
REXX, PERL, AND VISUAL BASIC

BEB~WH~TE
STANFORD UNEARACCELERATOR CEMER

362

R E xx

and (not vs.)

Per1

Bebo White
SLAC

REXX Symposium
Annapolis, MD

May 4, 1992

363

M.F. COWLISHAW
PRACTICAL

APPROACH TO
PROGRAMMING

364

UhJIX Programming

Larry Wall and Randal L. Schwartz

O’Reilly & Associates, Inc.

365

Caveats

O I am a REXX bigot, but the cards
weren't stacked against Perl; I am
not a Per1 expert (much less bigot);

O the most important thing about
comparing these languages is
determining how well they support
their environment; this is largely
implementation-dependent;

O I have never used REXX and Per1 on
the same system;

O this talk started out as "REXX vs. Perl"
- but they really aren't competitors;

O I - like Perl; it makes Unix far more
"approachable" for me;

O I think that some of the features of
Per1 can contribute to the development
of REXX;

366

REXX and Per1 Have a Similar
Background

BOTH-
0

0

0

0

0

0

0

0

were developed largely by an
single individual;

were developed for a particular
operating system and strongly utilize
features of that system;

have their roots in a "popular" high
level programming language;

have "natural typing";

emphasize string processing;

emphasize readability and an
understandable block structure;

have useful debugging capabilities;

367

Per1 Names

BLATZ - a filename or directory "handle"
$BLATZ - a scalar variable
QBLATZ - a normal array
%BLATZ = an associative array
~~BLATZ - a subprogram
*BLATZ - everything named BLATZ

0

0

0

0

does not harken back to EXEC, EXEC2
or Batch;

does increase the readability
/understandability of a program;

allows program entities to be
associated in a subtle way;

eliminates part of a "style
controversy";

368

Per1 Lists

O an ordered list of scalars;

O can be like an array, or "user-defined
types";

O can be fully dynamic;

incorporates some of the capabilities
of Parse; for example -

O @ARGV consists of
$ARGV[O] to $ARGV[$#ARGV]

O ($name, $address) =
s p l i t (/ : /,<NAMES>)

369

Per1 "Gotchas"
(for REXX users)

O the default value of a variable is the
null string;

O a value is TRUE if it isn't the null
string, 0 or "0";

O there are different comparison
operators for numerics and strings;

O some operators are borrowed from
sed, awk, and various Unix utilities;

370

0

0

0

0

0

0

0

0

Some General Conclusions

REXX is easier to learn and more
readable; REXX is more accessible
to a greater audience;

P e r k syntax is harder to learn and
read (unless you're a big C fan);
appeals to "hackers";

Per1 is an excellent interpreted shell
scriptkystems language, but not a
common embedded macro language
for Unix;

Per1 is more consistent with a "Unix
mindset" than REXX;

Some Per1 operations are very arcane
(e.g., ++i, i++);

Per1 has many more redundancies than
REXX;

Per! has better support for aggregate
types than REXX; both languages
lack support for non-trivial datatypes;

Per1 is more compact for some things
(e.g., string processing);
compactness c----> safety?

37 1

O Perl has an extensive collection of
pattern matching operators; REXX
relies more heavily on PARSE;

O Per1 has built-in file feature operators;
where REXX relies on OS;

O Perl has a package mechanism which
REXX lacks;

O REXX is more extensible than Perl;

372

Can REXX Learn From Perl?

* Associative arrays are very "CMS-
like"; can be weakly implemented by
the REXX ABBREV;

O Per1 lists allow for a for each construct;

O Per1 makes extensive use of the
<STDIN>, <STDOUT>, &TOERR>
streams; REXX LINEIN, LINEOUT
capabilities not always implemented;

PIPELINES can add some Per1
capabilities to REXX;

373

