REXX, PERL, AND VISUAL BASIC

BEBO WHITE
STANFORD LINEAR ACCELERATOR CENTER

362

363

Bebo White
SLAC

REXX Symposium
Annapolis, MD
May 4, 1992

M.E COWLISHAW

A
PRACTICAL
APPROACH TO
PROGRAMMING

SECOND EDITION

"THE

LANGUAGE

|
UNIX Programming

Programming

Larry Wall and Randal L. Schwartz

/ / .O’Reilly & Associates, Inc.

365

Caveats

| am a REXX bigot, but the cards
weren't stacked against Perl; | am
not a Perl expert (much less bigot);

the most important thing about
comparing these languages is
determining how well they support
their environment; this is largely
implementation-dependent;

| have never used REXX and Perl on
the same system;

this talk started out as "REXX vs. Perl"
- but they really aren't competitors;

| like Perl; it makes Unix far more
"approachable" for me;

| think that some of the features of
Perl can contribute to the development
of REXX;

REXX and Perl Have a Similar

Background

BOTH-

o

were developed largely by an
single individual;

were developed for a particular
operating system and strongly utilize
features of that system;

have their roots in a "popular" high
level programming language;

have "natural typing";
emphasize string processing;

provide a strong built-in function
library;

emphasize readability and an
understandable block structure;

have useful debugging capabilities;

367

Perl Names

BLATZ - a filename or directory "handle"
$BLATZ - a scalar variable
@BLATZ - a normal array
$BLATZ - an associative array
&BLATZ - a subprogram
*BLATZ - everything named BLATZ

o does not harken back to EXEC, EXEC2
or Batch;

° does increase the readability
/understandability of a program;

° allows program entities to be
associated in a subtle way;

° eliminates part of a "style
controversy";

368

Perl Lists

an ordered list of scalars;

can be like an array, or "user-defined
types”;

can be fully dynamic;

incorporates some of the capabilities
of Parse; for example -

° @ARGV consists of
SARGV[0] tO SARGV[S#ARGV]

° ($name, $address) =
split(/:/,<NAMES>)

369

Perl "Gotchas"
(for REXX users)

the default value of a variable is the
null string;

a value is TRUE if it isn't the null
string, 0 or "0";

there are different comparison
operators for numerics and strings;

some operators are borrowed from
sed, awk, and various Unix utilities;

370

Some General Conclusions

REXX is easier to learn and more
readable; REXX is more accessible
to a greater audience;

Perl's syntax is harder to learn and
read (unless you're a big C fan);
appeals to "hackers”;

Perl is an excellent interpreted shell
script/systems language, but not a
common embedded macro language
for Unix;

Perl is more consistent with a "Unix
mindset” than REXX;

Some Perl operations are very arcane
(e.g., ++i, i++);

Perl has many more redundancies than
REXX;

Perl has better support for aggregate
types than REXX; both languages
lack support for non-trivial datatypes;

Perl is more compact for some things

(e.q., string processing);
compactness <----> safety?

3N

Perl has an extensive collection of
pattern matching operators; REXX
relies more heavily on PARSE;

Perl has built-in file feature operators;
where REXX relies on OS;

Perl has a package mechanism which
REXX lacks;

REXX is more extensible than Perl;

372

Can REXX Learn From Peril?

Associative arrays are very "CMS-
like"; can be weakly implemented by
the REXX ABBREV; |

Perl lists allow for a for each construct;

Perl makes extensive use of the
<STDIN>, <STDOUT>, <STDERR>
streams; REXX LINEIN, LINEOUT
capabilities not always implemented;

PIPELINES can add some Perl
capabilities to REXX;

373

