PERFORMANCE ENGINEERING/MANAGEMENT OF
A LARGE REXXX APPLICATION

PAT MEEHAN AND PAUL HEANEY
IBM

153

Performance Engincering/Management of a T arge REXX application.

Pat Mcechan, Paul Fleaney

ECFORMS! Development Team
IBM TISI, Programming Systems baboratory and Delphi Software Fimited
Dublin, Treland

Abstract

‘This paper addresses the performance engincering/management of o large RIFXX product (100 Kloc). This
was in response to a market driven reguirement to improve product responsiveness. The Software Perform-
ance Ungincering methodology in conjunction with our own developed processes were used throughout. A
number of Software Performance Fngineering processes were adopted and became the basis for the drive
towards performance improvement. A benchmark was developed with customer input. "Targets for represen-
fative transactions were defined for onr three main metrics, end-user response time, virtual CPU time and
start 1/0. Various REXX performance ideas/myths were validatedirejected on the basis of measurements.
Measurement and analysis tools written in RIFXX were used to automate and assist in the continuous
tracking of the targeted performance improvements. Bottle-necks in the code were identified by tracing and
measuring some/all of cach target transaction. 'The main performance engineering principles that were used
were Fixing Point, Parallel Processing, Centering, Processing versus Fregnencey and Instrumenting. Follow
up meetings with the IBM VM Taboratory’s performance team in Fadicott, discussions with Mike
Cowlishaw and consultation with other REXX development sites has resulted in a pool of knowledge being
built up on Performance methodologics and REXX performance rules guidelines. Fducation of the develop-
ment team resulted in REXX performance rules becoming instilled in the day to day design/coding of
product changes. The product has a separate performance development team and cighteen months down the
line focusing on performance has resulted in major improvements. Thronghput in the two key service
machines has been doubled and end-user response time has been reduced by o quarter. Purther improve-
ments have been prototyped which indicate we will be able to improve the throughput again on the service
machines and significantly reduce the end-user response fime.

Author Information

Pat Mechan B.I., M.Ting.Sc. joined IBM lIreland in 1984, e spent fwo years on assignment in 1BM
Netherlands where he worked on the performance of FOVM (EMEPA Common VM) REFXX applications.
Te then spent two years working on the design and implementation of a data extractor generator on MVK.
Subsequent work included working on the future strategy of @ program product, SAA/DM. In the last eigh-
teen months, he has been responsible for the performance work being carried out on the REEXX product
offering, ECTORMS together with working as a consultant on performance to the rest of the development
group.

Paul Heancy works with Delphi Software and is a RIIXX development consultant to IBM 1IST, Taboratory.
Fie has been closely involved with the FCIORMS Product Offering over the past two years. e has con-

centrated his effort on the application of performance engincering techniques to the application over the past
cighteen months . As a key member of the performance team, he alsa acts as a consultant to the rest of the

T FCEFORMS is an clectronic forms management system which is an IBM product offering and is a irademark of
IBM.

154

development team. He has developed tools in REEXX o assist in the measurement and analysis of the devel-
opment cffort.

iv Reclease 3 SPE 1 Performance Report

Performan~= Enginzering/Management of a Large REXX

Applicauc..

Flectronic FForms Management System
(FCTFORMS) is an IBM licenced program
(5785-MCB) extensively used within IBM by many
diverse applications and marketed in the US.
Furope and Japan. It has three main functions,
Forms Processing, I'orms Design and Tforms
Administration running on the VM operating
system.

The major features of FCFORMS Torms Proc-
cssing are ¢

1. Filling in online forms (Origination).

2. Routing forms clectronieally.

3. Using electronic signature to :
« Approve and 'inal Approve a form.
* Reject a form.

« (Cancel a form.

Some of the main BECTORMS transactions (c.g.
Iilling in a form) involves communications via
[UCV with two service machines in a serial
fashion. There would be data validation by a data
service machine followed by control checking and
routing by an authorization service machine. In a
mulii-node situation. these service machines com-
municate with their peers through the use of spool
files.

All of the three major functional arcas are written,
almost exclusively, in the REXX language.

This paper focuses on the performance engineering
cffort of the FCFORMS Porms Processing fune-
tion.

Background

The market driven requirement o improse per-
formance was identified by direct communication
with our customers. 'T'he main performance 18sues
were:

1. Response times [rom an end-user’s point of
view.

2. Throughput on the two key service machines.

3. CPU consumption and excessive 1/0) demands

These issucs became the driving force behind the
performance effort.

Kﬁ)roach

Most performance methodologies advocate (cor-
rectly) the application of performance enginecring
1o systems in their carly developmental stages. They
concentrate largely on new systems and not on
existing svstems.

An cxample of such a methodology is that of Soft-
ware Performance Pngineering [1] (SPE). Closer
examination of the methods encapsulated in this
mcthodology highlighted a considerable degree of
applicability to existing systems also. For this
reason, SPU together with our own methods
formed the basis of our approach to the perform-
ance cffort.

Fffort Allocation

The resource to improve the performance of the
product has been spread over two different efforts.
The initial effort (Fffort 1) used three different
development locations. Our own laboratory was
one of these locations and also acted as the focal
point for the other 2. The subsequent cffort (Effort
2), currently ongoing, was concentrated in our own
development laboratory and involved the sctting up
of a performance team for the group.

This paper focuses to a large extent on the per-
formance work carried out in our own laboratory
over the two efforts, although it draws on signif-
icant cxperiences from working with the other two
locations.

SPE Methods

SPlis a methodology which advocates the applica-
tion of performance analysis in the development of
softwarce systems. It provides a sensible method for
the production of software that will meet certain

Performance Fingincering/Management of a Large REXX Application V

156

performance objectives. SPH encompasses the fol-
lowing methods [2]:

1. Design Principles which are an abstraction of
the expert knowledge of performance specialists

2. Data collection is the means of acquiring the
data necessary to describe the performance
specifications

3. Modeling techniques uses execution graphing
and analysis algorithms to predict performance

4. Proposal Fvaluation

5. Instrumentation of the softwarc system.

Sceveral examples can be found in the literature of
successful SPTY usage [3]

SPL in is entirety was not appropriate for an
existing product; we used those aspects of the SPE
methodology which we found suitable for the task.

Adopted Benchmark

SPE reccommends the use of a benchmark as an
experiment for collecting performance data. The
benchmark should be a good representation of the
way the software is used by customers and should
be easily reproducible.

The first step was to develop a benchmark to
gather pertinent performance metrics. Compromises
between representativeness and reproducibility had
10 be made due to resource and time constraints.

The main feature of the benchmark [4] were as
follows:

* A set of transactions that were representative of
the typical user workload scenarios based on a
considerable depth of knowledge within the
laboratory’s support and development groups
together with feedback from a subset of cus-
tomers. A typical transaction would be to
approve an FCFORMS form sent by an origi-
nator or for a scrvice machine to process that
approval request.

* A representative DCTORMS form

« Software operating conditions like compiled
service machines at given priorities running on
selected hardware. Due to resource constraints,
the initial hardware was a 4381 running
VM/SP3 but this has since been extended to

Vi Performance Fngincering/Management of T arge REXX

157

include VM/XA on a 3083 and VM/EISA on a
2090,

+ Single user on a single processor. This has
been extended recently to include two
processors communicating with each other for
a subset of transactions.

T'he benchmark is an evolving experiment under-
going change as the software undergoes modifica-
fions and the user workloads shift.

Application of the SPE principles

T'he SPIE Design Principles are a formalization of
the performance knowledge of experienced per-
formance engineers.

‘The principles of SPT were intended primarily for
software creation, but we have found some of them
1o be cqually applicable to a project which has
undergone significant development work. However,
it is conceded that the application of the principles
is o more painful exercise at the later stages of a
product’s evolution.

"The design principles have since formed the basis of
our performance guidelines which we provide to
our own and other development groups in the lah.

We now describe those adopted principles that
were particularly applicable to the existing system
and examples of that applicability.

1. The Fixing-Point principle states that the con-
nection between the data and the required result
should be established as early as possible in the
processing provided that the cost of retaining
that connection can be justified.

*» 'The product uses flat files as its file system.
We found several cases where the product
was accessing the same control files, several
times in the same transaction sometimes
for the same information,

According to the principle, it made morc
performance sense to read selected files or
scctions of files into storage at initializa-
tion. Data was stored in a REXX array of
the form x.y, where y was the key. Subse-
quent retrieval of information was then
done from storage with great efficiency.

Application of this principle was more
appropriate to the service machines where
initialization time was not a concern.

[However, one of the constraints was that mation, during the time window, is then
both service machines should still be able done from storage,

to run with 3meg of memory. . . .
® ‘ In this way we can allow the installation

T'or some large files, the cost of retaining control the cost of holding the information
the connection for the entire file could not in storage by changing the time window.,
be justificd because of the storage con-

2. 'The Processing versus Frequency Tradeoff prin-

stramts. ciple, says that we should consider the proc-
T'he largest file used by the service essing time of a transaction and the number of
machines is the organizational directory times that transaction is executed and minimize
typically of the order of thousands of the product

records. » This principle can be satisfied in a number
Client information is retrieved by one of of ways. Onc of the less obvious ways is to
the service machines from this directory for cxpand the processing within a particular
auditing purposes. Here, we have proto- transaction to include another transaction
typed the concept of a time window, where ensuring that the new transaction is faster
participating client information is extracted than the sum of the two old transactions.

once from the directorv within the time
window and held in storage. Subscquent
attempts 1o retrieve the same client’s infor-

‘This can often be achicved by making
maximum usc of the overhead involved.

Process Time
N pt
METHOD - ‘
‘* | p2
NEw =
METHOD } ’ p
Al ‘
| i
p {(p1 +p2)
Figurc 1. Processing-v | requency Tradeofl Principle - o
The diagram (please refer to Figure 1) which associates it logically with the
shows a typical application of this prin- control file.

ciple. Currently, when data is transmitted
to participating nodes. a control file is sent
and is followed by the form data file. The
form data file has header information

This means that the receiving node has the
duplicate overhead of processing two spool
files for cach form data file and of cstab-

Performance Fngineering Management of a 1 arge REXX Application Vil

158

lishing a logical association between the
files received.

A change has been prototyped to make
maximum usc of this overhead, where the
form data file is chained directly to the
control file and a single file transmitted.
'The receiving server has only to process the
one spool file thus ensuring that the
product of the processing time multiplied
by the frequency is reduced significantly.

Changes of this nature present significant
architectural and migrational difficultics
and underlines some of the headaches of
performance engincering of developed
systems.

3. The Centering principle advocates the identifi-

=.

cation of the dominant workload functions and
the minimization of their processing

* 'The transactions of form origination,

approval and final approval were clearly
the dominant workload functions and a
Jarge proportion of the effort was focused
on these transactions.

A further application of the centering prin-
ciple is of course within cach of the domi-
nant transactions. This performance
refinement identified the dominant proc-
esses within the dominant transactions.

Validation of form data is a typical
example of a dominant sub-process. 'The

Performance Engincering Management of 1 arge REXX

159

form data 1s defined as a set of fields and
associated values. Validation of form data
accurs for all three dominant workload
functions.

Previously, during approval and final
approval of cach form instance, this vali-
dation process was again applied to the
entire form data. A significant processing
reduction was achicved on two dominant
transactions by applying the validation
process to the changed form data only.

As an indirect extension 1o the last point, it
was realised from customer contact that
form data approval and final approval
often occurred without any changes to the
data. When this occurred and was detected
a large proportion of redundant processing
was bypassed.

Fven more substantial improvements have
been prototyped for this change in the
multi-node scenario. Currently, the data is
transmitted to participating nodes cven if it
is unchanged and the receiving nodes have
to go through a lot of unnecessary proc-
essing to handle the large amount of spool
files.

A change has been prototyped where the
form data is only transmitted when 1t is
changed resulting in significant savings to
the handling of remote requests by the
service machine as illustrated by the
diagram, Figure 2 on page ix.

1‘“ | T
|

Figure 2. Centering Principle and remote requests.

A further application of the centering prin-
ciple within cach transaction is the parti-
tioning of the processes within a
transaction into normal and exception pay-
titions. Partitioning identifies the normal
paths through the process and the unusnal
paths (exception partition) and focuses on
the former from a performance point of
view.

4. The Parallcl Processing principle states that
processing should be partitioned into real or
apparent concurrent processes provided that the
benefit outweighs the communications and
resonrce contention overheads.

» Some of the dominant transactions require
the client to communicate via ITUCV with a
data server followed by an authorization

Performance Fogineering Management of a Large REXX Application

160

server in a serial fashion. The authori-
7ation scrver is architected to a large extent
on the basis that the data server has com-
pleted its processing successfully.

T'o involve the data server in some sort of
parallel processing with the client was not
considered feasible because of the major
architectural difficulties.

ITowever, in the case of the client-to-
authorization server, a change has been
prototyped where control is handed back
to the clicnt at a much earlier stage after
some preliminary processing for appro-
priate transactions (Approval and Final
Approval) as shown in Figure 3 on

page x.

ix

T

e

M

T

Tligure 3. Parallel Processing Principle and Asynchronovs request handling

S.

X

The server continues processing asynchro-
nously fo the client. The ultimate outcome
of the transaction is recorded, as nsual, in a
client log file.

Iirom a client point of view, this reduces
the transaction fime very significantly
(T'1-T0) with little architectural impact on
the server. Naturally, the improvement is
maximiscd where there is no queue to the
server and is diminished according to the
number of requests in the queue.

The Instrumenting principle encourages the
instrumentation of the system as the means of
measuring and controlling performance.

This is a control principle which does not
directly improve software performance

This principle was originally not part of the
SPE methodology but was subsequently
included because of its essential role in the per-
formance effort

Further discussion of this principle and the
entire measurement process is continued later

Performance Engineering:Management of | arge REXX

161

Other important lessons were learned which were
phased into the approach at different stages across
the entire effort.

Mecasurements

For existing systems, measurements are the key to
success. They provided us with an execution know-
ledge of the system enabling us to model the
system. ‘This model in turn allowed us to decide on
the types of change required. Measurements were
also the key to understanding the success or failure
of the changes.

lixperience and results have illustrated a number of
important lessons:

1. Virstly, the importance of a proper measure-
ment system is apparently not obvious to most
people. Often developers express a sense of
incredulity when asked if the system they had
developed had been measured [S].

2. Where a satisfactory measurement process is
not part of the approach, success is very
dependent on intuition and fuck and this is not
a very scientific way to proceed.

3. 'The measurcment process should use as many
performance indicators as is practical to verify o
performance prediction. A single indicator of
performance (like response time) can be very
mislcading.

4. Tarly measurements of less than complete
efforts are imperative. Even though these will
often be contested on the grounds that further
performance tuning will follow, they provide an
early warning system which is often well-
founded.

The measurement process itself is described later.
Language

Most of the product was written in REXX, the
remainder in C. An important guiding principle
which we adopted (and not just for language con-
siderations) was that of benefit/cost maximization.

It’s important to maximizc the bencfit/cost ratio
where the benefit is the estimated improvement in
performance to the customer, measured by the
benchmark and the cost is the resource necded to
develop and maintain that change.

In general, the CP and CMS commands and other
external modules and not the REXX instructions
were responsible for the substantial part of the
product. Sample transactions show that the
REXX instructions account for less than 20% of
the total. In addition, poor performance was not
caused by poor REXX coding but by lack of per-
formance sensitivity in the original design stages
with sotne notable exceptions. This was also borne
out by informal discussions in the area of RFXX
petrformance with Mike Cowlishaw.

The main exceptions were the use of keyed arravs,
which is a very slick way of searching for data,
rather than the traditional binary scarch technique
and the removal of Interpret statements to make
the code compilable.

Conversion of the C code to RI'XX made good
performance sense because of the way that the two
languages interact differently with CP and CMS
and some of this task has already been accom-
plished in Effort 1. "This change from C to RIEXX
has the additional benefit of easier maintainability,

Other improvements within REXX werce better
management of storage and in particular the drop-

ping of storage when appropriate together with the
complete specification of CP and CMS commands
without ambiguity.

Changing REXX variable and procedure names,
positioning of routines within the program, the use
of one particular REXX built-in function over
another were found to be examples of high cost -
low benefit changes.

Exploratory Prototyping

We seized the opportunity to deviate from the
standard practice of a documented low level design
by prototyping the designed performance changes.
I'his approach allowed us 1o measure progress at a
stage much carlier than would have been possible
with the traditional phased approach.

It also appears, based on a causal analysis of soft-
ware defects found so far, that the prototyping
made a very positive impact on the quality of the
software shipped.

We strongly advocate prototyping as the best way
to manage performance engineering of an cxisting
system.

Other ltems

For the first effort and because of resource con-
straints, measurements were confined to a 4381
processor running VM/SP5. This was restrictive
and not very representative. The second cffort has
extended the measurement process to a 3083
running VM/XA and a 3090 running VM/IISA.

A comprehensive report [4] was created of the
results of the first effort. This formed the basis of
discussions which were held with the Performance
team in the IBM VM laboratory in Indicott, who
reacted very positively to the depth of analysis and
overall approach. 'The report has also been sent to
all internal product sites to inform and encourage
them to upgrade to the latest release.

The benchmark continues to be based on a single
user and on a single processor for most of its trans-
actions. The authors believe that some modeling of
multiple users is a key area for the futurc which will
help particularly in the area of capacity planning for
our customers.

Functional development work of the product has
continued alongside the performance effort. Both

Performance Pngincering /Management of a T.arge REXX Application xi

162

teams have worked closely together with the per-
formance team acting in an advisory role on the
functional enhancements from a performance point
of view. 'This close collaboration has been critical
in the management of the performance work and
has resulted in much greater sensitivity to perform-
ance within the entire group.

Measurement Process

The measurement process and its findings were
both the guiding force behind the performance
analysis along with being the ultimate arbiter on
the success of the effort.

The adoption of the instrumenting principle at the
very early stages of analysis, enabled us to isolate
the major arcas for cach of the SPT? design princi-
ples. The instrumenting principle is of greater sig-
nificance for products that have been developed so
far without the use of SPF and in a sense replaces
the type of modeling, advocated within SPI for
new products.

For this rcason, the modcling effort is reduced and
the measurement effort increased.

In this way, SPT is still very applicable to existing
products but with shifts in emphasis when com-
pared to new products.

1. Performance Refinement

The initial stages of the measurement process
involved a breakdown of the dominant trans-
actions into their sub-components. ‘FThese sub-
components then became the subject of
analysis through a limited set of unsophisti-
cated measurements of virtual CPU time, Start
1/0 and response time. This provided us with
important initial execution data of the system.

In this way, the refinement provided us with a
type of informal softwarce execution graph of
gach of the transactions, a form of analysis
advised under SPF,

Of course, the REXX language with its rich
tracing functions and its end-user {riendlincss,
lends itself very well to this type of approach.

This refinement pointed to those areas that
should be concentrated on | which together

Xl Performance nginecring/Management of Farge RIIXX

163

[

with the other guiding principles (SPI1 and
Benefit/Cost) already referred to, became the
basis of the performance design changes.

Prototyping

The main features of the proposed design
changes were prototyped at a very high level
and a new sct of measurements obtained. These
measurements formed the basis of the target
objectives for cach transaction within the
benchmark which together with the design
changes constituted the initial design document.
‘This was subsequently approved by a selected
fist of external and internal reviewers.

This allowed our customers an early indication
of the magnitude of the performance improve-
ments that could be anticipated and an incen-

tive to agree to the resource investment.

In this fashion, the refinement and limited pro-
totyping provided us to a large extent with the
necessary data to define the performance spec-
ification. The same type of data collection is
also advocated under the SPE methodology,
although the manner of collection is naturally
different for new software systems.

As part of the second design stage (referred to
in the IBM phased approach as low level
design) the prototyping exercise was continucd
at a lower level with the prototype being more
closely aligned to the ultimate implementation.

The prototyping exercise was really a pre-
requisite to the measurement process and they
complemented each other very successfully.

In a few instances predictions were made for
some of the performance metrics based solely
on the software exccution graphs of the trans-
actions. These predictions were then compared
with actual results from the prototyping cxer-
cise and were used as a theoretical validation of
the prototyping results,

Basic measurements were periodically taken
during the prototyping and modifications made
where there were any deviations from the
objectives. This design stage became a highly
iterative process and emphasised the engi-
neering approach to the whole problem.

. Data Collection

Iiven though the instrumentation was an inte-
gral part of the cntire performance development
cvele, it wasn’t until the changes had been

designed and implemented that the more con-
trolled measurement experiments were con-
ducted using acquired customer data.

pre-defined keystrokes on a host machine.
KEYPIAY has been used to execute the
defined benchmark usually at a deferred
point in time (off-peak), switch betwcen
different systems (old and new) dynam-
ically, collect the results and invoke the
other developed tools to analyse the results.

The entire measurement process is a complex
one where there are so many contributing
factors. We adopted a number of approaches to
make it as realistic as possible within the
working constraints. We concede that further
enhancements arc both desirable and necessary.

KEYPILAY has been instrumental in pro-
viding a fully automated measurement

. . . rocess where it can be triggered durin
», Probes werce inserted at appropriate parts of p ge &

the end-user and service machines to track
the metrics which included Virtual CPUJ
time, Start 1/O) , Response time, free
Virtual Storage and System I.oad. These
probes were positioned to capture the
metrics for

a. The Total Fnd-User Component
which includes the waiting for a service
machine to respond (a)

b. The T'otal Service machine Compo-
nent for both servers (b)

c. The Interface part of the Total Iind-
User Component (c,c < a,a-¢c <= b)

The system was triggered once certain
initial conditions had been set up. These
conditions were based on varied customer
input. They included directory size, number
of forms in progress, sizes of critical control
files which were typical of a customer
installation.

Measurements were always conducted on
both the new and old implementations in a
number of ways:

a. An old and ncew installation was sct up
on the same CPU and both were trig-
gered simultaneously for a given set of
benchimark measurements

b. On other occasions, measurements of
the old and new implementations were
interwoven in the following manner -
{old, new, old, new, old, new)

¢. All controlled measurements were run
at off-peak times

off-peak working hours and the folowing
morning a summary of the results taken at
off-peak is available on the disk of the
requestor. The interpretation of and judge-
ments about these results 1s still an impor-
tant and necessary follow-up step.

We have also developed extensive REXX
tools to analyse the collected results.

The results over a number of runs of the
benchmark are treated as follows

- The lowest and highest 10% of the
runs are ignored leaving the middle
80% for interpretation in order to weed
out extreme results.

- This remainder is averaged and a com-
parison made between the old and new
implementation.

- Occasionally, we measure a control
which is identical within both the old
and the ncw implementations and nor-
malize the results with respect to this
control. Both the normalized and the
unnormalized results are then inter-
preted and compared.

Interpretation of measurement data is
something which improves with perform-
ance analysis cxpetience, familiarity with
the actual task of data interpretation and
knowledge of the software under investi-
gation. The key is to treat results with
caution and respect and the goal is to try to
get reasonable consistency in your results.

An important point to look out for is per-
turbation of the results by the measure-
ment system itself. This is best checked by

4. Interpretation and Evaluation comparing the results of the probed system
Iixisting tools were used and new ones devel- with the system without any probes.

oped to enhance the measurement process.

o, KEYPLAY is an IBM internal usc tool
which tuns on OS/2 and executes a set of

*e Management of the vast amounts of meas-
urement data is important. We used a
summary file to reference the data

Performance I'ngincering/Management of a Large REXX Application xiii
164

belonging to a particular run of measure-
ments which hekd key information about
that run.

Results

The targets prototyped for the the original perform-

ance effort (Fffort 1) werc based on the three
metrics of clapsed time, virtual CPU time and start
1/0. These metrics were used for all the
benchmark transactions throughout both perform-
ance efforts as a means of gauging our success.

We have represented a summary of the results in
the following diagram (pleasc refer to Figure 4 on
page xvi and Figure 5 on page xvi) for both the
end user and the service machines as follows:

1. Prototyped target results for Effort 1.
2. Actual achieved results for FEffort 1.

3. Prototyped results for Iiffort 2 + actual
achieved results for Lffort 1.

A more detailed account of the actual results from
Iiffort 1 is contained in a scparate report {4 .

‘The results are presented as a % reduction on the
base at the start of Liffort 1.

Our approach has led us to target a subset of the
benchmark transactions. However the charts show
the percentage reduction, in cach metric, over the
cntire benchmark and not just over the targeted
transactions. 'The reductions in the targeted trans-
actions had to be higher to achicve this overall
result. Tor example, the targeted transactions on
the service machines had to achieve a 34"
reduction in order to achieve the 31% overall
reduction.

The main features of the resufts are that

1. Eind-User Response time over the enfire
benchmark has been reduced by 24 %4 and
further prototyping indicates that we can
achteve an overall reduction of ncarly 50%.

2. We have achicved over 50% reduction for the
service machine transactions and carly proto-
typing has indicated that this reduction could

he close to 70% when we have concluded the
cnrrent effort (1T ORT2).

Conclusion

The main conclusions of the approach arc :

. A number of SPI"” methods can be applied,
with significant success, to existing software
products. This is particularly true of a REXX
product which lends itself to in-depth analysis.

b

Protlotyping is very necessary in predicting per-
formance results. Prototyping also had a signif-
icant impact on the quality of the software
shipped.

3. We can not over emphasize the importance of
measuring results from an early stage in the
development cycle. Constant re-measuring of
results ensures that performance degradation is
not allowed to creep into the project at any
stage. REXX myths which had been presented
to us as ways to improve performance, eg.
Code tuning., were discarded by the measure-
ment approach.

4. The key to finding what works on vour
product is through study of the SPE methodol-
ogics, analysis of the areas of vour product
where they can be applied and then measure-
ment of the results that can be achieved to
determine their cost effectiveness.

Apart from the significant performance improve-
ment, the drive for improved product performance
has also produced the following :

1. Performance culture established in the develop-
ment group. It is important to recognisc that
alongside the performance work, functional
developrent of the product has continued
often in similar arcas. It is testimony to the
change in perfformance culture within the entire
group. that this has been a relatively smooth
collaboration.

2. Initial feedback from customers has shown a
marked improvement in satisfaction with the
performance of the product.

L Performance guidelines established for the Tab-
oratory.

X1V Performance Vngineering: Management of T arge RFXX

165

4. Performance engincering, as part of the devel-
opment cycle, highlighted within the group and
the [.aboratory.

In retrospect, the key to success has been in the
overall approach. The use of SPE principles as a

guiding force, the adoption of an exploratory proto-

typing approach together with a significant invest-
ment in the measurement process have becn the

critical success factors. The enginecring concepts of
design, measurement and assessment in an iterative
fashion, have been the kernel of the entire
approach.

In conclusion, we have proven that the use of SPE
methodologies together with our own methods to
improve the performance of an existing RIEXX
product were both worthwhile and practical.

Performance Engincering/Management of a Large REXX Application XV

166

[St

50—
Z Z
o E g
-~ [
[]
[[
L] L
c 7z -~
O 30 [~ z
- L~
= o >
7] [~
2 Z
])
X 20
»e
10
0 e I_ i
Virtual CPU Timse Start 1/0

Respousa Time

N~
% Effortt Prototyped - Effort! Actuct

Figure 4. Summary of End User Results

=7 Effort2 Prototyped
é + Effortt Actual

70

60

40

30

% Reduction

20

.
Time Virtuel CPU TIme

7R

— R
Figure 5. Summary of Service Machine Results

XVi Perfermance Tngincering \Management of Farge RIENX

167

Eftort Prototyped . Effortt Actual

Start 1/0

7 Efort2 Prototyped
“Z7 + Etfort] Actudl

References

[1]Connic U. Smith, "Software Performance I'ngi-
necring”, Proc. Computer Measurement Group
Conference X1, Dec 1981, 5-14

[2]Connic U.Smith, "Performance lingineering of
Software Systems”, Addison-Wesley, 1990

[3]Connic U. Smith, "Who uses SPE?”, CMG
Trans., Spring 1988, 69-75

[41P. Mcchan, IBM Internal Use documemnt,
ECFORMS Release 3.0 SPE 1 Performance
Report, June 1991

[57F.E. Bell and A.M. Talk, “Performance Vingi-

neering: Some 1 essons from the Trenches”, Proc.
CMG 87, Orlando, Florida, Dec 1987

Other References

168

Gordon [0, Anderson, “T'he Coordinated Use of
live Performance Evaluation Methodologies”,
CACM, 27,2 F'eb 1984, 119-125

C.'T. Alexander, "Performance Fngincering: Various
techniques and Tools,” Proc. CMG Dec 1986,
264-267

P.1.Jalics, “Improving Performance the Fasy Way”,
Datamation, 23,4, Apr 1977, 135-148

Connie U. Smith, ‘General Principles for Perform-
ance Oriented-Design’, Proceedings CMG 87,
Orlando, Tlorida, Dcecember 1987, pp 138-144

Gwen A. Morrison, IBM Corporation, ‘Perform-
ance for a large, complex application’, Proc CMG
R6, Dec., 1986, 316-320 Proceedings CMG 87,
Orlando, Flonda, December 1987, pp 13R8-144

References XVil

