
DAVID I SHRIVER
IBM

249

REXX in the ClCS Environment

May 5, 1992

David 1. Shriver

IBM
Maiistop 01-03-50

5 West Kirkwood Blvd.
Roanoke, TX 76299-0001

(817) 962-4142

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

ABSTRACT:

CICSlREXX is an IBM internal implementation of REXX, the IBM S A A Procedures Language, under
CICSjMVS and CICS/ESA. Specifically, it provides REXX environment support under CICS for both the
TSO/E Version 2 REXX interpreter and the REXX/370 compiler. This environment support includes inter-
face routines for storage management, l/O handling and other miscellaneous REXX facilities. It also includes
providing a command-level interface to CICS from REXX, and also provides interfaces to other CICS based
products, such as IBM’s OficeVision/MVS.

250

Third REXX Symposium, Anapolis, Maryland (c) Copyright IBM Corporation 1991,1992

25 1

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

Contents

CICS/REXX Ovewiew 1

Trademarks 1
Disclaimer 1
Purpose of this paper 1
Function/Feature Highlights 1

copyright 1

Full REXX language support under M V S CICS 2
Support for both compiled and interpreted EXECs 2

* CICS based text editor for REXX EXECs and data 2
VSAM based fde system for REXX EXECs and data 2
Support for popular EXEC CICS commands (not complete yet) 2
Support for Subcommands written in REXX 2
Support for application macros, written in REXX 3
High-level clientlserver architecture support 3
Command definition of REXX Subcommands 3
FlatlUniversal default REXX Subcommand space 3
Transparent CICS Pseudo-conversational tefininal support 3
Support for system and user profile EXECS 3
Shared EXECs in virtual storage 4
Nested ISCLUDE support in EXEC Loader 4
EXEC Suspend/Resume support 4
REXX interface to OfflceVisioniMVS and ASF Version 2 4
Compatibility support for several popular VM/CMS commands 4

CICS,’REXX Benefits 5
Business Solutions 5
Investment Protection 7
User Productivity 7
Growth Enablement 7
Systems Management 8

ClCSlREXX General Arehitecture/Implementation 9
General Design Goals 9
Basic structure of REXX running under CICS 9
REXX EXEC invocation 10
Where EXECs execute 10
How EXECs are located and loaded 10
How EXECs are edited 10
Control of EXEC execution search order 10
REXX EXEC File System structure 11
Support of standard REXX features 11

SAY and TRACE statements 11
PULL and PARSE EXTERSAL statements 11
REXX stack support 11
REXX function support 11
REXX Function Packages 12

Invoking another EXEC as a subcommand 12
Invoking CICS load modules as user provided subcommands 12
Adding REXX host subcommand environments 12

CICS mapped 1/0 support 12

REXX Subcommand Environment Support 12

Support of standard ClCS featuresifacilities 12

252

Contents 3

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Chrporation 1991, 1992

Dataset 1/0 Services I2
Interfaces to ClCS Facilities and Services 12 a

invoking user applications from EXECS 13
REXX interfaces to CICS temporary & transient storage queues 13
Pseudo-conversational transaction support 13

REXX EXEC Suspend/Resume support 13
interfaces to other programming languages 13
Security 14
Perfonnance discussion 14
Miscellaneous features 14
Supported Environments and prerequisites 14
National language and DBCS support 15
Building block S/W development - Common Interface Routine 15

CICS/REXX Client/Server Architecture 17
High-level Client /Server support 17

ClientlSener Design goals 17
Current ClientlServer Implementation 18

CICS/REXX Office\’ision/MVS Environment Supporl
REXX EXECS for Application Integration 19
REXX EXECS as exits 19

19

CICS/REXX Interfaces to other products 21
Description of interface to DB2 21
Description of interface to GDD,M 21

CICS/REXX ChlS Environment Compatibility/Emulation 23

Summary 25
Prototype development experience 25
Much more than just another language for ClCS 25

Appendix - Sample CICS/REXX screens 27
Sample FILELIST screen 27
Sample KEDIT Screen 28
DEMO EXEC 28

Source listing 28
Execution with trace off 32
Execution with trace on 36

REX EXEC 41
Source listing 41
Execution 42

253

4 REXX in the ClCS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

ClCSlREXX Overview

Copyright

(C) Copyright IB,M Corporation 1991

Trademarks

The following terms used in this paper, are trademarks or sewice marks of IBM Corporation in the United
States or other countries:

AIX, CICSjESA, CICS/MVS, DB2, GDDM, IBM, QMF, MVS/ESA, OfficeVision, OS/2, PROFS, REXX

Disclaimer

This discussion of REXX under CICS does not imply that IBM either does, or does not, have plans to
incorporate all, or part of, this function into a product.

Purpose of this paper

The purpose of this paper is to share information on an internal IBM implementation of REXX under
CICS so as to promote technical discussion and generate customer feedback.

Function/Feature Highlights

As follows are some of the highlight features of CICS/REXX:

Full REXX language support under MVS CICS

Support for both compiled and interpnted EXECs

CICS based text editor for REXX EXECs and data
VSAM based file system for REXX EXECs and data .

Support for popular EXEC CICS commands (not complete yet)
Support for Subcommands written in REXX

Support for application macros, written in REXX

High-level clientlserver architecture support

Command definition of REXX Subcominands

Flat/Universal default REXX Subcommand space

Transparent CICS Psuedo-conversational terminal support

Support for system and user profile EXECs

Shared EXECs in virtual storage

254

CICS.'REXX Overview 1

I

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Nested IXCLUDE support in EXEC Loader

EXEC SuspendiResume support

REXX interface to Of€iceVision/MVS

Compatibility support for several popular VM/CMS commands

Full REXX language support under MVS CICS

CICS/REXX is currently at REXX language level 3.46 and supports all REXX language statements and
built-in functions, as described for MVS in the SAA Common Programming InterJace Procedures Language
Reference, SC26-4358.

Support for both compiled and interpreted EXECs

CICS/REXX includes support for both interpreted and compiled EXECs. Compiled and interpreted EXECs
can be freely intermixed. Such a combination is powerful because the use of the interpreter provides a very
productive development environment (quick development cycle, source level interactive debug, CICS based
development) whereas the compiler allows the developed REXX code to be later optimized for the perform-
ance requirements of critical production systems. Since compiled and interpreted REXX EXECs can be
intermixed transparently, compilation can be done selectively on those modules that need it most, and the
replacement of interpreted REXX EXECs can be done gradually, without affecting system function.

ClCS based text editor for REXX EXECs and data

KEDIT, a full function text editor, similar to the VM/CMS XEDIT and TSO ISPF/PDF editors is provided
as part of CICSIREXX, so EXECs can be written and modified directly under CICS, and from CICS based
application platforms, such as OfiiceVision/MVS.

VSAM based file system for REXX EXECs and data

CICS,'REXX includes a REXX file system that is hierarchically structured (similar to OSj2, AIX and the
VM Shared File System), and automatically provides each REXX user with a file system in which to store
EXECs and data. There is a FILELIST utility to facilitate working with this fie system, the KEDIT editor
will support editing members of this file system, and EXECs to be run are loaded from this fie system. This
library (file) system is VSAM RRDS based for performance, security and portabiiity reasons.

Support for popular EXEC ClCS commands (not complete yet)

Support for several EXEC CICS commands is already included in CICS/REXX, and support for all popular
CICS Command Level commands is planned.

Support for Subcommands written in REXX

CICSIREXX supports the ability for users to write new REXX subcommands in REXX. These subcom-
m a d s do not function as nested REXX EXECs, and unlike nested REXX EXECs will have the abihty to
get and set the values of REXX variables in the user EXEC that invoked them. Thus subcommands written
in REXX can have similar capabilities as subcommands written in Assembler or other languages. Therefore
subcommands can be quickly written in REXX to speed systems development (in a building block struc-
ture), and then can selectively be rewritten in Assembler, for example, at a later date, as performance require-
ments dictate. Or they may simply be compiled with the REXX compiler.

'255

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Support for application macros, written in REXX

One of the strongest uses for REXX is to support the extension of existing applications via Application
Macros. This provides a natural mechanism for the extension of product or application capability, and does
so in a natural building block fashion. Since REXX Application Macros are separate from application code,
this means they can be effectively created by application users, with little chance of causing application
failure.

High-level client/server architecture support

CICS/REXX includes built-in clientlserver architecture support to facilitate the use of this important new
, technology in systems development and to help enable a higher level of host involvement in Enterprise-wide
computing solutions.

Command definition of REXX Subcommands

CICS/REXX includes as one of its basic facilities, the ability for systems administrators and users to easily
and dynamically defrne new REXX subcommands, either on a system-wide or user-by-user basis. One of the
greatest strengths of REXX is its ability to be interfaced cleanly with other products, applications and system
services. The goal for providing a command definition facility for new or existing subcommands is to facili- .’

tate the rapid and consistent high-level integration of various products and services together through the use
of REXX. REXX subcommand definition is accomplished though the CICSlREXX DEFCMD and
DEFSCMD subcommands.

Flat/Universal default REXX Subcommand space

The CICS/REXX subcommand definition facility also optionally supports the use of a flat (or universal)
REXX subcommand space. This would be consistent with the REXX goal of maintaining simplicity and
naturalness. With this support, all REXX subcommands (which might span interfaces for multiple applica-
tions) would be mapped into one default subcommand environment. This would allow one global and con-
sistent subcommand set to be provided and documented, and would free programmers from having to
understand which subcommand environment a subcommand exists in, and it would remove the need to be
constantly switching subcommand environments (switching environments is accomplished with the
ADDRESS statement).

Transparent ClCS Pseudo-conversational terminal support

CICS/REXX supports both conversation and pseudo-conversational terminal I/O in REXX based trans-
actions. Transparent, underlying pseudo-conversational support is provided if the PSEUDO OS subcom-
mand is specified in an EXEC. This means that a program written in REXX can be switched between
conversational and pseudo-conversational without changing the program structure..

Support for system and user profile EXECs

To facilitate CICS!REXX system and user environment tailoring, CICSiREXX will attempt to execute a
SYSPROF EXEC and user PROFILE EXECs if they exist. The SYSPROF EXEC must exist in the system
base directory and is invoked before the first user EXEC runs after a CICS system restart. A user’s
PROFILE EXEC (if it exists in that user’s base directory) will be invoked before the first EXEC is invoked
for this user (after a ClCS system restart).

256

CICS:’REXX Overview 3

Third R E W Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Shared EXECs in virtual storage

CICSIREXX supports both shared and unshared copies of REXX EXECs residing in virtual storage. Pre-
loaded shared EXECs improve interactive response time of REXX applications, and sharing reduces the
total virtual storage requirement.

Nested INCLUDE support in EXEC Loader

Often in real world REXX programming, a programmer is tom between making a function or subroutine
written in REXX, internal or external to a REXX application. There are sigtllficant performance and vari-
able sharing advantages to making a subroutine internal. But there is a major drawback if this subroutine is
to be shared by several REXX EXECs. Duplicate copies must be placed in all programs that use the sub-
routine and it is a nightmare trying to update all of these copies and to keep them the same, whenever a
change is made to a subroutine. CICS/REXX nested INCLUDE support improves this situation by
allowing one or more INCLUDE statements to be placed in REXX source fdes so that subroutines can be
maintained as separate external files but be included as internal routines at EXEC load time. An additional
opportunity is that only one copy of the source for a particular subroutine needs to be loaded into virtual
storage, no matter how maqy EXECs are using it as an internal routine.

EXEC SuspendlResume support

When CICSiREXX is used as a Procedures Language under CICS, there are times that EXECs are used to
contain command lists of CICS commands (applications) to be STARTed. Since these CICS transactions
often require a terminal to be available before they can run, a way is need to cause the transaction the
EXEC is running under to end to free up the terminal, causing the EXEC to be temporarily suspended so it
can be resumed later at the point after it was suspended. The ClCSiREXX SUSPEND subcommand pro-
vides this capability.

REXX interface to OfficeVisionlMVS and ASF Version 2

OficeVisionlMVS and ASF Version 2 provide CICS based Application Integration platforms. Applications
may be integrated with each other or with Office functions, for added value. CICSlREXX has special
support to facilitate REXX EXECs being invoked from OficeVisionlMVS (or from ASF Version 2) and/or
OffceVision/MVS services being invoked from REXX EXECs in a CICS environment.

Compatibility support for several popular VMlCMS commands

Compatibility support for several important VM/CMS commands has been provided in CICS/REXX to
make it easier to port or migrate VM based EXECs to a CICS environment. This helps preserve customer
investments in VM/CMS EXECs when such a migration is necessary, it helps facilitate the porting of a con-
siderable amount of VM/CMS REXX based software to the CICS environment,, and helps preserve invest-
ments in VM/CMS training and allows ViM/CMS users to come up to speed more quickly in the
CICSiREXX environment.

4 REXX in the ClCS Environment

257

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICS/REXX Benefits

Business Solutions

CICS/REXX is an ideal system to use to deliver superior, valuable, and appropriate business solutions, in a
much more timely and cost effective manner.

CICS/REXX is an excellent platform for the delivery of CICS based business solutions for the following
reasons:

CICSIREXX is a simpler, uniform, self contained deveropment environment

To use CICSIREXX, a new programmer no longer has to learn TSO, ISPF, JCL, COBOL and much
of the technical detail of CICS (such as the proper use the translator).

For both new and experienced programmers, there is no longer the need to constantly switch back and
forth bctween TSO and CICS, all the while flipping between several manuals for needcd system and
development information.

CICS/REXX is a uniform, self contained system that supports development directly under CICS and
provides everything the average CICS developer needs in one manageable package.

CICSIREXX d o w s solutions to be delivered sooner

There is a combination of benefits that CICS/REXX delivers to cause major gains in application pro-
ductivity and reduced delivery time. The REXX language alone has proven to be a major boost to appli-
cation productivity because of its high level, simplicity, strong parsing and naturalness. On top of that,
the synergy of an interpreterlcompiler combination is a strong addition. The interpreter provides a very
quick development cycle and provides excellent source-level interactive debugging capability. Experience
has proven a ten-fold improvement in productivity, when using REXX over conventional languages and
techniques, to be a conservative figure. The ability to deliver business solutions more quickly is an
important advantage in today's competitive marketplace.

CICS/REXX makes practical AighIy incremental development

One of the biggest advantages of the fact that CICS/REXX includes support for a REXX interpreter as
well as a compiler, is that the interpreter, with its quick, natural development cycle and excellent source-
based interactive debugging make it feasible to switch to an Incremental Development Methodology.
This is also sometimes called a Prototyping Development Methodology.

REXX is of a sufficiently high level to be a powerful language for quick and expressive prototyping, and
because of the compiler and the robustness of the language, is also suitable for serious application devel-
opment. This provides an ideal situation where prototypes can be quickly developed to test system feasi-
bility, to gather requirements, to get customer involvement, and can then be 'grown" into useful
production systems.

This approach bypasses the nasty surprises of finding late in the deveiopment cycle that the project isn't
technically feasible, of delivering a system that isn't what the customers want (or even what they thought
they were going to get), or of major schedule overruns without any deliverables. And a frnal nice benefit
of incremental development is that it has the tendency to test the code much more thoroughly during
development, usually resulting in much higher quality code.

8 CICSlREXX applications are easier to maintain and support

REXX based applications, being high-level in nature, are usually smaller than comparable applications
in other languages (in lines of code) and are easier to read. And the interactive source level debug capa-
bility of the REXX interpreter makes it easier to locate and fix problems, and to deliver enhancements.
This equates to a cheaper, more effective support of REXX based applications.

258

ClCS 'REXX Overview 5

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

CICSlREXX is useable by business people

Quite often business people who best understand the business and their needed solutions have ideas as to
ways to modify, customize, or enhance applications that they use. But when they discover the difficulty
involved and the investment in education required, they often give up in frustration. But those who have
persevered have often delivered some of the most timely and on-target solutions. One of the greatest
strengths of REXX is its simplicity and naturalness on one hand, and its powerful capability, on the
other hand. CICS/REXX will make it possible for ClCS application users to more extensively customize
and even extend their applications, without requiring a programmer. This will provide more timely, on-
target solutions, and will free real programmers up for involvement in more strategic projects.

This is in line with what many industry analysts believe is a fundamental shift happening in the model
for application development within Fortune 1000 companies. Busiiess is organizing into more auton-
omous units, competitive pressures have increased (demanding quicker solutions), and new technology
such as workstations and Client/Server computing, have made it feasible for much application develop-
ment to be moved from central MIS to line-of-business organizations.

CICSIREXX makes complex system manageable

One of the design goals of REXX has always been to bend over backwards to make progamming
simple and natural for the REXX programmer, even if this makes things complicated for the REXX
implementer. The simplistic power of REXX makes it a good candidate for today’s complex business
systems, because it simplities them and thus makes them more manageable.

CICS/REXX organizes (breaks down) complex systems in several related ways to make them more
manageable. One is that it promotes a natural building block approach made up of EXECS, application
macros, and subcommands transparently implemented in a variety of languages. In close relationship to
these, is built-in Client/Server computing support that encourages greater host involvement in the
Enterprise-wide ClientiServer Distributed Computing model, with all of the many benefits this entails.
Another strength of CICSjREXX in this arena, is the facilities it has for integrating multiple applica-
tions, products, and system facilities together into one seamless package, from a user perspective, which
greatly simplifies systems development efforts.

The KEDIT story: The KEDIT text editor was written so as to be externally similar to the IBM XEDIT
and ISPFIPDF editors, so as to minimize user retraining needs.

KEDIT is an excellent example of the sophistication that is possible with REXX based applications under
CICS/REXX. And it it is a good example of the development productivity improvements that are possible.

KEDIT was written completely in REXX (except for some general purpose primitives it uses that are
written in Assembler, as will be the case with most REXX applications) by Kevin Wriston, who was new to
REXX. Kevin wrote a useable editor (which he used for his own REXX development) in three weeks, and
has spent a total of about three person months, developing KEDIT. And the finished product is only about
1000 lines of REXX code, a mere fraction of the XEDIT Assembler code.

The other nice thing is the quickness with which Kevin can respond to requests ,for changes or enhance-
ments to KEDIT (often quicker than the average programmer can go get a cup of coffee).

Kevin recently added REXX macro support to KEDIT, a demonstration that under CICS/REXX, applica-
tions written in REXX, can also support application macros, written in REXX, an important new capa-
bility.

259

6 REXX in the ClCS Environment

Third REXX Symposium, hapol i s , Maryland (C) Copyright IBM Corporation 1991, 1992

Investment Protection
The IBM MVS CICS computing environment has one of, if not the, largest concentration of customer pro-
duction applications and data, in the world. There has been tremendous customer investment in CICS based
mainframe systems, CICS based application development, data collection for CICS based systems, and
employee education relating to the use and support of CICS based systems. CICS/REXX helps to preserve
and enhance the usefulness of this investment.

Not only does CICS/REXX enhance the delivery of traditional CICS based production applications, it
makes the CICS environment suitable for a broader range of information processing activities. With
CICS/REXX, it is now practical to also perform end-user computing, prototyping, and application develop-
ment, directly within the CICS environment.

Also, CICS/REXX, which currently runs under M V S CICS, was designed so it can be later ported to
provide REXX support for CICS running under OS/2, AIX, VSE and OS/400. One goal is to provide con-
sistent REXX support across these environments, so as to preserve customer investments. Another is to
facilitate the use of cooperative processing, between these environments.

User Productivity

C1CS;REXX can enhance CICS user productivity in several ways:

Allows simpler, but more flexible application customization by typical users. This allows them to more
effectively tailor these applications to their individual business needs. . Advanced users will be able to make application enhancements that normally would have been reserved
for professional application developers. This has the effect of providing solutions necded to improve pro-
ductivity and satisfy business needs more quickly. It also reduces the demand on application developers
for application changes and frees them to work on more signtficant long range efforts.

Facilitates the use of a prototyping methodology. This means that the users of an application in develop-
ment participate very closely in the application development process (if they do not own the process
outright). Thc end result is that the users, who have the best understanding of the busincss and their
needs can better ensure that the application solution delivered matches their needs. This close involve-
ment will also have the added benefit that the human factor needs (useability) of the user audience will
also tend to be addressed in the application, enhancing their productivity.

Growth Enablement

Because CICS/REXX reduces the complexity of application development and maintenance, it makes it fea-
sible to develop and support larger and more complex systems. This is true because:

REXX is a high level language whose. major emphasis has been to be natural to use and to free its user
(the programmer) from any unnecessary detail. Thus REXX programs tend to be shorter and easier to
follow.

REXX encourages the use of a more manageable building block approach to systems development. The
integrated Client,’Senw and dynamic subcommand dcfition capabilities of CICS,’REXX ewn further
enhance this.

Major productivity improvements achieved by using the powerful interactive source level debugging
capability and the quick development cycle of the REXX interpreter will make larger, more sophisticated
development efforts feasible.

260

CICS ‘REXX Overview 7

Third REXX Symposium, Anapolis, Maryland (C) Copyright I B M (=arparation 1991.1992

Systems Management

One of the major strengths of REXX is its usefulness as a Procedures Language. When used in this way, it
can automate sequences of ClCS system and application Systems Management activities, providing greater
productivity and reliability.

A l s o , since CICS/REXX supports application development (and testing) directly under CICS, systems man-
agement can be greatly simplified. For example, the need for many CICS developers to have a TSO userid,
could be removed, in many situations. Reducing the volume of TSO userids that need to be administered ’

and managed would equate to an overall reduction in systems management activities.

8 REXX in the ClCS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICWREXX General Architecture/lmplementation

General Design Goals

Some specific design goalslobjectives for this project were:

Provide the CICS or OfficeVision/MVS user or application developer/integrator with a simple but pow-
erful self contained REXX based environment with the necessary interfaces to productively accomplish
application development, application integration and customization.

Provide a high-level, easy to use, REXX interface to the existing CICS command level facilities so as to
improve the productivity of existing, experienced CICS developers.

Provide a high-level, easy to use alternative programming environment that removes the need for casual
programmers (or users) to learn the CICS environment.

Bring product interfaces together, in one, self contained place for both ease of use and added synergy.

Provide a flexible CICS REXX implementation that can be easily customized, tailored or extended by
customers for their own unique needs.

Capitalize on new REXX/370 compiler, C/370 Version 2 and other products

Provide an environment conducive to the building block approach to code development. One of impor- .
tant needs in t h i s area is to allow administrators and users to replace one type of building block or prim-
itive with one written in a different language or with a different name without having to change the
programs that reference it. Support interfaces to multiple programming languages.

Provide an architecture capable of supporting large complex systems

Perfonn acceptably for use in large production CICS environments

Provide security sufficient for CICS production environments

Exploit CICS/ESA and MVS/ESA when available

Basic structure of REXX running under CICS

CICS/REXX support provides a program called REXX which is used to load and invoke REXX EXECS
within a CICS region. This program uses the Clearly Difierentiated Programming Interfaces (CDPI) of
TSO/E Version 2 REXX to define a new CICS specific REXX language processor environment for the user
EXEC, and then invokes the EXEC. The REXX program also contains several REXX replaceable routines
to handle all REXX storage requests, line-mode 1/0 and various other functions. On the very fust invoca-
tion of the REXX program within a CICS region, a REXX system servg is automatically started, under its
own REXX environment control block. Thereafter, the REXX system server receives notification before the
invocation and after the termination of each user EXEC invoked by the REXX program. The REXX
system servcr is a shared xrver that all REXX user exccs can route requests to, by ADDRESSing the sub-
command environment SYSTEM. The GLOBALV global variable command support that is provided is an
example of using the system server to add additional subcommands to REXX.

262

CICS,'REXX General Architecture Implementation 9

Third REXX Symposium, Anapolis. Maryland (C) Copyright IBM Corporation 1991. 1992

REXX EXEC invocation
EXECs invoked from a terminal

REXX EXECs are invoked by a CICS/REXX program named REXX: A CICS transaction id must be
defrned for this program. If the tran id is REXX then the name of the EXECs and its arguments follow
on the command line. For example: REXX MYEX,EC ABC will invoke the REXX EXEC ,MYEXEC
and pass it the string ABC as an argument. If a transaction id other than REXX is associated with the
REXX program, the name of the EXEC that is invoked is the same as the transaction id.

EXECs invoked by a START command

The REXX transaction associated with the REXX program may be invoked with the EXEC CICS
START command. If start data is provided, that is passed to the EXEC as an argument. The name of
the EXEC to invoke is normally expected to be provided in the start data.

EXECs invoked by a LINK or XCTL
The REXX program, when invoked by a LISK or XCTL, will attempt to frnd the naine of the REXX
EXEC to invoke in the CO.MMAREA, if one is available. The entire COXMAREA will also be passed
to the EXEC as an argument.

Where EXECs execute

CICS/REXX EXECs are executed as part of the CICS task that invokes them, within the CICS region. The
REXX interpreter is fully reentrant and runs above the 16 MB line (AMODE= 31,RMODE=ASY).

How EXECs are located and loaded

The directories of specified REXX libraries are searched, in concatenation sequence in an attempt to locate
an EXEC. If it is located, it is read into storage and control is given to the REXX interpreter to invoke it.
Before REXX libraries are searched, there is fust a check to see if the EXEC is already loaded in storage,
and if so, since REXX EXECS are re-entrant, control is given immediately to the REXX interpreter.

How EXECs are edited

CICS/REXX includes a CICS-based text editor, wich is similar to the IBM XEDIT and ISPFjPDF editors,
to edit EXECs and data files, directly under CICS.

Control of EXEC execution search order

A PATH subcommand is provided to control the search order of REXX File System directories. The direc-
tories specified in the PATH command are searched after the current directory (specSed by the CD
command).

263

10 REXX in the ClCS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

REXX EXEC File System structure -

Hierarchical Directory structure (like OS/2, AIX, VM SFS)

No need to register new users

Xo need to register individual EXECS

Basic support without an External Security Manager

ImportlExport to M V S Partitioned Datasets

Management functions for members (COPY, DELETE, RENAME)

FILELIST file directory interface utility

An EXEC10-like 1 / 0 utility (FSIO)

Supports insertion of records in middle of files

Maximum records per member is approx. 2**32 minus 2
Maximum record length is 2**32 minus 2
Maximum VSAM datasets per a RFS filepool is 51 1

h'umber of filepools is limited by system storage

Execute-only support by library and by member

Support for authorized REXX libraries (for authorized primitives)

Support of standard REXX features

SAY and TRACE statements

The REXX SAY and TRACE terminal 1 / 0 output statements use CICS Terminal Control Support to
provide simulated line-mode output.

PULL and PARSE EXTERNAL statements

The REXX PULL and PARSE EXTERNAL terminal I/O input statements use CICS Terminal Control
Support to provide simulated line-mode input.

REXX stack support

Same as TSO/E Version 2 REXX

REXX function support

CICS/REXX supports the same built-in function set as TSO/E Version 2 REXX with the following
exceptions. The USERID function will return a 1 to 8 character CICS userid if the user is signed on, other-
wise it will return blanks. The STORAGE function, which allows a REXX user to k l y display and/or
modify the virtual storage of the CICS region will be disabled or restricted.

264

ClCS 'REXX General Architecture 'Implementation 1 1

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

REXX Function Packages

The function packages provided with TSO/E REXX that are not TSO specific, are provided and system
administrators will have the ability to defineladd additional function packages using standard documented
interfaces.

REXX Subcommand Environment Support
REXX subcommand environments that are currently available (to use with the REXX ADDRESS
command) are CICS, COMMAND, MVS and SYSTEM.

Invoking another EXEC as a subcommand

EXECS may be invoked as subcommands using the new cljent/server support (described later in this docu-
ment).

Invoking CICS load modules as user provided subcommands

Support is provided for site provided subcommands, in the form of CICS LOAD modules (loaded using an
EXEC CICS LISK) to be defined using the DEFCMD and DEFSCMD commands.

Adding REXX host subcommand environments

Support is provided to allow new CICS/REXX host subcommand environments to be added and supported
in a variety of languages, including REXX. This is done using the DEFCMD and DEFSCMD subcom-
mands, or by using the standard documented TSO/E REXX interfaces.

Support of standard ClCS featuredfacilities

ClCS mapped I 1 0 support

Support is not yet available for CICS BMS 1/0 commands as REXX subcommands in the CICS subcom-
mand environment.

Dataset 110 Services

Verbs for standard CICS dataset I/O services commands are planned as REXX subcommands.

Interfaces to ClCS Facilities and Services

From within the ADDRESS CICS subcommand environment, support is planned for most popular CICS
commands (as defined in the CICS Application Programmer’s Reference Guide). Currently support is pro-
vided for the function provided by the following CICS Command Level commands:

EXEC CICS SEXD
EXEC CICS SEND TEXT
EXEC CICS RECEIVE

EXEC CICS READQ TS

12 REXX in the ClCS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992
. -

EXEC CICS WRITEQ TS
EXEC CICS DELETEQ TS
EXEC CICS ASSIGN USERID

EXEC CICS READ RRN

EXEC CICS WRITE RRW

EXEC CICS REWRITE RRN

EXEC CICS DELETE RRN

EXEC CICS UKLOCK

EXEC CICS START
EXEC CICS LINK

EXEC CICS XCTL

EXEC CICS SUSPEND

Invoking user applications from EXECs
EXEC CICS START, LISK and XCTL commands are currently supported.

REXX interfaces to CICS temporary & transient storage queues

Currently subcommand support exist for reading, writing and deleting CICS temporary storage queues from
REXX.

Pseudo-conversational transaction support

CICS pseudo-conversational support for REXX EXECs is provided. If this support is enabled, an EXEC,
CICS RETURS TRANSID could is automatically issued before each CICS RECEIVE, the execution state
of the EXEC preserved and the REXX transaction ended. The the next terminal 1/0 event would cause the
REXX transaction to be re-invoked and the EXEC to be resumed at the next statement after the
RECEIVE.

REXX EXEC Suspend/Resume support

CICSlREXX support includes a plimitive (subcommand) to suspend the execution of the EXEC and
causes the invoking transaction to end, allowing another transaction to run, attaching the terminal. The next
time the REXX program is invoked, the suspended transaction will resume the suspended EXEC. Any start
data passed is placed in the reserved REXX variable SDATA.

Interfaces to other programming languages .

The goal is to provide interfaces to COBOL, C/370, Assembler, and maybe PL/I.

266

ClcS REXX General Architecture !Implementation 13

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

Security

Xormal CICS interfaces to the MVS System Authorization Facility (SAF) will create the framework for
CICS/REXX security. Advanced security needs for REXX subcommand and client/server security is
expected to be provided under ClCS/ESA using the EXEC ClCS QUERY SECURITY command.

PerfoGance discussion

Because of the production nature of CICS, much emphasis is being placed on performance. There are many
desigq choices that can affect security. These include how REXX environments arc defined, how the REXX
fde system structure is implemented, how security interfaces are implemented, how much virtual storage is
given to an EXEC at invocation.

REXX is an excellent performer, especially for an interpreter, because it internally uses many sophisticated
techniques, such as look-aside tables, for good performance. REXX has proven itself to be a reasonable
performer in the VM arena as much of PROFS code is written in REXX. Many PROFS systems today
support thousands of usws in production. Another point to note, is that although REXX EXECS an inter-
preted, most of the actual processing for the typical application is spent executing REXX subcommands
which do most of the actual work. These primitives can be and usuaUy are written in a compiled language,
when performance is an important consideration. Usually, for the majority of small to medium d e CICS
applications the productivity benefits of using REXX far outweigh the performance penalty of using REXX.
A similar analogy is customers using DB2 vs M S . DB2 often requires more resources, but the benefits more
than outweigh the added processing cost. The net result is that DB2 users are happy because they are more
productive.

The best news from a performance perspective, is that the IBM REXX/370 compiler will work with
CICS/REXX, whenever performance critical applications need it.

Miscellaneous features

A TERMID subcommand has been provided to return the four character terminal identifier of a CICS user.

A RETRIEVE PF key has been setup to retrieve the last input line enter using line-mode I/O.

Supported Environments and prerequisites

CICS/REXX currently runs under CICS/MVS and CICS/ESA. CICS/REXX r e q u i r e s that TSO/E V2.0 or
later be installed and, if the REXX/370 compiler is used, in addition to the interpreter, then TS0,'E V2.3.1
or later must be installed. Certain advanced functions, such as the planned REXX interface utilizing the
programming interface of CICS 3.2 for Resource D c f ~ t i o n Online, will only supported under CICSjESA.

267

14 REXX in the ClCS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright 1BM Corporation 1991.1992

National language and DBCS suppod

The full range of DBCS functions and handling techniques that are included in TSOiE Version 2 REXX are
available to the CICS/REXX user.

It is expected that the national languages supported for CICSlREXX will match those supported for TS0,’E
Version 2. Refer to announcement 288-694, dated December 6, 1988. The support for national languages will
likely lag the initial American/English language support.

Building block S/W development - Common Interface Routine

One of the foundation architectun pieces of the CICS/REXX support code is a routine called the Common
Interface Routine (CIR).

The purpose of this routine is to allow transparency and flexibility as to the implementation method and
language of programs that make up software systems under CICSIREXX. That is, systems implcmcntcrs
should be free to create systems comprised of a mixture of traditional and clientlservcr interpreted REXX .
EXECs, compiled REXX EXECs, COBOL, C and Assembler language programs. And they should be later
free to change the language or implementation method of a program without affecting the correct functioning
of the system as a whole.

This is accomplished by having REXX and all other programs that wish to participate in this system, to call
the Common Interface Routine whenever control (or a clientlsenw request) needs to be passed to another
program. The CIR then determines from a table or data dictionary, the type and language of the target
program, x) it can invoke it (or pass the request to it) properly.

All programs that use the Common Interface Routine must use a consistent format for the passing of
parameters (or requests) to the target and for the returning of any resulting data.

The use of the Common Interface Routine does not require the use of client/server computing, but is a
closely related technique.

268

ClCS ‘REXX General Architecture/lmplementation 15

269

16 REXX in the CICS Envir0nmen.t

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

CICWREXX Client/Server Architecture

High-level ClienVServer support

A major new thrust of data processing is in the area of clientlserver processing. Many realize that this
method of computing holds much promise for accomplishing their computing needs in a more responsive
and cost-effective manner, especially in today’s ever more increasingly work station based computing envi-
ronments. However, many realize the promise and recognize the opportunity, but lack the tools to effectively
accomplish their goals. The goal here is to augment the general CICS/REXX environment with a high-level,

implement clientjserver processing applications that they could have never before considered, better utilizing
mainframe and workstation resources.

. easy to use, REXX-based client/server processing support that will make it feasible for customers to easily

Client/Server Design goals
M o w REXX servers to service multiple REXX clients, which may be located on a variety of remote
systems (long-term)

Provide an identity service to dynamically track and route requests and responses between servers and
rtquestors on multiple systems by server name. It should support the concept of local and global
resource management (long-term) . Provide security interfaces to effectively and efficiently control authorization of access and communi-
cation between servers and requestors.

Support both synchronous and asynchronous communication between servers and requestors

Very high level, easy to use but flexible REXX interface to this sewer/requestor support

Support parallel communication activities between a client and a server, at least separate command and
data sockets,%essions (long term)

Provide syncpoint and recovery capability

Good performance through use of efficient techniques

General enough in design to have a wide variety of uses

270

ClCS ‘REXX Client Server Architecture 17

Third REXX Symposium, Anapolis, Maryland (c) Copyright 1BM Corporation 1991,1992

Current Client/Server Implementation
Provides client/server support within a CICS region
High-level REXX based

Provides a common shared REXX system server

Supports requests from both REXX and assembler clients

Supports automatic server initiation

Requests are sent from a REXX client to a server as follows:

ADDRESS serverid ‘request’

The server waits on and receives requests from a client by issuing the WAITREQ’ subcommand. The server
is suspended until a client request arrives (which is placed in the reserved REXX variable REQUEST).

There are subcommands available to REXX servers to get or replace the contents of client REXX variables,
by name.

The security characteristicslauthority level of a client are automatically inherited by the server while it is
processing the request from that client.

27 1

18 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

ClCSlREXX OfficeVision/MVS Environment Support
- ~~~~

REXX EXECS for Application Integration

Currently OfficeVision/MVS provides the capability for the user to add new menu items or commands along
with their associated CICS applications to their OfkeVision/MVS desktop. This is done using the Applica-
tion Services component online administration utility to define new applications (represented by Application
Type Descriptor (ATD) definitions).

. Since REXX EXECs are invoked as a normal CICS program or transaction, REXX EXECs can easily be
invoked from the OficeVision/MVS desktop.

REXX EXECs under CICS/REXX are enabled to use the OficeVision/MVS System Interface Block (SIB).
The REXX program (or transaction) can be STARTed or XCTLed with a SIB passed to indicate what
EXEC to invoke and also where to transfer control to when the EXEC has finished its processing. REXX
EXECS can also pass an outbound SIB to OficeVision/MVS or another SIB enabled application. This
should greatly facilitate OfficeVisionlMVS based Application Integration.

For security reasons, CICS/REXX will not allow a user EXEC to pass a SIB to OficeVision/MVS unless
that user is already signed on.

REXX EXECS as exits

It is planned to support the use of REXX EXECs as exit programs for OficeVision/MVS and other CICS
based applications. It is the exit implementer's responsibility to determine if a REXX exit would be suitable
as an exit (for performance reasons, especially when an interpreted EXEC is used). However, it should be
noted that REXX EXECs are successfully being used to code exits routines for production applications
running under VM/CMS.

272

CIG,'REXX Ofice\'ision;'MVS Environment Support 19

273

20 REXX in the ClCS Environment

I
Third REXX Symposium, Anapolis, Maryland (C) Copyfight IBhd Grporation 1991,1992

ClCSlREXX Interfaces to other products

One of the strengths of REXX is the ease with which high-level interfacts to other products can be provided.
It seems a logical next step to add interfaces from ClCS REXX to DB2, GDDM and other products, on an
as needed basis.

Description of interface to DB2

This interface would be similar to the REXX to SQL interf'ace available under VM but would use the CICS
* dynamic SQL interfa to DB2.

Description of interface to GDDM

This interface would function essentially the same as the existing GDDW'REXX product under VM.

274

CICS,'REXX Interfaces to other products 21

Third REXX Symposium, Anapolis, Maryland (C) Capydght IBM Corporation 1991, 1992

CICWREXX CMS Environment CompatibilitylEmulation

To facilitate the migrating of systems and the porting of software from VM/CMS to MVS CICS, the fol-
lowing VM/CMS capabilities are provided:

Global variable support compatible with the V,M/C,MS GLOBALV command has been provided.

Full-screen terminal 1/0 support, compatible with the VM/CMS WAITREAD command has been pro-
vided.
EXEC10 command is supported for 1/0 to sequential datasets

' Xedit editor limited compatibility

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991.1992

277

24 R F Y Y in ?ha CICS F n w i r n n m m n t

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

-~

Summary

Prototype development experience

My prototype development experience has led me to the conclusion that it is feasible to do a good imple-
mentation of REXX under CICS. However what will do more to guarantee a good implementation of
REXX under CICS, more than anything else, is the feedback, input and participation of IBM customers in
this effort.

Much more than just another language for CICS

I hope that by now you have come to the conclusion that CICS/REXX is much more than just another
CICS language. That it is rather the beginning of a new environment with the potential to dramatically
improve the way that we work.

278

Summarv 25 I

279

26 REXX in the ClCS Environment

Third REXX Symposium, Anapolis. Maryland (C) Copyright IBM Corporation 1991,1992

Appendix - Sample ClCSrREXX screens

Sample FILELIST screen

USER=WRISJON DIRECTORY=/
CMD FILENAME FILETYPE ATTRIBUTES RECORDS BLOCKS DATE TIME

Top O f F i l e * *
TEST2 EXEC F I L E 5 1 83/27/92 10:31:
TEST1 EXEC FILE 11 1 03/27/92 10: 30:
GENID EXEC F ILE 7 1 03/13/92 09:OO:
SECURITY EXEC F I L E 21 1 83/13/92 08:59:
TEST EXEC F I L E 14 1 83/11/92 15:06:
FSIO L I B F ILE 493 3 03/11/92 08:42:
U I NDObIS EXEC F I L E 58 8 03/18/92 10: 46:
KEDIT EXEC F ILE 1278 5 03/10/92 08:49:
USERS D I R 1 1 03/10/92 08:49:

* r n d O f F i l e

04
29
37
31
53
04
19
14
10

280

Aooendix - Samole ClCS!REXX screens 27

Third REXX Symposium, Anapolis. Maryland (c) Copyright IBM Csrporation 1991, 1992

Sample KEDIT Screen

K E D I T 1.1.9 - CICS E d i t o r

00000 Top O f File
00001 End Of File

DEMO EXEC

Source listing

28 1

28 REXX in the ClCS Environment

Third R E X X Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

EDIT _ -_ - SHRIVER.REXX(DEM0) - 81-08 _____---_---_-_--_------- COLUMNS 001 072
COMf4AND SCROLL ==E> PAGE
000218 /* exan;ple o f n e s t i n g */
000219 address mvs
000220 'demo2 x x x '
000221
000222 /* example o f C ICS subcommands */
000223 address c ics
000224 'TERMID' /* g e t my C I C S t e r m i n a l i d */
000225 outbuf = sba(22 12) 1 (' T h i s i s f u l l s c r e e n o u t p u t t o t e r m i n a l I t e r m i d
000226
000227 /* pe r fo rm C I C S f u l l s c r e e n o u t p u t */
000228 'SEND' ou tbu f /* do a C ICS EXEC CICS SEND */
000229 outbuf = sba(23 12) 1 1 INOW t r y some f u l l s c r e e n i n p u t '
000230 'SEND' o u t b u f
000231
000232 /* per fo rm C I C S f u l l s c r e e n i n p u t */
800233 #WAITREAD' /* do an EXEC C I C S RECEIVE a n d p a r s e i n t o v a r s */
000234 say 'The A I D k e y t h a t was pressed =' waitread.1
000235 say 'The cursor was a t (Row Col): ' subword(Waitread.2,2,2)
000236 say 'The data that was en te red (Row C o l D a t a) : ' s u b ~ o r d (w a i t r e a d . 3 ~ 2)
000237 say
F13=HELP F14=SPLIT F15=END F16=RETURN F17eRFIND FlBLRCHANGE
F19=UP F20=DO\,!N F21=S\nJAP F22zLEFT F23=RIGHT F24=RETRIEVE

282

AoDendix - Samnle CIC! 'REXX screens 29

Third REMX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

1

EDIT ---- SHRIVER.REXX(DEM0) - 01.08 COLUMNS 001 072
COMMAND ==E> SCROLL ===> PAGE
000238
800239 ,P example o f using the system server */
000240 say 'send a GLOBALV SET and GET commands to the system server'
000241 address system
000242 'GLOBALV SELECT GROUPl SET VARl test data'
800243 'GLOBALV SELECT GROUPl GET V A R I '
000244 say 'The contents o f V A R l --I varl
000245 say
000246
000247 trace ' 0 ' ,P don't want to trace
800248 ,P example o f stand REXX 1 ine-mode
000249 do i = 1 t o 20
000250 do j = 1 to 1000
000251 a = 5
COD252 end

large loop */
output with more than 1 screen */

000253 say i*1000 'assignment statements have been executed'
000254 end
000255
000256 say
000257 /* show that bui 1 t-in REXX functions are available */
F13=HELP F14=SPLIT F15-END F16=RETURN F17=RFIND F18ZRCHANGE
F19=UP F20=DOI,JN F2l=SVAP F22=LEFT F23=RIGHT F24zRETRIEVE

EDIT ---- SHRIVER.REXX(DEM0) - 01.08 COLUMNS 081 072
COt.lMAND x==> SCROLL E==' PAGE
000258 say "Today's date i s " date('w') date()
000260 say 'The time i s ' time()
000400 EXIT
* ***** . BOTTOr.1 OF DATA *t**tt**t*t***********t*t*lt

f l3=HELP F 1 4 4 P L I T F15=END F16=RETURN F17zRFIND F18=RCHANGE
F19=UP F2@DO!tjN F21=S\jAP F22zLEFT F23zRIGHT F24=RETRIEVE

283

30 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 199 1, 1992

IT FlS=END F16=RETURN F17zRFIND FlbRCHANGE
F19=UP F20=DOWN F21=SWAP F22=LEFT F23=RIGHT F24sRETRIEVE

d

F13=HELP F14=SPLIT F35=END F16=RETURN F17=RFIND FlS=RCHANGE
F19=UP F2O=DO\JN F21=SMAP F22=LEFT F23=RIGHT FZGRETRIEVE

284

I

Third REXX Symposium, Anapolis, Maryland (C) Capyright I B M Corporation 1991.1992

Fl3=HELP FlQ=SPLIT F15=END F16=RETURN F17zRFIND F18-RCHANGE
F19=UP F20=DO\alN F21=S\nJAP F22=LEFT F23=RIGHT F24sRETRIEVE

Execution with trace off

285

32 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

r

***DFH2312 WELCOME TO CICS/ESA *** 17:54:50

e*\ ******\ ******\ ******\ *\ ******** \ ******\ ****\ *****It** \ *+****\ ******** \ ******** \ **\ ******** \ *e******\ ******\
****\ **\\\ ****\ ****\ **\ **\\\\\\\ **\\\v*\ **\\\v*\
**\ \\ **\ **\ \\ **\ \\ **\ **\ **\ . \\ **\. **\
\ **\ **\ \ ****+* \ \
\ **\ **\ \ **\ +*** \ ******* \ ******** \
**\ +*\ **\ **\ **\ **\\\\\ **\ **\\\v*\

\ ********\ ******** \ **\ ******** \ ********\ **\ **\
****** \\ *e****\ ******\\ ******\\ *\ ******** \ ******\\ **\ **\
\\\\\\ \\\\\\ \\\\\\ \\\\\\ \ \\\\\\\\ \\\\\\ \\ \\

+ +e\ *e****\ 81***tt

**\ 8*\ **\ **\ e*\ e*\ e*\ *e\ **\ **\ **\ **\ **\
******** \ +*****

r
rexx demo parml parm2

286

Third REXX Symposium, Anapolis. Maryland (C) Copyright 1BM Corporation 1991,1992

The arguments passed were: PARMl PAW2

What i s your name?

Dave READ

Y

***------,----__-_,,__,_,_,,__,,_,,_,_,,----------------- ***
*** Th is i s a t e s t REXX program r u n n i n g under MVS CICS ***
***----,,-_,,,,,,,_,,,_,_,_,_,,,,,,,,,,,--,--------------*8*

The arguments passed were: P A R M 1 FARM2

What i s your name?
Dave

Uelcome t o MVS CICS REXX, Dave

3 *-* say 'you entered demo2 exec'
>>> "you entered demo2 exec'

you entered demo2 exec
4 *-* address mvs
5 *-• 'demo3 y y y '

you entered demo3 exec
you entered demo4 exec
you entered demo5 exec

>>> 'demo3 yyy'

6 *-* exi t
T h i s i s fullscreen o u t p u t t o terminal 84G1
Now t r y some fullscreen input

287

34 REXX in the ClCS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright I B M Corporation 1991, 1992

* * * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ - , ~ * * *
*** This is a test REXX program running under MVS CICS ***
* * * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - . ~ *

The arguments passed were: PARI41 PAM2

What i s your name?
Dave

Welcome to MVS CICS REXX, Dave

3 *-* say 'you entered demo2 exec'
>>> 'you entered demo2 exec.'

you entered demo2 exec
4 *-* address mvs
5 *-* 'demo3 yyy'

you entered demo3 exec
you entered demo4 exec
you entered demo5 exec

The AID key that was pressed = ENTER

test input MORE

'demo3 yyy"

6 *-* exit

Now try some fullscreen input

I

The cursor was at (Row Col): 24 16
The data that was entered (Row Col Data): 24 2 test input

send a GLOBALV SET and GET commands to the system server
The contents o f VARl = test data

1000 assignment statements have been executed
2000 assignment statements have been executed
3000 assignment statements have been executed
4000 assignment statements have been executed
5000 assignment statements have been executed
6000 assignment statements have been executed
7000 assignment statements have been executed
8000 assignment statements have been executed
9000 assignment statements have been executed
10000 assignment statements have been executed
11000 assignment statements have been executed
12000 assignment statements have been executed
13000 assignment statements have been executed
14000 assignment statements have been executed
15000 assignment statements have been executed
16000 assignment statements have been executed

MORE

288

Appendix - Sample CICS,'REXX screens 35

Third REXX Symposium, Anapolis. Maryland (C) Copyright iBM Corporation 1991, 1992

17000 assignment statements have been executed
18000 assignment statements have been executed
19088 assignment statements have been executed
20000 assignment statements have been executed

Today's date i s Tuesday 20 Aug 1991
The time i s 17:59:31
Ready; (5.232298)

Execution with trace on

rexx demo parml parm2 .

289

36 RF.XX in the CICS Fnvironment

Third RLXX Symposrum, Anapolis, Maryland (C] Capynght lEM ~ r p o r a u o n 1 9 9 1 , r992

MORE

I
10 *-• say 'The arguments passed were: I parms

>>> 'The arguments passed were: P A R M l PARM2'
The arguments passed were: PARMl PARM2

11 *-• say

13 *-* /* example o f REXX s tandard l i ne -mode i npu t */
14 *-* say 'Uhat i s your name?'

>>> W h a t i s your name?'

290

Appendix - Sample CICS!REXX screens 37

Third REXX Symposium, Anapolis, Maryland (0 Copyright IBM Corporation 1991.1992

10 *-* say 'The arguments passed were:' parms
>>> "The arguments passed were: PARMl PARM2"

The arguments passed were: PARMl PARM2
11 *-• say

13 *-• ," example o f REXX standard 1 ine-mode input */
14 *-* say 'Uhat i s your name?'

'What is your name?"
What is your name?

15 *-• parse pull name

David Shri ver READ

10 *-* say 'The arguments passed were: ' parms
"The arguments passed were: PARMl PARM2"

The arguments passed were: PARMl PARM2
11 +-• say

13 *-* /* example o f REXX standard line-mode input */
14 *-• say 'What is your name?'

>>> W h a t i s your name?"
What is your name?

Davi d Shri ver
15 *-• parse pull name

>>> "David Shri ver"
16 *-• say

17 *-• say 'Welcome to' environm ' R E X X , ' name
>>> "Welcome to MVS CICS REXX, David Shr

Melcome t o MVS CICS REXX, David Shriver
18 *-* say

20 *-* ," example o f nesting */
21 *-* address mvs
22 *-• 'demo2 x x x '

iver'

. HORE
\

\

J

\

J

29 I

38 REXX in the ClCS Environment

Third REXX Syq-osium, Anapolis, Malyiand (C) Copyright IBM Corporation 1991, 1992

7 - . -.- -
>>> "demo2 xxx"

3 * - * say 'you entered demo2 e x e c '
>>' "you entered demo2 exec.

y ~ u cnt : - , : dtiuo2 exec
4 I-' xidress mvs

! 5 *--* 'demo3 yyy'
>=+ "demo3 yyy"

.L;U S i i t r i :-;; demo3 exec
y c d cr , ie red den104 exec
* x * . - , l t e x L ' den105 exec 1 :

I 0 *-* exit
21: *-* /* example o f CICS subcommands */
25 *-• address c i c s

7>> "TERMID"

>>> "?!$This i s fullscreen output to terminal 04G1'

20 *-• 'TERMID' get my CICS terminal i d */

27 *-* outbuf = sba(22 12)l \'This is fullscreen output t o terminal' tennid

25 *-* /* perfom CICS fullscreen output */ i
I 38 * - * 'SEND' outbuf /* do a CICS EXEC CICS SEND */

>>= "SEND ?!$This is fullscreen output to terminal 04G1'
31 * -* outbuf = sba(23 12) I \ 'NOM try some fullscreen input'

>,>- "?$,Now try some fullscreen input"

MORE

I
1

1- c-*
J' 'SEND' outbuf

>>> 'SEND ?$,Now try some fullscreen i npu t '
34 *-* /* perfop CICS ful lscreen input */
35 * - * 'WAITHEAD' /" do an EXEC CICS RECEIVE and parse i n t o vars */

>>> "VAITREAD"
I

how try some f u l lscreen inpQt

i

292

Aonendix - Samole CICSREXX screens 39

Third REXX Symposium, Anapolis. Maryland (C) Copyright I B M Corgpration 1991, 1992

32 *-* 'SEND' outbuf

34 *-* /* perform CICS fullscreen input */
35 *-* 'WAITREAD' /* do an EXEC CICS RECEIVE and parse into vars */

>>> "SEND ?$,Now try some fullscreen input"

>>> "WAITREAD"

Now try some fullscreen input
test input

-
32 *-• 'SEND' outbuf

34 *-* /* perform CICS fullscreen input */
35 *-• 'WAITREAD' ' /* d o an EXEC CICS RECEIVE and parse into vars */

36 * -* say 'The A I D key that was pressed = I waitread.3

>>> "SEND ?$,Now try some fullscreen input"

"VAITREAD"

'The AID key that was pressed = ENTER '
The AID key that was pressed = ENTER

37 *-* say 'The cursor was at (Row Col):' subword(Waitread.2,2,2)
"The cursor was at (Row Col): 24 12"

The cursor was at (Row Col): 24 12
38 *-* say 'The data that was entered (Row Col Data):' subword(waitread.3,2

'>> "The data that was entered (Row Col Data): 24 2 test input'
The data that was entered (Row Col Data): 24 2 test input

39 *-* say

41 *-* /* example of using the system server * /
42 *-* say 'send a GLOBALV SET and GET commands t o the system server'

"send a GLOBALV SET and GET comnands to the system server.,
send a GLOBALV SET and GET commands to the system server

43 *-• address system
44 *-* 'GLOBALV SELECT GROUP1 SET VARl test data'

Now try some fullscreen input
test input 1.10 RE

293

40 REXX in the CICS Environment

Third REXX Svmposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

4

>>' 'GLOBALV SELECT GROUPl SET VARl test data'

>>> "GLOBALV SELECT GROUPl GET VARI'

>=+ 'The contents o f VARl = test data'

45 *-• 'GLOBALV SELECT GROUP1 GET VA21'

46 * - T say 'The contents o f V A R l =' varl

The contents o f V A R l = test data
47 T - t say

49 *-* trace '0' /* don't want to trace large loop */
1000 assignment statements have been executed
2000 assignment statements have been executed
3000 assignment statements have been executed
4000 assignment statements have been executed
5000 assignment statements have been executed
6000 assignment statements have been executed
7000 assignment statements have been executed
8000 assignment statements have been executed
9000 assignment statements have been executed
10000 assignment statements have been executed
11000 assignment statements have been executed
12000 assignment statements have been executed
13000 assignment statements have been executed

MORE

14000 assignment statements have been executed
15000 assignment statements have been executed
16000 assignment statements have been executed
17000 assignment statements have been executed
18000 assignment statements have been executed
19000 assignment statements have been executed
20000 assignment statements have been executed

Today's date i s Tuesday 20 Aug 1991
The time is 18:02:03
Ready; (9.924010)

REX EXEC

Appendix - Sample CIC5 'REXX screens 41

Third REXX Symposium, Anapolis, Maryland (C) Copyright 1B.U Corporation 1991. 1992

Source listing

EDIT ---- SHRIVER.REXX(REX) - 01.08 ----------------------*-- WEMBER REX SAVED
COMMAND ===> SCROLL --> PAGE

000001 /* interpret ive execut ion o f REXX statements from the terminal */
900002 TRACE '0'
000003 parse arg arg
000004 signal on e r r o r
(300005 s igna l on syntax
000006 SAY "Enter a REXX statement or 'EXIT' t o end'
00e007 r e s t a r t :
000008 DO FOREVER
000009 parse external i n p u t
000010 i f i n p u t = I ' then SAY .Enter a REXX statement or 'EXIT' t o end.
000011 INTERPRET i n p u t
000012 i f subs t r (inpu t , l , l) = . I n then say 'RC = I rc'; '
000013 END
000014 EXIT
000015 e r ro r :
000016 say ' R C = I rc
000017 s i g n a l on e r ro r
000018 s igna l r e s t a r t
000019 syntax:
F13=HELP F14=SPLIT F15zEND F16eRETURN F17=RFINO FlS=RCHANGE
F19=UP F20=DOUIN F21=S\JAP F22=LEFT F23zRIGHT F24zRETRIEVE

e** **t****t*t*t***t****tt***t Top OF DATA **+t+ttttt*+**t*t+**t*t*,t+*+*

d

F13-HELP F14=SPLIT F15=END F16=RETURN F17=RFIND FIBERCHANGE
F19=UP F2O=DObJN F2lzSbJAP . F22=LEFT F23zRIGHT F24=RETRIEVE

Execution
295

42 R E X X in the CIC! Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992

rex

\
Enter a REXX statement or 'EXIT' to end
say 1/3
8.333333333

e x i t READ

296

I

Appendix - Sample CICS,!REXX screens 43

Third REXX Symposium, Anapolis, Maryland (c) Copyright IBM Corporation 1991, 1992

~~ _ _

Enter a REXX statement or 'EXIT' to end
say 1/3
0.333333333
e x i t
Ready; (19.632339)

297

44 REXX in h e CICS Environment

	Support for application macros written in REXX
	High-level clientlserver architecture support
	Command definition of REXX Subcommands
	FlatlUniversal default REXX Subcommand space
	Transparent CICS Pseudo-conversational tefininal support
	Support for system and user profile EXECS
	Shared EXECs in virtual storage
	Nested ISCLUDE support in EXEC Loader
	EXEC Suspend/Resume support
	REXX interface to OfflceVisioniMVS and ASF Version
	Compatibility support for several popular VM/CMS commands
	CICS,™REXX Benefits
	Business Solutions
	Investment Protection
	User Productivity
	Growth Enablement
	Systems Management

	ClCSlREXX General Arehitecture/Implementation
	General Design Goals
	Basic structure of REXX running under CICS
	REXX EXEC invocation
	Where EXECs execute
	How EXECs are located and loaded
	How EXECs are edited
	Control of EXEC execution search order
	REXX EXEC File System structure
	Support of standard REXX features
	SAY and TRACE statements
	PULL and PARSE EXTERSAL statements
	REXX stack support
	REXX function support
	REXX Function Packages

	REXX Subcommand Environment Support
	Invoking another EXEC as a subcommand
	Invoking CICS load modules as user provided subcommands
	Adding REXX host subcommand environments

	Support of standard ClCS featuresifacilities
	CICS mapped 1/0 support
	invoking user applications from EXECS
	REXX interfaces to CICS temporary & transient storage queues
	Pseudo-conversational transaction support

	REXX EXEC Suspend/Resume support
	interfaces to other programming languages
	Security
	Perfonnance discussion
	Miscellaneous features
	Supported Environments and prerequisites
	National language and DBCS support
	Building block S/W development - Common Interface Routine
	CICS/REXX Client/Server Architecture
	High-level Client /Server support
	ClientlSener Design goals
	Current ClientlServer Implementation

	CICS/REXX Office\™ision/MVS Environment Supporl
	REXX EXECS for Application Integration
	REXX EXECS as exits
	CICS/REXX Interfaces to other products
	Description of interface to DB2
	Description of interface to GDD,M

