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Caveats 

O I am a REXX bigot,  but  the  cards 
weren't stacked  against  Perl; I am 
not a Per1 expert  (much  less  bigot); 

O the  most  important  thing  about 
comparing  these  languages is 
determining how well  they  support 
their  environment;  this  is  largely 
implementation-dependent; 

O I have  never  used REXX and Per1 on 
the same  system; 

O this  talk  started  out as "REXX vs. Perl" 
- but  they  really  aren't  competitors; 

O I - like Perl; it makes Unix  far  more 
"approachable"  for me; 

O I think  that  some of the  features of 
Per1 can  contribute  to  the  development 
of REXX; 
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REXX and Per1 Have a Similar 
Background 

BOTH- 
0 

0 

0 

0 

0 

0 

0 

0 

were  developed  largely  by  an 
single  individual; 

were  developed for a particular 
operating  system and strongly  utilize 
features of that  system; 

have  their  roots in a  "popular"  high 
level programming  language; 

have  "natural  typing"; 

emphasize  string  processing; 

emphasize readability and  an 
understandable  block  structure; 

have  useful  debugging  capabilities; 
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Per1 Names 

BLATZ - a filename or directory  "handle" 
$BLATZ - a scalar  variable 
QBLATZ - a normal  array 
%BLATZ = an  associative  array 
~~BLATZ - a subprogram 
*BLATZ - everything  named  BLATZ 

0 

0 

0 

0 

does not harken  back to EXEC,  EXEC2 
or Batch; 

does  increase the readability 
/understandability of a program; 

allows  program  entities to be 
associated  in a subtle  way; 

eliminates  part of a "style 
controversy"; 
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Per1 Lists 

O an ordered list of scalars; 

O can  be  like  an  array, or "user-defined 
types"; 

O can be fully dynamic; 

incorporates  some of the  capabilities 
of Parse; for example - 

O @ARGV consists of 
$ARGV[O] to $ARGV[$#ARGV] 

O ($name, $address) = 
s p l i t  ( /  : /,<NAMES>) 
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Per1 "Gotchas" 
(for REXX users) 

O the  default  value of a variable  is  the 
null  string; 

O a value  is TRUE if it  isn't the  null 
string, 0 or "0"; 

O there  are  different  comparison 
operators  for  numerics  and  strings; 

O some operators are borrowed  from 
sed, awk, and various  Unix  utilities; 
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Some  General  Conclusions 

REXX is easier  to  learn and  more 
readable; REXX is  more  accessible 
to a  greater  audience; 

P e r k  syntax is  harder  to  learn and 
read  (unless  you're a big C fan); 
appeals  to  "hackers"; 

Per1 is an excellent  interpreted  shell 
scriptkystems language, but  not a 
common  embedded  macro  language 
for Unix; 

Per1 is more consistent  with a "Unix 
mindset"  than REXX; 

Some Per1 operations  are  very  arcane 
(e.g., ++i,  i++); 

Per1 has  many  more redundancies  than 
REXX; 

Per!  has  better  support  for  aggregate 
types  than REXX; both  languages 
lack  support for non-trivial datatypes; 

Per1 is more  compact for  some  things 
(e.g., string  processing); 
compactness c----> safety? 
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O Perl  has  an  extensive  collection of 
pattern matching operators;  REXX 
relies  more  heavily  on  PARSE; 

O Per1 has built-in file feature  operators; 
where  REXX  relies  on OS; 

O Perl  has a package  mechanism which 
REXX lacks; 

O REXX  is  more  extensible  than  Perl; 
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Can REXX Learn From Perl? 

* Associative  arrays are very "CMS- 
like"; can be weakly  implemented  by 
the REXX ABBREV; 

O Per1 lists  allow for a for each construct; 

O Per1 makes  extensive  use of the 
<STDIN>, <STDOUT>, &TOERR> 
streams; REXX LINEIN, LINEOUT 
capabilities not always implemented; 

PIPELINES can add some Per1 
capabilities to REXX; 

373 


