK  armed 
the Knowledge  Engineer (KE)  with the tools needed for 
building  Conventional  and  Expert  Systems  using  Pseudo 
English.  Command  clauses  and  phrases  could  be  easily 
constructed  that  were  declarative,  interrogative,  and 
imperative  without  requireing the KE to resort to arcane 
coding  artifices.  And  there  is  much  more... 

External  file  data  can  handled  be  handled  dynamicly  using 
the LITERALIZER  concept  peculiar to the data  driven  pattern 
matching  protocols  of  OPS5.  With  it  files,  sensors,  and 
knowledge  bases  can  be  processed  with  5th  generation 
granularity  using  something  resembling the well known object 
oriented  paradigm.  For  instance, the clause "If cat weight 
is high  and  finickiness is extreme then type is Cheshireg1 is 
valid  PARATALK  terminology  using  LITERALIZERS. 

OAV  Object  attribute  value  conditions can be employed  in 
conjuction  with SVO clause  rules to provide  name tags 
to fields in  records.  An example  below  builds  a 
literizer  for the CAT  clause shown above. The basic 
format  for  entering  a  literalizer  follows... 
OPS(filename,objectname,attributel attribute2  etc ...) 

Note,  full  power of the  parse  command  is  available. 

OPS('RACF  DATA A',PROFILE, ' 2 4  PW 32 1 'DATE='  DATE) 

Also, some basic  assumptions are now  possible 
pertaining to context.  For  example, that CAT is the 
object  for the attributes  weight,  finickiness, or type 
is  easily  implied.  What's  more cases of ambiguity 
(more  than  one  literalized ''objectt1 contains the same 
attribute name) are easily  resolved to most KE 
satisfaction by understanding that ununique  attributes 
will get the  object  from one 
most  recently  used.  Next,  pronoun  usages  like IIit" or 

again  with  the  most  recently  used  object  with  a 
matching  context  definition (TYP.) An  example  of  that 
kind  of  clause is shown  beneath. 

are  possible  and  can  be  substituted,  easily 

CAT - TYPE:  If  its  weight is high  and  finickiness is 
extreme  then  its  type is a  Cheshire 

In the above  rule  the  value of IIits'I will  be  taken  from 
whatever the last  object  happened  to be that  contained 
the attribute 'Iweight1'. 

152 (C)Copyright 05/92 By Marc  Vincent  lrvin 


