
RDO(APPLGATIONS IN A~OMATED OPERATIONS

PETE ZYBRlCK
FUTURESYS, INC.

374

REXX
Applications in

Automated
Operations

Pete Zybrick
FutureSys, lnc.

20 Dogwood Trail
Kinnelon, NJ 07405

(201) 492-2777

375

I

I Overview

1. What is Automated Operations? The progressive
minimization of computer operator intervention by

1 . Replacing the need for intervention whenever
possible by the design and implementation of
hardwarelsoftware problem determination and
correction processes.

2. Increase problem determination and correction
efficiency by filtering and combining only the
critical system status information, eliminating
redundant and trivial information.

2. Automation Types
1 , Reactive - Event/Response
2. Proactive - Question/Answer
3. Administrative/Management

376
2

II. Why use REXX

1. Good
1 . PARSE instruction, especially Literal String
2. Relatively simple to use/debug/maintain
3. Relatively easy to create structured code
4. Function libraries

2. Bad
1. Simplicity has been oversold by vendors
2. Unskilled programmers can write bad code in

3. Simplicity masks potential errors
4. CLIST programmers rarely take advantage of

REXX features
5. Reliance on environment for global variables,

poor variable sharing between procedures

any language

377
3

111. Features and A 0 Application

1. Subcom (Host Command Environment Table) -
Creating an Environment

1. Advantages
1 . Speed - commands are directly targeted
2. No changes to REXX itself are required

2. Disadvantages
1. Development - must be written in lower

level language, initialization exit configured
(MVS) or DLL created (OS/2)

ADDRESS both initially and when switching
environments (ie. ADDRESS MVS
"EXEC10 ... " and ADDRESS NETVIEW
"GETMLINE,..

2. Programmer must remember t o use

11

378
4

2. Shared Variable Interface

1. Advantages
I . Large blocks of variables can be created

with one command/function
2. Same basic processing sequence and

control block structure on different
platforms

2. Disadvantages
1 . Uses more storage than the stack
2. Programmers usually forget to DROP,

possibly causing storage problems

379
5

3. Function Libraries

1 . Advantages
1. Speed development time and consistency
2. Can be written in lower level language for

3. Can accept and return very large plists
4. Third party vendors and SHARE

improved performance

2. Disadvantages
1 . Definition of requirements
2. Someone has to write/maintain the

3. Will anyone know they are there?
functions

380
' 6

4. External Programs

1. Advantages
1. Can be REXX or load module. Load

modules can use the Shared Variable
Interface

2. Interface to external products
3. Command response/screen capture

2. Disadvantages
1. Search time (for load modules, faster t o use

Subcom and ADDRESS)
2. Poor global variable handling forces large

values to be passed/duplicated between
programs

38 1
7

IV. Suggested Methods

Objectives:
1 . Keep it simple
2. Minimize redundant coding/maintenance

1. Centralized Routines
1. Objectives

1 . Maximize the capabilities of the most skilled
programmers to produce common 'black
box' routines to simplify the most difficult
tasks

2. Maintenance - if the program is broken, it is .

fixed in one place

2. Example: NetView returns command responses
asynchronously, if at all. Even experienced
programmers can have a conceptual problem
with async events. Create an external function
to serialize command execution/response under
NetView, returning the responses on the stack.

382
8

/* REXX - LINKSTN */
call stkrnsgs

"D NET,lD = someappll E" 1

"IS TO9 71 IS TO 751" "IS T3 1 41 ' I

. . . read from stack and process messages . -
exit

/* REXX - STKMSGS */
parse arg CrndText TrapMsgs EndMsg
"TRAP AND SUPPRESS MESSAGES" TrapMsgs
CmdText
"WAIT 5 SECONDS FOR MESSAGES"
"MSGREAD"
getresps: do while 'EVENT'() = "M "

"GETMSIZE MAXML WTO"
getrnlwto: do rnlcnt = 7 to maxmlwto

"GETMLINE CURML" mlcnt
queue currnl
if 'WORD'(curml, 7) = EndMsg then leave

end /* getrnlwto */
"WAIT CONTINUE"
"MSGREAD ' I

end /* getresps */
return /* stkrnsgs */

383
9

2. Literal String Parsing

Objectives:
1 . Parse messages based on text fields to

extract variable-length values.

Example: The NetView TSOUSER command
describes the status of a TSO user. Display the
TSO (application name) and LU of a particular
user.

a. Command Format:
“TSOUSER tsologonid”

b. Output:
/ST09 71 DISPLA Y ACCEPTED
/ST0751 VTAM DISPLAY - NODE TYPE = TSO USERID
/ST4861 NAME= TSOPJZ, STA TUS=ACTlV,DESIRED ...
/ST5761 TSO TRACE= OFF
/ST262/APPLNAME= TSOA, STATUS = ACTIV
/ST2621 LUNAME=AO7T7234, STATUS=ACTIV
lST3 741 END

384
. 10

c . Program:
/* REXX */
parse upper arg tsoid .
ca fl 'S TKMSGS ' ' I TSOUSER ' tsoid "IS TO9 71 IS T075l':

do queued0
"IS T3 7 41 ' I

parse pull MsglD MsgText
if MsglD = "IS T262l" then do

parse var MsgText hdr"= "name", STA TUS = Watus
if hdr = "A PPL NAME" then do

TSOName = name
TSOStatus = status

end

LUName = name
LUStatus = status

if hdr = "LUNAME" then do

end
end

end

385
11

3. Global Variables - Logical/Stem/Associative Arrays

Objectives:
1. Simplify the status setting and

determination of a particular subsystem
2. Can be used to drive a graphic status panel

(ie. subsystem name in green if up, yellow
if brought down cleanly, red if crashed,
etc.)

Example: Set status variables for group of CICS’s. .

Retain the time each CICS was last brought up
or down. There is nothing ’CICS-unique’ about
this example - any subsystem on any platform
can be substituted (just the type of global
variable handling would have to change).

12
386

a. Executed during System Initialization
/" REXX */
AIICICS = "PROD0 I PRODO2 ... PRODXX
"GLOBALV PUTC ALLCICS"

do until AIICICS =
ClCSUp. = 0

11 I1

parse var AIICICS CurrCICS AIICICS
"GLOBAL V PU TC CICSUP. "CurrCICS
call 'S TR TCICS ' CurrCICS

end

b. Start a given CICS region (ie. STRTCICS PRODOI)
/" REXX "/
parse upper arg CurrCICS

c . Stop a given CICS region (ie. STOPCICS PRODOI)
/" REXX */
parse upper arg CurrCICS
. . .

/* Current CICS brought down OK */
ClCSUp. CurrCICS = 0
CICSDt Tm. CurrCICS = 'DA TE'("U") 'TIME'O
CICS Wh yDo wn. CurrCICS = "Stopped by " 'OP'O
"GLOBAL V PUTC CICSUP. "CurrCICS "CICSDTTM. "CurrCICS

"CICS WH YD 0 WN. "CurrCICS

387
13

d. Restart CICS due to some error (ie. RSTCICS
PROD01 , probably called from NetView Message
Automation Table after hit on abend message)
/* REXX */
parse upper arg CurrCICS Abendlnfo
ClCSUp. CurrCICS = 0
ClCSDtTm. CurrCICS = 'DA TE'(YJ'7 'TIME'()
CICS Wh yDown. CurrCICS = "Abended: " Abendlnfo
"GLOBAL V PUTC CICSUP. "CurrCICS "CICSD TTM. "CurrCICS ,

/* Restart Current CICS */
"CICS WH YD 0 WN. "CurrCICS

. . .

e. Status of CICS regions
"GLOBALV GETC ALLCICS"
do until AIICICS =

"GLOBAL V GETC CICSUP. "CurrCICS ,

select
"CICSD TTM. "CurrCICS "CICS WH YDO WN. "CurrCICS

when CICSUP. CurrCICS then

when ̂ ClCSUp. CurrCICS &
say "UP CurrCICS

ClCSWh yDo wn. CurrCICS < > " ' I then
say "DOWN " CurrCICS CJCS Wh yDo wn. CurrCICS

when ̂ CICSUp.CurrCICS &
CICS Wh yDo wn. CurrCICS = I"' then

say "DOWN " CurrCICS "Never Started"
otherwise say "Unknown " CurrCICS

end
end

388
* 14

4. Log Processing

Objectives:
1. Perform filtering and summary information

against log files (ie. MVS system log, VM
operator console log, NetView log, etc.).

Example 1 : Create a subset of a large log file.
Scan an entire log and write only VTAM
messages to another dataset.

/* REXX */
/* Scan a log and filter messages */
/* Delete/Erase the Output File */
/* if MVS/NetView, ALLOCATE here "/

ReadLoop: do until ExecioRC < > 0
"EXECIO "nnnnn DJSKR < InputFie > ' I
ExecioRC = rc
PullLoop: do queued(.

/* Message ID starts in 10 "/
/* Save only VTAM (ISTI Messages */
parse pull . 70 MsglD 73 7 MsgRec
if MsglD = "/ST" then queue MsgRec

end /* PullLoop */
/* if any matches on IST then write "/
if queued0 > 0 then

"EXECIO " queuedo "DISKW < OutputFile > ' I
end /* ReadLoop */

/* Close files here */

389
15

Example 2: Display a summary of message
occurances

/* REXX */
/* Scan a log and sum by message id */
/* if MVS/NetView, ALLOCATE here */
UniqueMsg =
GotMsg. = 0
SumMsg. = 0
TotMSgs = 0
ReadLoop: do until ExecioRC C > 0

I 1 I I

"EXEC10 nnnnn DISKR
ExecioRC = rc
TotMsgs = TotMsgs + queued0
PullLoop: do queued0

I1

/* Message ID is in cots IO- 19 */
parse pull 10 MsglD 20 .
SumMsg.Msg1D = SumMsg.Msg1D + 1
if ^GotMsg.MsglD then do

UniqueMsg = UniqueMsg I I MsglD"
GotMsg.MsglD = I

end
end /* PullLoop */

end /* ReadLoop */
/* Close the log file here */
/* Display Msgid # % */
do until UniqueMsg = I I I I

parse var UniqueMsg MsglD UniqueMsg
Pct = 100 * (SumMsg.MsglD~otMsgs)
say 'LEFT'(MsgID, 12) 'RIGHT'(SumMsg.MsglD,8) ,

'FORMA T'fPct, 3,O) I I "% ' I

end

390
16

5. Screen Image Parsing

Objectives:
1 . Parse screen images to isolate critical

information

Example: The following screen image was trapped
into one variable, SCREEN. Extract the CPU
utilization for the displayed applications.

/* REXX */
GotHdr = 0
do while Screen < > If w

parse var Screen I Line 8 I Screen
parse var Line I Hdr 8 I SubSys 10 UtilCPU 15 *

select
when ^GotHdr & Hdr = '= = = = = = = = then

GotHdr = I

leave
when GotHdr & Hdr = '= = = = = =: = = ' then

when GotHdr then say SubSys UtiJCPU
otherwise nop /* 'Before'stuff */

end
end

39 1
17

6. Table Driven Automation

7. Testing and Simulation

8 . Selective/Blanket Restart Enable/Disable

9. System/NCP/etc. Generation File
Scanning/Parsing/Comparing

392
18

V. O W 2 CommMgr as an A 0 Tool

1 . REXX is supplied with OW2

2. CommMgr uses EHLLAPI to allow session

1. Issuing text strings to a 3270 session
2. Retrieving 3270 screen images

management, namely:

3. REXX API's support Environments, Shared
Variable Interface, Function Libs

4. REXX3270 tool:

SCRDATA
SCRAllR v

393
19

VI. Indirect Benefits

1 . Table driven status/recovery routines allow
ownership of resources to be rapidly moved to
alleviate performance/failure considerations

2. Disaster Recovery
I .

2.

3. Job

A ‘disaster’ table can exist which contains
only critical devices mapped to the
ownership of critical systems
A ‘snapshot’ program can display/query
critical system cornponents/values on a
periodic basis and save this info into a
table. After and disaster and recovery, a
display/query job can be run to verify
critical component availability and
differences.

Automation. Experiencekonfidence gained
during A 0 implementation can be extended to
automating nightly job cycles, replacing JCL
with REXX to allow for more intelligent and
automatic job monitoring/restart/correction.

394
20

I

Vll. The Future.. .
1 . Dynamic Configuration Management. Access

external matrix switches to reconfigure devices
from one system to another 'on the fly', both
for performance and failure recovery purposes.

2. Enterprise Automation

3. DMS?

4. NetWare?

5. ???

395
21

The programshdeas in this document are in the public
domain. Use them in any manner. Most were written
to run under NetView and/or MVS, but should, with
minor changes, run anywhere. Be careful - I either
clipped them out of larger programs or wrote them
from memory based on projects I worked on in the past
- typos are probable. More importantly, t o keep things
concise, i removed all the error handling code. If you
have any questions, feel free to call/fax me at (201)
492-2777. I’m always willing to help and curious t o
hear how different sites implement automated
operations.

Thanks,
Pete Zybrick

22
396

