
R W : TECHNICAL ISSUES, TODAY ANDTOMORROW

MICHAEL SlNZ
coMMoDoRE

298

R EXX
Technical Issues
Today and Tomorrow

Michael Sinz
Senior Systems Engineer

Commodore International - Technology Group
299

Today
The Good

REXX is a computer language
REXX is a easy language to learn do to the non-typed, non-declared nature of the
language. MFC did a very good job in thinking about what the user of REXX needed
rather than how languages are normally written.

REXX is becoming a standard
The X3J18 group is currently working on a draft ANSI standard for REXX.

REXX is available across platforms
REXX is now a standard part of a number of operating systems and is available in flavors
for most others.

REXX is part of solutions
REXX is now seen as a standard tool in environments where REXX is installed. It has
not only become part of the environment but has proven itself to be very useful. A great
many example of this can be seen in the Amiga environment, where REXX has become
the tool of choice for systems integration by VAFb in many vertical markets.

300

Todav
The Good

REXX is very flexible
Due to the design of REXX, it has turned out to be very flexible in adapting to more
complex systems. For example, on the Amiga, REXX can communicate with any
number of applications that have support for REXX. This makes it possible for users and
systems integrators to pull together very powerful tools into what looks and acts like one
very customized application. This makes the migration into vertical markets much easier
and reduces the tum-around time to meet the demands of the changing markets.

REXX has many good points
After all, it took me two pages just to skim over the key points ...

301

Today
The Bad

REXX is a computer- language
While REXX is a easy language to learn, it is still a "computer language" and that is
keeping some people from using it. Many users would easily be able to use REXX for
"programming" if it did not feel like programming. A good example of this is the Lotus
1-2-3 macros which business people used all the time but did not realized that they were
programming. (And if told it was programming, they suddenly stopped)

REXX is a not up to date
While REXX has many good points, it is currently not up to the task of some of the issues
in today's computing environments. It is not so much that REXX can not be since any
implementor of the language can choose to extend it in some ways;.rather it is a problem
of choosing a model that fits into the REXX model as well as addressing the requirements
of complex multi-tasking, multi-user, multi-processor, networked, graphical, object
oriented environments. (What a mouth full)

REXX is not vet a standard
J

While X3J18 is working hard on getting the standard done, it is not done yet and the
various implementations of REXX are not fully interchangeable.

REXX support in applications
This will happen more as the market starts to demand it and as the utility of REXX
becomes a major feature in products. A good example of this happening already is in the
Amiga computer where productivity applications are almost required to support REXX
due to public demand and feature requirements.

302

Today
The Ugly

REXX is NEVER ugly...

0
0 . . almost never,
The implementation of a good REXX on many platforms is not as simple as the language
seems. Part of this is due to the specification of the language and part of it is due to the
way REXX is designed to interact with the operating environment of the system.
Hopefully the specification of the language will help out, but the close interaction with
the system will always be there for the developer to deal with. In addition, without work
at getting REXX into new computing technologies such as GUIs, it can be rather "ugly"
to code in REXX for such environments.

303

1-ornorrow
REXX and the future
In order for REXX to grow, the direction of the growth needs to be identified first. If the
goal is to make REXX into the "user's'' programming language, it is important that that
goal is what drives development of the language.

Multi-Tasking, Multi-User, & Networks
The current REXX model works great in simple environments. The fact that YO is very
simplistic make it easier for users to learn and use. However, this has also made a
number of things rather difficult (if not impossible) to do in complex environments.
Issues such as synchronization, semaphores, and shared access are all currently outside of
the REXX model. While it would be simple to just use the models of other computer
languages, it would be counter to the main goal of REXX: simplicity for the user. This
means that a new model for such things as file locking, access control, and
synchronization will be needed.

Graphical User Interfaces
The world is moving into GUI environments. The reason for the growth of this interface
model is due partly to the fact that computers are more powerful and that users find GUIs
easier to learn and use. REXX, as a language, does not address any of these issue
directly. External function libraries exist for a number of different GUIs but not having
the language contain some fundamental support for GUI opemtion makes life more
difficult for the person writing the REXX program that deals with the GUI. Research at a
number of places, most notably IBM, have shown how REXX can be gracefully
enhanced to gain these features. However, the amount of work involved for the
implementor of the language processor is high.

304

1-ornorrovv
REXX and Objects
As operating environments become more object oriented, REXX will need to learn about
objects in order to fit in with the environments it is operating in. Last yea, IBM showed
some of their ideas on how this could be done. Work such as that will need to continue
and will need to become standardized such that REXX continues to be a cross-platform
language.

REXX as a visual language
This is one of my goals for REXX. REXX has become a user's language. However, it is
still very much like a computer language. With the Amiga (and soon to be the many
OW2 2.0 users) REXX has become a staple of application features. On the Amiga, over
140 REXX supporting applications are available with every new application having
REXX support due to user demands. REXX has become both a systems integrators best
friend and the advanced users power-tool. The next step would be to give this power to
users who do not "program" a computer in the traditional sense. A visual interface to
REXX programming that can be mastered by the business man and home computer user
would be the ultimate goal. In a mature, REXX supporting platfolm, such a tool would
give more users the power to combine their creativity along with the applications they
have bought to produce something that is "what they want." Such a tool does not have to
replace REXX but would just have to be able to sit on top of REXX. However, such a
tool would require more standardization of the way applications support REXX and of
the REXX language itself. (I am assuming that due to the complexity of such a tool that
it would be "ported" to all the platforms that support REXX in such a way.)

0 REXX in the future ...
With the current growth of REXX as a user's tool and its inclusion as a standard part of a
number of operating environments, the future for REXX looks bright. (And REXX
developers can be assured of a number of tough problems that will need to be addressed.)

305

R EXX
Going Strong

Into the
Future.

306

