
IBM COMI ILER AND LIBRARY FOR REW370

WALTER PACHL
I BM

184

I

IBM Compiler and Library for
REXX1370

Walter Pachl

IBM Vienna Software Development Lab
c/o IBM Austria, Dept 00/705

Obere Donaustrasse 95
A-I 020 Austria

May 1, 1992

3rd Annual REXX Symposlum for Developers and Users

185

I

Agenda REXX

What’s new?

User Interfaces, CMS and TSO

Performance Comparisons

Building a Standalone Program

0 Building REXX External Functions

Packaging an Application Using REXX

SLAC 92 (C) Copyright IBM Corporation 1992
186

5/ 1 I92

a = Notes REXX

In August 1991 two new IBM products were made generally available: the IBM Compiler and
Library for RUW370. The major news coming with these products will be covered in the first
part of this presentation.

As the author has a close affiliation with user interfaces for invoking the compiler, a little
description of these interfaces will be glven - the nearly unchanged CMS invocation dialog
and the new MVS foreground compilation panel.

Apart from other benefits, performance is a major aspect in compiling Rem. The
performance expectations and the results of a running a few benchmark programs will be
shown.

Finally the new products offer new possibilities for packaging applications. The presentation
will close by demonstrating how these possibilities can be used and what advantages can be
expected.

SLAC 92 (C) Copyright IBM Corporation 1992
187

51 1 I92

What’s New?

Product Improvements

Support MVWESA

Smaller, Faster, Less Expensive

Smaller compiler and compiled programs
Faster compilation and program execution
Lower price, in particular for smaller processors

CONDENSE option to get significantly smaller compiled
code

DLINK option to allow for new packaging

Support different parameter passing conventions on MVS

Tolerate Interpret

SLAC 92 (C) Copyright IBM Corporation 1992
188

51 1 I92

Support MVS/ESA REXX

Cross Compiler
Programs compiled on one system can be run on either
system

Gives enterprise the ability to purchase a single compiler

0 . Library for REXX/370 is system dependent

Programs compiled with the predecessor product
(CMS/Rexx Compiler) can be run without recompilation.

SLAC 92 (C) Copyright IBM Corporation 1992 51 1 I92
189

Support MWS/ESA - Notes REXX

Compiler produces on either system
A compiled EXEC that can be used instead of the source program. (Moving from one
system to another or from one library to another on MVS may require conversion from
one record format to a different one - a utility is provided for performing this task.)
An object module that can be turned Into an executable load module or that can be
link-edited with other programs.

The compiler’s system interfaces, the user interface, and the run-time support are, of course,
system dependent. Ordered by product number with feature for CMS or MVS. Packaging in
predecessor product was Compiler and Runtime Library or (on customer request) Runtime
Library alone. The new products are Compiler alone and Runtime Library. User must order
both products for compiling and executing programs.

Upward compatibility is maintained: Programs compiled with predecessor product can be
run with the new Library. However, no downward compatibility - we move fonnrard.
Predecessor product is now withdrawn from marketing.

SLAC 92 (C) Copyright IBM Corporation 1992
190

5/ 1/92

I

I

SE Option REXX

I Customer Complaint: I
“Compiled programs are (much) larger than source code”

A new compiler option is offered that allows to condense the
object code.

Compiled program uses less disk space

Literal strings (and source lines) become illegible

Unpacking the program for execution takes a little time.

Consider

Machine bottleneck

Program 1 oca t i on

Program si ze

Program execut i on

Program i nvoca t i on

Other

should use CONDENSE should not use CONDENSE

1 /o c PU Storage

Disk Storage Storage
(single use) (shared use)

1 arge medi um small

1 ong-runni ng short-running

sel doml y frequent 1 y

source/constant DLINK required
protection

SLAC 92 (C) Copyright IBM CorDoration 1992
191

51 1 I92

I
DLINK Option REXX

knother Performance Boost I ~~ ~

Significant (search) time is spent when external programs are
invoked. CMS/Rexx Compiler allowed to create TEXT and
MODULE for a Rexx program. A new compiler option, DLINK,
generates weak external references for external functions and
subroutines in compiled object modules.

These can be resolved by combining caller and callees, using
the linkage editor.

Under MVS, modules must be pre-linked using an appropriate
stub to accommodate the different parameter passing
conventions.

Use of DLINK can make an application self-contained: No
name clashes with user’s environment.

SLAC 92 (C) Copyright IBM Corporation 1992
192

51 1 192

I
MVS Parameter Passing Conventions REXX

MVS has many different parameter passing conventions

REXX programs understand arguments

These arguments are passed in a table

Compiler for REXX/370 supports four types of parameters

MVS type, used in PARM= on JCL

CALL type, used in the TSO/E CALL command

CPPL type, used in TSO/E commands

EFPL type, used in REXX external functions and function
packages

Source of "stubs" is provided as examples

Can be modified for other parameter passing conventions

~ ~

SLAC 92 (C) Copyriaht IBM Corooration 1992
193

51 1/92

MVS Parameter Passing Conventions - NotesREXX

The MVS type and CALL type are very similar. The CALL type is limited to a single
parameter, and it will have an address less than 16 Meg. The PARM= on JCL is a single
parameter, but other programs that use this convention may have more than one parameter.

Register 1 points at a list of addresses, the last of which has the high order bit on.
Addresses point at the individual argument strings each of which consists of a length field
followed by the actual data.

The CPPL is a four word construct mapped by the macro IKJCPPL.
The DSECT for this macro is:

* THE COMMAND PROCESSOR PARAMETER L IST (CPPL) IS A L IST OF
* ADDRESSES PASSED FROH THE TMP TO THE CP VIA REGISTER 1 ...
CPPL DSECT
CPPLCBUF DS A PTR TO COMMAND BUFFER
CPPLUPT DS A PTR TO UPT
CPPLPSCB DS A PTR TO PSCB
CPPLECT DS A PTR TO ECT

The EFPL is a six word construct mapped by the macro IRXEFPL.
The DSECT for this macro is:

EFPL DSECT
EFPLCOM DS A * RESERVED
EFPLBARG DS A * RESERVED
EFPLEARG DS A * RESERVED
EFPLFB DS A * RESERVED
EFPLARG DS A * POINTER TO ARGUMENTS TABLE
EFPLEVAL DS A * POINTER TO ADDRESS OF EVALBLOCK

Stubs transform what comes in to what is expected. Under CMS, the compiled Rexx program
is “self-adjusting.”

I

SLAC 92 (C) Copyright IBM Corporation 1992 51 1 I92
194

I

Tolerate Interpret REXX

Closer to Thee I

Interpret was flagged as SEVERE error by CMS/Rexx
Compiler
No compiled code was generated.

Interpret is now flagged as ERROR
Code is generated and causes a run-time error when the
Interpret instruction is actually encountered.

This can be avoided by:

Parse Version v
If left(v,5)*>*REXXC’ Then
Interpret instruction

/* running compiled program */
/* we can interpret *I

0 Support of Interpret is now an “Accepted Requirement”

SLAC 92
~~

(C) Copyright IBM Corporation 1992
195

51 1 192

REXXD = Compiler Invocation Dialog REXX

Specify
Then se

Program

Action

IBH Compiler for REXX/370
a program. licensed Materials - Property o f IBM
ect an action. 5695-813 (C) Copyright IBH Corp. 1989, 1991

A1 1 rights reserved. . . . TEST EXEC A Output disk: I
. . . . Source act i ve Comp i 1 ed - 1 Compi le TEST EXEC A into TEST CEXEC A

2 Switch (rename) source and compiled exec

3 Run active (source) program
4 Edit source program
5 Inspect compiler listing
6 Print source program
7 Print compiler listing

8 Specify compiler options

Argument string:

Comnand ===>
Enter Fl=Help FZ=Filelist F3=Exit

F12=Cancel

SLAC 92 (C) Copyright IBM Corporation 1992
19G

51 1 I92

I

REXXD - Compiler Invocation Dialog = Notes REXX

The compiler invocation dialog is intended to support ail tasks involved in compiling for
programmers as well as for casual users.

To use the compiler-invocation dialog under CMS enter the command:

rexxd test exec a

The panel appears as shown in the previous foil.

You may now select Actions:
1. Select Action 1 to compile the source program.
2. Select Action 2 to rename the source program and the compiled program.
3. Select Action 3 to run the currently active program. .

If you need more information, refer to the online help by pressing the F1 key.

The name of the program to be compiled is carried over from the REXXD invocation or from
the last Invocation of this dialog. The name can, however, be changed on this panel. The
panel is identical to that of the predecessor product, with one addition: the possibility to
specify an output disk.

The panel indicates whether the source program or the compiled EXEC is currently active.
The effect of switching between the two is reflected by appropriate highlighting.

Compiler options in effect can be displayed, changed, saved, and reset by selecting Action 8.

SLAC 92
~~

(C) Copyright IBM Corporation 1992
197

51 1 192

The Compiler Options Specification Panel REXX

REXX Comp i 1 er Opt i ons Spec i f i cat ions

Specify which -output files you want, and their File-IDs

File identifiers
Program name ROULETTE EXEC 61

Y Compiler listing Y/N/P) = LISTING =
Y Compiled EXEC [Y/N) = C* =
Y TEXT file (Y/N) = TEXT =

Spec
I
n
N

Spec v
Y
W

ify compiler messages to be issued
FLAG Minimum severity o f messages to be shown (I/W/E/S/T/Y)
TERM Display messages at the terminal (Y/N)
SAA SAA-compl iance checking (Y/N)

ify contents of compiler listing
SOURCE Include source listing (Y/H)
XREF Include cross-reference 1 ist ing (Y/S/N)
LC Number o f lines per page (16-99 or, for no page headings, 8 or W)

Additional options
W SL Support SOURCELINE built-in function (Y/n)
Y TH Support HI imnediate comnand (Y/N)
S WOC Error level to suppress compilation (*/W/E/S)
N COWD Condense compiled program (Y/W)
Y DLINK Include ESD and RLD in TEXT output (Y/N)

W DUMP Produce diagnostic output (8-2047, Y, or H)
Special compiler diagnostics

Comnand ==*
Enter Fl=Help FZ=Filel ist F3=Exit F4=Save F5=Refresh F6=Reset

F124ancel

The options in effect are shown. Using entry fields and PF
keys, the user can

Change each compiler option individually (user input is

Save the options in effect (in LASTING GLOBALV)
Refresh the options (from LASTING GLOBALV)

checked and errors are diagnosed top down, field by field)

0 Reset the options to the installation defaults (taken from
REXXC)

Help panels explain the available options and their meaning.
SLAC 92 (C) Copyright IBM Corporation 1992

198
51 1/92

Foreground REXX Compile REXX

MVS Compiler Invocation I

Under MVS, the usual methods of compiler invocation are
supported:

Foreground Compilation

Background Compilation

Cataloged Procedures

FOREGROUND REXX COMPILE
COMMAND =-*
ISPF LIBRARY:

PROJECT -=E* TEST
6ROUP =+=> LIB1 =-* LIB2 -* L I B 3 r-0,

TYPE -* REXX
FlEMBER =-> (Blank or pattern for member selection l ist)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATASET NAME E==>

L I S T I D -=>

COHPILER OPTIONS: (extended REXXC options can be used)
e?->
-e>

SLAC 92 (C) Copyright IBM Corporation 1992
-~ ~~~

199
51 1 I92

Foreground REXX Compile = Notes REXX

Invoking the Compiler with ISPF Panels (MVWESA)

Under ISPF, you can invoke the Compiler from the Foreground REXX Compile panel and the
Batch REXX Compile panel. The panels are similar to those for other high-level language
compilers.

To use the Foreground REXX Compile panel:
1. Select FOREGROUND on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.
3. Enter the appropriate data set names and (extended) compiler options. Extended

compiler options allow to specify data set names where compiler output is to be stored.

From data entered on the panel, a command is built that allocates data sets as appropriate
and that invokes the compiler with the appropriate compiler options. This command is, of
course, implemented as a Rexx EXEC.

Rather unconventionally, background compilation does not employ file tailoring but uses also
this REXXC command - albeit in batch.

SLAC 92 (C) Copyright IBM Corporation 1992
200

5/ 1 /92

I

Performance REXX

1 Run-Time Performance Improvements I

Programs with a lot of m m m

I-
Arithmetic operations
with default precision

Arithmetic operations
with other precision

Assignments

Changes to variables’ values

Constants and simple variables

Reuse of compound variables

I Host commands

TIMES
faster than
Interpreter

6 - I O +

4 - 25
6 - I O

4 - 6

4 - 6

2 - 4

1 -

Performance
Category

VERY HIGH

HIGH

(C) Copyright IBM Corporation 1992
201

5/1/92

Performance - Notes REXX

The performance improvements that you can expect when you run compiled RWX programs
depend on the type of program. A program that performs large numbers of arithmetic
operations of default precision shows the greatest improvement. A program that mainly
issues commands to the host shows limited improvement because REXX cannot decrease the
time taken by the host to process the commands.

Up to 30% CPU-load reduction have been reported on a heavily REXX-loaded machine.
” ... better than last CPU upgrade. On average 10-15% reduction are reported.

SLAC 92 (C) Copyright IBM Corporation 1992
202

51 1 I92

Performance Comparison = April 1992 REXX

BENCHMAR EXEC

SPI-XA VM/XA System Product Interpreter Re1 5.6
REXX-378 IBH Conrpi ler and Library for REXX/378 Re1 1.8

TOTAL CPU TIME RATIO

nagnif ier

forloop

whi leloop

repeat 1 oop

literalassign

memoryaccess

realarithmetic

realalgebra

vector

equal i f

unequa 1 i f

noparameters

values

reference

wordscan408

comnand

SPI-XA

8.76538

7.97983

13.58915

13.89567

10.34849

18. 78418

3.29728

2.69790

18.78649

16.77867

16.74953

13.53182

11.98723

19.90034

21.16818

8.68720

REM-378

0.03749

8.42967

8.57711

0.54219

0.53132

8.56278

1.02355

0.39428

1.89689

0.91997

8.91375

1.29613

2.49335

2.51308

0.78951

8.61554

SPI/378

28.42

18.57

23.55

24.15

19.48

19.82

3.22

6.84

9.86

18.24

18.33

16.44

4.81

7.92

29.82

1.12

SLAC 92 (C) Copyright IBM Corporation 1992
~~ ~~~~~~

51 1 192
203

I

Building a Standalone Program REXX

0 Compile the program using the OBJECT compiler option

Turn it into a load module

- Under MVS, by link-editing with the MVSstub specified
- Under CMS, by LOADEENMOD

Place the load module

- into an accessible library
- onto an accessed minidisk

Invoke it

- from REXX (under MVS using Address LINKMVS)
- from other languages, e.g., PUI:

DCL REXPGM ENTRY EXTERNAL OPTIONS(ASSEMBLER, INTER) ;

k i C H REXPGM; /* Bring it into storage */
RELEASE REXPGM; /* Release it from storage */
CALL REXPGM(VARSTRING) ; /* C a l l the REXX program */

SLAC 92 (C) Copyright IBM Corporation 1992
204

511 192

I

Building REXX External Functions REXX

I Perfomance opportunities I

External functions in load libraries generally found quicker
(M W

Function packages are first in the search order (Rexx
search order)

1 Easy transition to load module I

Proceed as for standalone program

but use EFPL stub instead of MVS

SLAC 92 (C) Copyright IBM Corporation 1992
205

51 1/92

Buildina REXX External Functions m m m REXX

Essentially a collection of external functions

Each external Rexx function needs EFPL STUB (under
MVS)

When building package, naming convention consideration
is important

Description of packages in Rexx Reference manuals
(system dependent).

SLAC 92 (C) Copyright IBM Corporation 1992 5/ 1 /92
206

I

Packaging an Application REXX

1 Packaging Concept I
Can write an entire application in REXX

0 External routines are directly LINKed

Enabled through the use of DLINK compiler option

I DLINK advantages. I
Tremendous performance improvements from interpreted

Mostly by eliminating search time

Also due to inherent better performance in compiled REXX

.* Functional isolation

Each function can be in an external routine

No name clashes with other system execs or commands

No maintenance problems due to inadvertent modification of
the exec

SLAC 92 (C) Copyright IBM CorDoration 1992 511 I92
207

Packaging an Application ... REXX

I Packaging Considerations for MVS I

Naming convention unique to seven characters

Use the DLINK option with all OBJECTS created by the
Compiler for the application package

All external functions use EFPL stub

Main program may have different type of STUB

All programs need to have a STUB created using a
catalogued procedure

Link edit all created programs together to create package

SLAC 92 (C) Copyright IBM Corporation 1992
208

5/ 1/92

Packaging an Application ... REXX

I Example (for MVS) I
Begin with the following three execs

DLT to drive the process

CPUTIME to get the CPU time

INCR simply returns the passed argument

/* REXX DLT ...
* Performance Test for DLIWK opt ion:
* Invoke external routine IWCR 58 times and tell how long it took ..
n='DLT'
Parse Version v /* Use Parse Version to see if compiled */
If left(v,5)='REXXC' Then what-n 'compiled'

Say what
n w 5 8

Else what=n 'interpreted'

tO=cput ime ()
Call time 'R'
Say num ' invocations o f IWCR will be measured'
Do i=1 To num
Call incr i
End

Say 'This took me ' (cputime0-te) CPU-seconds. '
'(elapsed:' time('E')')'

I

i

SLAC 92 (C) Copyright IBM CorDoration 1992
209

51 1 I92
1

I

Packaging an Application - Notes REXX

One of the aspects of RWX that makes it an easy to use language is the ease with which it
can concatenate strings. This is observed in the if statement, where the name of the exec in
the variable n is concatenated with the string indicating whether the exec is compiled or
interpreted.

Also note that the PARSE VERSION gives the programmer the ability to determine if the exec
is running compiled or interpreted. If needed, different logic paths can be followed,
depending on whether the exec is being interpreted or run as compiled program.

Similarly Parse Source lets you determine how the exec was invoked and on which system.

(C) Copyright IBM Corporation 1992
210

511 I92

Packaging an Application m m m REXX

Parse Var s sys

Select /* Figure out which system we are on */
When sys='CMS' Then Do

qt="DIAG"(S, 'Q TIME')
Parse Var q t . *VIRTCPU=' rn . I:' +1 ss +6
cpuslm*60+ss
End

When sys='TSO' Then Do
cpu=sysvar('SYSCPU')
End

When word os(sys, PCODS OS/2')*0 Then Do
t=Time(P
Parse Var t hh : I m : I ss
cpu=(hh*6B+nn)*60+ss
End

Say 'System' sys ' i s unknown t o CPUTIME'
cpu*
End

O t hemi se Do

End
I f nord(s,2)='COmAWD' Then

Say 'CPU t ime used so far: I cpu
Else /* When an external routine *I

Return cpu /* Return the CPU t ime *I

SLAC 92 (C) Copyright IBM Corporation 1992 511 I92
211

Packaging an Application ... REXX

Building this package

Interpreted Case

Normally all three execs reside in SYSEXEC

Invoked by entering DLT from TSO command line

CPUTIME and INCR are external routines

Hence, DLT will need CPPL STUB

CPUTIME and INCR need EFPL STUB

All OBJECTS are created with DUNK option

Catalogued procedure used for each one

SLAC 92 (C) Copyright IBM Corporation 1992
212

51 1 I92

Creating the final module
1

Link edit all load modules together

After each has its STUB added

Using INCLUDE and NAME control cards

In this example, BJVLIB is the DDNAME of the library
containing the programs

Control cards would be

INCLUDE BJVLIB(D1T)
INCLUDE BJVLIB(1WCR)
INCLUDE BJVLIB(CPUT1ME)
ENTRY DLT

NAME DLT(R)

Under CMS, simply

LOAD DLT INCR CPUTIME
GENMOD DLT

SLAC 92 (C) Copyright IBM Corporation 1992 51 1 I92
213

I

Packaging an Application m m m REXX

I Output Comparison I
When Interpreted

DLT interpreted
50 invocations of IWCR will be measured
This took me 1.30 CPU-seconds. (elapsed: 11.14)

When Compiled using OBJECT and DLlNK

DLT comp i 1 ed
50 invocations o f IWCR will be measured
This took me 0.74 CPU-seconds. (elapsed: 0.89)

Under CMS

This took me 0.23 CPU-seconds. (elapsed: 1.891623)

This took me 0.06 CPU-seconds. (elapsed: 0.142837)
vs .

Significant Performance Improvement
L

Interpreted uses 75 YO more CPU

Interpreted is 12.5 times slower in elapsed time

SLAC 92
~ ~~ ~~ ~ ~~

(C) Copyright IBM Corporation 1992
214

Sf 1/92

I

In Closing REXX

he IBM Compiler and Library for REXX/370 I

Open new programming possibilities

Support both function and application packaging

Give you more time on your own CPU!

And we did not even touch

- Program Documentation

- Plug-compatibility

- .31-Bit Capability (VM/XA)

- New language on old systems

SLAC 92 (C) Copyright IBM Corporation 1992
215

51 1 I92

