
INTERFACING w m RDO(

23 I

Interfacing with REXX

ABSTRACT
This aim of this paper is to give an overview of the interfaces available in REXX, and to show how these
interfaces can be used. This paper deals only with the MVS environment - however, most other
environments (e.g. OS/2) offer similar facilities.

Although REXX is a powerful language in its own right (especially now that REXX compilers are
available), there are certain features missing (for example, processing of VSAM files, direct SQL
processing). Furthermore, there are REXX features (e.g. parsing) that can simplify the processing of
programs written in conventional languages (Assembler, PLD, COBOL, etc).

REXX caters for both these situations by providing interfaces. There are two forms of interface:
high level
low level.

High-level interfaces are invoked directly from a REXX exec. Low-level interfaces are those routines
(services) provided by the REXX processor.

There are three forms of high-level interface:
function
(address) environment
program invocation.

A function can be written in either REXX or a conventional programming language. To improve
performance functions can be physically grouped together as a function package. A function is invoked
by its name, and serves to extend the standard functions provided with REXX (e.g. WORD, WORDINDEX). A
function may be passed arguments, and may return a value (the function return value).
An address environment can only be written in a conventional programming language. High-level
interfaces may (and normally will) make use of low-level REXX interfaces. R E X as an address
environment processes any non-REXX statements. A user-address-environment extends the standard
REXX environments (e.g. MVS, TSO).
A program invocation is made with the LINK or ATTACH command.

1. INTRODUCTION
REXX implementations offer many interfaces for using REXX services from. programs written in
conventional programming languages. This paper describes only those interfaces of interest to the
applications developer - there are a number of other interfaces which can be used by systems specialists
to customise the system.

The interfaces can be grouped into the following categories:
program invocation of a REXX exec
programs as REXX functions (and the grouping of such programs into function packages)
program access to REXX variables
stack operations
general service routines.

232

Interfacing with REXX 1

1.1 High-level REXX interfaces
High-level REXX interfaces are invoked directly from REXX execs. Such interfaces can be regarded as
being extensions to the REXX language.

Standard address environments:
ISPEXEC (ISPF Dialog Manager)
ISREDIT (ISPFPDF Edit Macro)

0 DB2 (program that runs in the DB2 environment)
QMF.

Typical user environments:
REXXDBZ process SQL query
REXXVSAM process VSAM dataset.

Representative examples of user functions:
SHIFT function (perform bit-shift on REXX variable)
SIN function (calculate trigonometric sine value).

1.2 Low-level REXX interfaces
The most useful low-level REXX interface routines:

IRXEXCOM access REXX variables
IRXEXEC invoke REXX exec
IRXINIT process REXX environment
IRXJCL invoke REXX exec (batch mode)
IRXLOAD load exec
IRXRLT get result
IRXSTK access REXX stack.

REXX programs (i.e. programs that make use of REXX services) can access certain REXX control
blocks:

Argument List (AL). The Argument List describes the input arguments passed to a function. Each
argument passed to the function has one Argument List entry (consisting of two words) in the
Argument List. The Argument List is terminated with two words each containing binary -1

External Functions Parameter List (EFPL). The EFPL describes the external arguments for a
function; the pointer to the input arguments and to the result field. The input arguments are defined
in the Argument List. The result is defined in the Evaluation Block (EVALBLOCK).

Environment Block (ENVBLOCK). The ENVBLOCK describes the REXX operating environment.
An ENVBLOCK is automatically created when the REXX environment is initiated. The
ENVBLOCK is principally used by the application developer to obtain error messages.

(x'F.. f l) .

Evaluation Block (EVALBLOCK). The EVALBLOCK describes the result passed back from a

Execution Block (EXECBLK). The EXECBLK specifies the information necessary to locate an

In-Storage Control Block (INSTBLK). The INSTBLK describes (address and length) the individual
records (lines) of a REXX exec contained in main-storage. The IRXLOAD service can be used to build
the INSTBLK.

Shared Variable (Request) Block (SHVBLOCK). The SHVBLOCK describes the variable to be

function.

external exec.

accessed from the variable pool. SHVBLOCKs can be chained together.

233
,,; : Interfacing with REXX 2

Vector of External Entry Points (VEEP). The VEEP contains the addresses of the external REXX
service routines.

Most of these control blocks are read-only, although some can be altered (INSTBLK, SHVBLOCK).

2. HIGH-LEVEL INTERFACES

2.1 MVS-TSO/E implementation
The MVS-TSOE implementation allows a REXX exec to run in several environments, both dialogue
and batch. From within this invoking environment the ADDRESS instruction can be used to select a sub-
environment for non-REXX statements. This sub-environment is the interface to other components, for
example, the ISPEXEC sub-environment for ISPF Dialog Manager services.

2.1.1 Invocation
A REXX exec can be invoked from:

TSO/ISPF dialogue
TSO batch
MVS batch.

The REXX exec is stored as member of a partitioned dataset (library). The name of this dataset must be
made available to the REXX interpreter.

2.1.2 Linkage to host (MVS-TSO/E) environment
A REXX exec can link to components from the host environment. The ADDRESS instruction is used to set
the host environment.

Example:
ADDRESS TSO "TIME";

invokes the TSO T I M E command.

2.13 Linkage to programs
A REXX exec can pass control to a program written in a conventional programming language, The
program is invoked with either the ATTACH or L I N K host command. The ATTACH command invokes the
program asynchronously (i.e. as a separate task), the L I N K command invokes the program synchronously.
The program is loaded from the program (load) library assigned to the environment.

The program may be passed a single parameter, which may contain subparameters. The invoked
program receives two parameters on entry:

the address of the parameter string;
the length of the parameter string (full-word).

Note: This is not the standard MVS program linkage convention. TSOPE V2R3.1 offers new facilities:
LINKMVS, ATTCHMVS, LINKPGM, ATTCHPGM. These pass multiple parameters according to MVS conventions.

234

Interfacing with REXX 3

2.1.4 Interface with ISPEXEC (ISPF Dialog Manager)
REXX execs invoked from the TSO/ISPF environment can use the ADDRESS ISPEXEC instruction to access
ISPEXEC (ISPF Dialog Manager) services. The parameters for the ISPEXEC service are passed as a
normal REXX string, i.e. may be a literal, symbol or mixture. However, ISPEXEC accepts only upper-case
characters. The return code from the ISPEXEC service is set into the RC special variable.
REXX execs and ISPF Dialog Manager share the same function pool, with two restrictions:

variable names longer than 8 characters cannot be used in ISPF;
the VGET and VPUT services cannot be used with stem variables.

Example:
panname = "PAN1";
ADDRESS ISPEXEC "DISPLAY PANEL("panname")" ;
SAY RC;

uses ISPEXEC to display panel PAN1, the return code from the service is displayed.

2.1.5 Interface with ISREDIT (ISPFIPDF Edit macro)
The ISPFPDF Editor can invoke a procedure to perform processing on a dataset - this procedure is
called an Edit macro and can be a REXX exec. The ADDRESS I S R E D I T instruction invokes Edit macro
services. The parameters for the I S R E D I T service are passed as a normal REXX string, i.e. may be a
literal, symbol or mixture. The return code from the I S R E D I T service is set into the RC special variable.

Edit macros can make full use of REXX facilities. The powerful string processing features of REXX
make it an ideal language for the implementation of Edit macros.

Example:
/* REXX Edit macro */
ADDRESS I S R E D I T :
"MACRO (STRING)"
"F IND" string "NEXT"
IF RC <> 0 THEN SAY "search argument not found";
"END" /* terminate macro */

2.1.6 Interface with DB2 (Database 2)
The TSO DSN command is used in initiate the DB2 session. The DB2 RUN subcommand is used to invoke a
program which is to run in the DB2 environment.

The DB2 subcommands to invoke the program, and to terminate the DB2 session, RUN and END,
respectively, are set into the stack in the required order before the DB2 session is initiated.

Note: The subcommands cannot be passed directly, as is the case with CLISTs.

Example:
QUEUE "RUN PROGRAM(TDB2PGM) PLAN(TDB2PLN) LIB('USER.RUNLI6.LOAD')";
QUEUE "END";
ADDRESS TSO " IDSN"; /* invoke DE2 */

ADDRESS ISPEXEC "SELECT CMD(%DSN)"; /* invoke DE2 with I S P F services */
or

2.1.7 Interface with QMF (Query Management Facility)
With QMF Version 3 Release 1 the S A A Callable Interface (DSQCIX) is now available for REXX. This
means that there are now two methods of invoking Q M F

Callable Interface
Command Interface.

Interfacing with REXX

235

4

The Callable Interface:
ISPF not required
QMF does not need to be active.

The Command Interface:
requires ISPF
requires QMF to be active.

The Command Interface invocation of QMF is more involved; two steps are required
initiate the QMF session (program DSQQMFE), and execute a QMF procedure;.
this QMF procedure passes control to a REXX exec, which in turn uses the QMF Command
Interface (CI, program DSQCCI) to process a QMF command.

The following three QMF examples all perform the same function: run the QMF query Ql .
21.7.1 cauable Interjke - Vkrsion 1
Example:

/* REXX - QMF Callable Interface */
ADDRESS "TSO" ;
/* allocate QMF files */
"ALLOC F(DSQDEBUG) DUMMY REUS"
"ALLOC F(DSQPNLE) DSN('qmf.test.dsqpn1e') SHR REUS"
"ALLOC F(ADMGGMAP) DSN('qmf .test.dsqmape') SHR REUS"

CALL TESTRC;
CALL OSQCIX "RUN QUERY 01"; /* run query */
CALL TESTRC;
CALL DSQCIX "EXIT"; /* terminate QMF */
CALL TESTRC;
EXIT; /* terminate exec */
TESTRC:

CALL DSQCIX "START (DSQSSUBS=DB2T,DSQSMODE-INTERACTIVE"; /* Start QMF */

IF DSQ-RETURN-CODE > 4 THEN DO;
SAY "QMF RC : " DSQ-RETURN-CODE ;
SAY DSQ-MESSAGE-TEXT;

END;
RETURN;

236

Interfacing with REXX 5

2 1.7.2 Gallable Inte@ace - Version 2
Example:

/ * REXX - QMF Callable Interface */
ADDRESS "TSO";
"ALLOC F(DSQDEBUG) DUMMY REUS"
"ALLOC F(DSQPNLE) DSN('qmf. test.dsqpnle') SHR REUS"
"ALLOC F(ADMGGMAP) DSN('qmf .test.dsqmpe') SHR REUS"

CALL TESTRC;
ADDRESS "QRW"; / * QMF environment */
"RUN QUERY 91" /* run query */
CALL TESTRC;
"EXIT" / * terminate QMF */
CALL TESTRC;
EXIT; / * terminate exec */
TESTRC:

CALL DSQCIX "START (OSQSSUES=DB2T,DSQSMODE=INTERACTIVE"; /* start QMF */

I F DSQ-RETURN-CODE > 4 THEN DO:
SAY "QMF RC: " DSQ-RETURN-CODE;
SAY OSQ-MESSAGE-TEXT;

END;
RETURN ;

Version 2 is basically the same as version 1, except that the QMF environment QRW is used.

21.7.3 Command Interjkce
Example:

Phase 1 - Initiate QMF session (DSQQMFE program). The following exec allocates the (minumum) QMF
files, initiates QMF session and invokes the QMF procedure QP1:

/* REXX - QMF COMMAND INTERFACE * /
ADDRESS "TSO";
"ALLOC F(DSQDEBUG) DUMMY REUS"
"ALLOC F(DSQPNLE) DSN('qmf .test.dsqpnle') SHR REUS"
"ALLOC F(ADMGGMAP) DSN('qmf .test .dsqmape') SHR REUS"
ADDRESS "ISPEXEC";
"SELECT PGM(DSQQMFE) NEWAPPL(0SQE) PARM(S=DBZT,I=USER.QPl)"

Phase 2 - The QMF procedure QP1 passes control to the TSO procedure (REXX exec) QR2:

TSO %QR2

Phase 3 - The QR2 exec invokes the QMF Command Interface (DSQCCI program) to process the specified
QMF commands (this REXX exec actually causes the QMF query (91) to be run):

/* REXX */
ADDRESS "ISPEXEC";
"SELECT PGM(DSQCC1) PARM(RUN Q I) "
"SELECT PGM(DSQCC1) PARM(INTERACT)"
"SELECT PGM(DSQCC1) PARM(EX1T)" /* terminate QMF */

23 7

Interfacing with REXX 6

Fig. 1 illustrates the use of the QMF Command Interface.

Fig. 1 -Schematic use of QMF Command Interface

2.2 User interfaces
User programs can be invoked as:

function (e.g. x - f u n c t (p l , p 2 , . ..):)
host command (e.g. ADDRESS userenv: "and p l p2 . . .";)
program (e.g. LINK "pgm pl p2 .. .";).

The most suitable interface depends on such aspects as:
the form of the arguments to be passed (a natural calling sequence);
the form of the results to be returned;
the programming language used.

2.2.1 Function interface
A user function receives zero or more parameters (parsed in the Argument List), and must return a
function result (in the Evaluation Block). Fig. 2 illustrates the function interface.

Example:
y - SIN(x);

Interfacing with REXX

238

7

r e g i s t e r 1
External Function Parameter L i s t (EFPL)

EFPLARG T - - EFPLEVAL T

Argument L i s t (ARGSTRING. .)

X'FF.. .FF'

[X'FF ... FF ' I

I Evaluation Block (EVALBLOCK)

u
Fig. 2 -Function interface

2.2.2 Host command interface
A host command is processed by the currently active environment, i.e. the environment activated with
the ADDRESS command. All non-REXX commands are passed to the host command environment. A host
command cannot directly return any data (other than a return code for the command) - data can be
passed back in the stack or as (stem) variables. Fig. 3 illustrates the host command interface.

Many installations have a single router program that passes control to the appropriate processing
program.

Example:
ADDRESS USER;
"REXXVSAM READ DDNAME GE ALPHA(STEM A. ":

parameter 1 i s t T-v]
T - F l -
T - F c o d e j l----16----1

T

T .

Fig. 3 - Host Command Environment Interface

239

Interfacing with RfXX 8

2.2.3 Program invocation interface
A program can be directly invoked with the ATTACH (asynchronous) or L I N K (synchronous) command. This
is the only way of invoking a CJ370 Version 1 program. Note: The parameters passed to a program do
not conform to the MVS calling convention. Fig. 4 illustrates the program invocation interface.

Example:
ADDRESS LINK "ALPHA BETA GAMMA";

parameter 1 ist

I
invocation string

1 TFF]
Fig. 4 - Program invocation (via LINK, ATTACH)

3. LOW-LEVEL INTERFACES

3.1 General conditions
The low-level interfaces are subject to the following conditions:

Programs can be written in Assembler, COBOL, PL/I, and C/370 Version 2 (to a limited extent
Version 1). Not all high-level programming languages provide full support for all the required
facilities.

Programs using REXX services must use 31-bit addressing (AMODE 31).
Numeric fields are in binary format, either fullword (4 bytes) or halfword (2 bytes).
Standard calling conventions are used
. register 15 - entry point address;
- register 14 - return address;

The return code is passed back in register 15 (PL/I: PLIRETV variable, COBOL RETURN-CODE special
register, C: function return value). Many routines also set an error message in the Environment
Block.

Parameter address lists passed in register 1 must have the high-order bit set in the last address word.
Standard macros (in the SYS1.MACLIB system macro library) are available for use by Assembler
programs to map the more important control blocks. Programs written in high-level programming
languages (e.g. COBOL, PL/I) must themselves define the required control block structures - Fig. 5
shows the equivalent field types in various programming languages.

register 13 - address of save-area.

type C COBOL vs I 1 P L / I Assembler

address * POINTER PTR A
character string CLn

ox X ' ... ' B I T (8) X hexadec ima 1
short P I C S9(4) COMP FIXED BIN(15) H halfword
int P I C S9(9) COMP FIXED B IN(31) F fullword
char [ntl] P I C X (n) CHAR(n)

Fig. 5 -Equivalent field types

240

Interfacing with REXX 9

Notes:
1. Only the most important information for the interfaces is described in this paper - the appropriate

manual should be consulted if a more detailed description is required.
2. The entry symbol.. in diagrams denotes that symbol is used as prefut to the field names in the

corresponding block. The diagrams show only the significant fields. Any fillers at the end of field
layout figures are omitted.

Sample PL/I program:
BETA: PROC OPTIONS(MA1N);
DCL IRXSTK EXTERNAL OPTIONS(RETCODE, INTER,ASSEMBLER) ;
DCL PLIRETV BUILTIN;
DCL 1 FC CHAR(8) ; / * function code */
DCL 1 ADDR-ELEM PTR; / * pointer to data */
DCL 1 LEN-ELEM FIXED B IN(31) ; / * length of data */
DCL 1 FRC F IXED B IN(31) ; / * function return code */
DCL 1 ELEM CHAR(256) BASED(ADDR-ELEM); /* data */

FETCH IRXSTK; /* load address of entry point */
CALL IRXSTK(FC ,ADDR-ELEM ,LEN-ELEM, FRC) ;

END;

FC = 'PULL ' ; /* function * /

I F PLIRETV = 0 THEN PUT S K I P L I S T (SUBSTR(ELEM,l,LEN-ELEM));

This PL/I program retrieves and displays the next element from the data stack.

3.2 Invocation of a REXX exec
There are three ways of an application program to invoke a REXX exec:

using the IRXJCL program;
using the TSO Service Facility (IJKEFTSR program);
using the IRXEXEC program.

These three methods are listed in order of ease of use. This is also the order of increasing flexibility, e.g.
the IRXEXEC program interface offers more flexibility than the IRXJCL program interface but is more
difficult to use.

32.1 Interface from programs to batch REXX (IRXJCL)
Programs written in a conventional language can use IRXJCL to invoke a REXX exec. Fig. 6 shows the
form of the parameter as passed from the invoking program.

0 2 n+2

Fig. 6 - Format of parameter passed to IRXJCL

3.2.2 Invocation of a REXX exec using the TSO Service Facility (IJKEFTSR)
REXX execs can also be invoked from the TSO environment (either dialogue or batch) with the TSO
Service Facility (I JKEFTSR program) - the TSO Service Facility has the alias TSOLNK.

323 Interface from program to REXX processor (IRXEXEC)
The IRXEXEC routine is the most flexible method of invoking a REXX exec:

it can invoke either an internal or external exec;
it can pass more than one parameter.

24 1

Interfacing with RE% 10

If the INSTBLK address is zero, an internal exec is invoked, otherwise an external exec is loaded using
the information in the EXECBLK (EXEC-BLK-DDNAME - library ddname, EXEC-BLK-MEMBER - member name).
Fig. 7 illustrates the IRXEXEC service.

parameter 1 ist
EXECBLK*

T--i--1
T

flags
INSTBLK*

2-- CPPL
T

T

EVALBLOCK*

ddD work area ptr
work area

user field I1 T-E I
Detailed diagram follows (in part 2)

Pig. 7 - IRXEXEC interface @art 1 of 2)

3.3 Program access to REXX variables (IRXEXCOM service)
Programs running in a REXX environment can use the IRXEXCOM service to access variables in the
environment pool. Fig. 8 illustrates the IRXEXCOM service. The following functions are available:

copy value
set variable
drop variable
retrieve symbolic name
set symbolic name
drop symbolic name
fetch next variable
fetch user data.

Interfacing with REXX

242

11

INSTBLK (INSTBLK-. .) p - q

I

record vector
record 1

last record

I1 ----
! F l

EXECELK (EXEC-ELK-. .)
' IRXEXECB'

LENGTH

MEMBER

WNAME
I >-

r - - - --> library

I I

- - implicit (only informative)
Fig. 7 - IRXEXEC interface @art 2 of 2)

243

Interfacing with REXX 12

I ' IRXEXCOM' 1
parameter 1 i st

IRXEXCOM
mdu le

1 SHVBLOCK

I SHVCOOE -IS1 (SHVSTORE

SHVNAMA

SHVNAML

SHVVALA

l-----i
variable pool
m
varname

u - data - control
Fig. 8 - IRXEXCOM service to store a variable

3.4 Stack processing (IRXSTK service)
Programs can use the IRXSTK service to perform processing on the current stack. The operations:

OELSTACK
DROPBUF
MAKEBUF
NEWSTACK

9 PULL
PUSH
QELEM

9 QSTACK
9 QUEUE
9 QUEUED

have their standard function.

244

Interfacing with REXX 13

The two operations:
DROPTERM
MAKETERM

are used by system routines to coordinate stack access from TSO and ISPF. These operations should not
be used by application programs.

3.5 Function interface

3.5.1 Function package
For reasons of efficiency, functions can be grouped together as a function package - function packages
are searched before the other libraries. Three classes of function package can be defined:

user function package
local function package
system function package.

The system support personnel will usually be responsible for the local and system function packages, and
so they will not be discussed in this paper, although the general logic is the same as for the user function
package.

A function package consists of a function package directory and functions. The function package
directory is a load module contained in the load library - IRXFUSER is the standard name for the load
module defining the user function package. Fig. 9 shows the diagrammatic representation of a function
package.

The function package directory contains the names of the functions (subroutines) as invoked from a
REXX exec and a pointer to the appropriate load module. This pointer can have one of two forms:

The address of a load module which has been linkage edited together with the function package

The name of a load module which will be loaded from the specified load library.
directory - such load modules must be serially reusable, as they are loaded only once.

3.5.1.1 Function directory
The Function Directory defines the functions contained in a function package. The Function Directory
consists of a header and one entry for each function contained in the Function Directory.

245

Interfacing with REXX 14

load 1 i brary ' function package
(FPCKDIR-. .)

IRXFUSER ' IRXFPACK'

HEADER-LENGTH

entry 1 FUNCTIONS (=n)

ENTRY-LENGTH

load 1 i brary
I<

-
Fig. 9 -Diagrammatic representation of a function package

Sample Function Package Directory:
IRXFUSER CSECT

DC CL8' IRXFPACK'
DC AL4(SOD-IRXFUSER)
DC AL4(ND)
DC F L 4 ' 0 '
DC AL4(LDE)

DC C L B ' F D I G I T '
DC V L 4 (F D I G I T)
DC F L 4 ' 0 '
DC C L 8 ' '
DC C L 8 ' I

LDE EQU *-SOD
* next entry

SOD EQU *

DC C L 8 ' FGEDATE '
DC A L 4 (0)
DC F L 4 ' 0 '
DC CL8'FGEDATE'
DC C L B ' I S P L L I B '

EOD EQU *
ND EQU (EOD-SOD)/LDE

END

identlf ier
length of header
no. of entries in directory
zero
entry length
start of directory (first entry)
function name
address, reserved
reserved
name of entry point
DD-name of load library
length of directory entry

function name
address, 0 - load from 1 i brary
reserved
name of entry point
DD-name of load library
end of directory
no. of directory entries

246

Interfacing with REXX 15

This sample Function Package Directory contains two functions:
F D I G I T - l i i age edited with the Function Package Directory;
FGEDATE - to be loaded from the I S P L L I E library.

3.6 Load routine - IRXLOAD service
The load routine (IRXLOAD) can be used in several ways:

load an exec into main-storage - this creates the In-Storage Control Block for the exec;
check whether an exec is currently loaded in main-storage;
free an exec;
close a file from which execs have been loaded.

IRXLOAD is also used when the language processor environment is initialised and terminated. Fig. 10
illustrates the IRXLOAD service (load function).

EXECELK (EXEC-BLK-. .)

t-l ' IRXEXECB'

- LENGTH

MEMBER

DDNAME >-

~ r - - - - - - - -> 1 i brary

I I

I

L- -1- - - - - - '
+length--(.

INSTBLK (INSTBLK-. .) [GiiiGFI
-

ADDRESS f
USEDLEN

record vector

- - implicit (only informative)
Fig. 10 - IRXLOAD interface

module -

247

Interfacing with REXX 16

3.7 Initialisation routine - IRXlNlT service
The initialisation routine (IRXINIT) can be used in two ways:

initialise a new environment;
obtain the address of the current Environment Block.

The first function is normally only used by system specialists. The second function is used principally to
access an error message which has been set by a service routine. Fig. 11 illustrates the ENVBLOCK.

F E N V E L O c r l
NVELOCK

PARMELOCK

error message

rIRXPARMS*
Parameter Block

Module Name
Table

Host Comnand
Environment Table

Function Package
Table

parameters module

L

Fig. 11 - ENVBLOCK

3.8. Get result - IRXRLT service
The get result routine (IRXRLT) can be used in two ways:

fetch result set by an exec invoked with the IRXEXEC service;
allocate an Evaluation Block of the specified size.

This paper is adapted from my book

published in 1990 by Ellis Horwood Limited, Chichester.
Practical Usage of REXX

Anthony Rudd, April 1992.

248

Interfacing with REXX 17

