REXXT/O on VM

Gary BRoDOCK
IBM

Contents REXX 1/O

INtrodUCtioN . ., .. i e et 1
The General 1/0 Model ittt vt e e it e e 2
Line FUNCLIONE oottt it it s e e e e 3
The Character functionsttt vt s s 4
Streom siates o e
REXX /O on VM VM Spacifie Seraam names I
Additional INformation e e L]
Examples e e e e e e e e e e 10
SUIMIMALY . . o v et v vttt et e e e i e m e ot et m et e e 13
Gary Brodock
- ~ IBM G0S;16-4
P.O. Box 8009
Endicott, NY 13760
607-752-5134 -
5/18/93
GKB
Introduction REXX I1/0 || Introduction imotes REXX I/O

e REXX Language statements for input and outpUt

® The VM support follows the defined REXX 1/0 model
— Seven new builtin functions

- A new variant on the PARSE instruction

o Additional related support
~ A new NOTREADY condition

~ SIGNAL and CALL enhancements

e The VM 1/0 model

The definition for input and autput is published in "The REXX Language’ by Mike Cowlishaw. It
was implemented in the OS/2 operating system in 1980 and this definition is what will be
followed for VM. The goal is to provide input and output capability through REXX language
statements on the VM platform.

110 is defined through the use of seven new builtin funclions, three for character based
operations, three for line based operations, and one for general stream functions (n addition, a
new variant for PARSE, PARSE LINEIN, is added to read a live from the default input stream and
parse the contents according to the templata,

One new condilion (in addition to ERROR, HALT, SYNTAX, and NOVALUE) is provided to handle
error conditions while doing /0. This is the NOTREADY condition and it is supported by the
SIGNAL and CALL instructions for error handling.

GKB

GKB

The _General {/0 Model

REXX 1/O

The General I/0 Model mots REXX 1/0

CMS is a line based system

Line based operations are easy

Character based operations need special support
— Need to buffer data

— Perhaps need to indicate line ends

Two /O pointers, one buffer

— Can cause extra 1/0 when doing both input and
output in the same data stream

All CMS functions read and write lines of data, not charactars. Since the line functions read and
write complete lines, they fit into the CMS model very well. When character operations are
requested, special processing must be done to properly interface with the line oriented operating
system. On input, a data stream line is read and placed in a buffer. Then, characters are given
to the user as requested. If more characters are requested than are available, another data line
is read and processing continues. On output, the characters supplied by the user are placed in
the buffer and written as a line to the data stream only under certain conditions. These
conditions are: either /0 pointer is changed, a line end character is given by the user and the
data stream is in TEXT mode (explained later), the stream is closed, or an entire buffer of data
is given. Otherwise, the data just remains in the buffer and gets added to on the next output
operation.

TEXT mode is specified on the STREAM function when apening a data stream. The meaning of
this option is that line end characters are significant when doing character based [/O. On input,
a line end character is appended to the data at the end of each {ine read in. On output, the
character string to be written is scanned for line end characters and appropriate lines are written
as they are found. If any character can be in the data stream, then the user should open the
stream with the BINARY option, signifying that line end checking should not be done.

Since there are two {/O pointers and only one buffer, doing both character based input and output
on the same stream can cause some flip-flop of the buffered data. This could cause performance
degradation

GK8

GKB

Line functions

REXX 1/0

Line functions motes REXX /O

LINEIN(<name> <,<line> <,count> >)
returns 0 or 1 lines from the input stream
- name - the stream name

line - the line number to read

count - 0 or 1, the number of lines to read
PARSE LINEIN template
LINEQUT(<name> <, <string> < line> >)
returns the humber of lines not written (0 or 1)
— name - the stream name

string - the line to be written

line - the line number to write

LINES{<name>)

returns the number of lines remaining in the input
stream

- name - the stream name

The three line functions are used when the 1/0-is to be performed a line at a time. LINEIN will
read COUNT {either 0 or 1) lines from the input stream, NAME. This will by default read the line
at the current read position unless another line is specified by the LINE parameater. If zero is
specified for the COUNT, then the current read position is set to LINE and nothing is read from
the stream. If part of a iine has already been read with the CHARIN function and LINE is not

specified on the command, LINEIN will return anly the remainder of the line.

The new variant of PARSE, "PARSE LINEIN templnte'", can be used to read a line from the default
input stream and parse it according to the supplied template. This is a shorter farm of “PARSE
VALUE LINEIN{) WITH template”

LINEQUT will write the line contained in the STRING parameter to the stream NAME. This write
will by default start at the current write position unless a new position is specified by the LINE
parameter. |f there are characters in the buffer from a previous CHAROUT and a new line is not
specified on the LINEQUT call, the STRING is appended to the characters already in the buffer
and then the entire line is written If STRING and LINE are both omitted, the stream will be. |
closed.

The LINES function will raturn the number of completed lines remaining in the input stream.
This count may include a partial line if the stream has been r=ad with the CHARIN function.

GKB

GKB

ThefCharacter functions REXX /0

The Character functions roes REXX /O

® CHARIN(<name> <,<start> < length> >)

returns LENGTH characters from the input stream
—~ name - the stream name

start - starting character number (only 1 is valid)
length - number of characters to read

e CHAROUT(<name> <,<string> < start> >)

returns the number of characters not written

name - the stream name)
string - the string of characters to write
start - starting character number (only 1 is valid)

» CHARS(<name>)

returns 0 if no more characters, 1 if there are

name - the stream name

The three character hased functions are used when the /0 is to be done as a string of characters
and not whole lines. The CHARIN function will read in a specified number of characters,
LENGTH, from a stream, NAME. Optionally, a start position of 1 can be specified to reset the read
position to the beginning of the stream. CHAROUT will write a string of characters, STRING, to
a stream, NAME. Again, optionally, a start position of 1 can be specified to start writing at the
beginning of the stream. A read and a write position is maintained for each persistent stream
and if not reset, reading and writing will start from these positions. The CHARS function can be
used to indicate if there are more characters in the input stream NAME.

If the name of the stream is omitted, characters are read or written to the default stream. |f the
stream was opened with the TEXT option, then a LINEEND character is appended to the input
characters at the end of each fine. For output operations on a stream opensed with the TEXT
option, the string is scanned for LINEEND characters and lines are written as appropriate. The
LINEEND character is not written to the stream in this case. For streams opened with the
BINARY option, no indication of fine ends is given on input and output records are written when
the buffer is filled.

GKB

GKB

The STREAM function REXX 1/0

The STREAM function mets REXX I/0

& STREAM(name <,action < ,stream_command> >)

returns a string describing the sfate of, or the resuit
of an operation upon, the stream

— action - Command, State, or Description

Command - perform the stream_command given
on tha named stream

State - return a string indicating the state of the
named stream

Description - same as State, with additional
information: return code and reason code from the
last I/G

stream_command - specific command to be
performed on the named stream

The STREAM function is used to get the status of a stream or fo perform an oparatien on a
stream. Users can request the State, request the Description, or issue a Command. State will
return only the current state of the stream. Description will return the state and also the return
and reason codes from the last /0 done on the stream. If Command is specified for ACTION,
then a STREAM_COMMAND must be given, The various cornmands are desrcribed on a later foil.

GKB

GKB

Stre?m_ states REXX 1/O || Stream states iows REXX I/O

sgs There are four states that a stream can be in. ERROR means that the stream was subject to an
e ERROR - an ”o haS caused an error condltlon erroneous operation, such as a disk problem when writing to a minidisk file. NOTREADY is

similar to ERROR, only it usually means that recovery is easier. This could be the case when
the user tries to set the read or write pointer to a nonexistent line in the stream or to read past
the end of the stream. Recovery would be to reset the pointer to a valid place and then continue
the input or output. READY specifies that the stream is ready for {/O operations but does not
guarantee that an operation will succeed. UNKNOWN specifies that REXX does not know the

° NOTREADY - an I/O has made the stream not ready state of the stream, such as when the stream doss not exist or it has not heen opened yet.
and /O to that stream could raise the NOTREADY
condition

e READY - the stream is ready for /O

o UNKNOWN - the stream is closed or has not been ' .
opened yet :

GKB GKB

Stream_commands REXX I/O || Stream_commands moe: REXX I/0

OPEN: is used to open a stream, with additional options to tell the characteristics that are
desired.

< -
L OPEN Opllons > READ: specifies that the stream will be opened for read only and it must exist.

- READ/WRITE/NEW/REPLACE o . . . o ,
WRITE: specifies that the stream will be opened for read/write and it will be created if it doesn't
- LRECL nnnn . “exist.

- TEXT/B’NARY NEW: specifies the stream will he opened for read/write and it must not exist already.
— LINEEND xx
REPLACE: specifies that the stream will be opened for read/write and will be created if it
doesn’t exist or be replaced {old version thrown away) if it does

® CLOSE LRECL: indicates the size of the buffer that will be used for input or oulput. Most of the time,
for an exisling stream, the current Irect will be used. However, for new streams or certain
existing streams, this is not known and users will have to specify it or take the default of 1024..

e LINEPOS offset type

TEXT: specifies that line end characters are significant when doing character based oparations.

— offset is a whole number optionally preceded by This means that a LINEEND character is appended to the input ctring at the end of each line as
=, <, +. or- an indication that the line is complete. On character output opsrations, lines are written when
) 2 s the LINEEND character is encounterad in the string,

- type iz READ or WRITE

BINARY: means that all character codes may be present in the data stream and no indication of
LINEEND characters will be provided or searched for. Line based oparations are not affected by

. this option.
®» QUERY option P
- LINEEND: specifies the character to be used to indicate line ends, This can be specified as one
DATETIME or two hexadecimal digits with the default being 15.

- EXISTS ') ,
CLOSE: is used to write out any data left in the buffer due to a character output operation and

- FORMAT close the stream.

- 'NFO LINEPOS: is used to change the read or the write line pointer to the beginning of a specified

= LINEPOS READ line. The specification can be just a number, such as 10, meaning to move the pointer to fine 10.
The same move can be made using =10. If you want to move to an offset from the end of the

- LINEPOS WRITE stream, use the <. <0 means point just past the end of the stream, <1 means point at the last

- S'ZE record, etc. Relative offsets from the current position are done with the + and - prefixes.
QUERY: the remainder of the commands are various querys to obtain information on a stream.
DATETIME gives the date and time that the stream was last modified, EXISTS returng the fully
qualified name if the stream exists, FORMAT returns the record format and the logical record
length of the stream, INFO returns format data, size data, and date/time, LINEPOS READ/WRITE
return the current position of the read or write pointer, and $1ZE returns the number of tines in
the stream.

3

GKB GKB

VM Specific Stream names REXX /O

VM Specific Stream names o REXX 1/0

e Reader file - nnnn RDRFILE CMSOBJECTS.
® Punch - VIRTUAL PUNCH CMSOBJECTS.

e Printer - VIRTUAL PRINTER CMSOBJECTS.
e SFS file - filename filetype dirname

® Minidisk or accessed SFS file - filename filetype
filemode

— filemode is optional for an input file, or can ke *
- filemode must be specified for an output file
e Program stack - PROGRAM STACK CMSOBJECTS.
e Default stream - no name specified or name is null

‘- Or may use the unique ID returned on the OPEN
command

Case is insignificant when specifying the names for the reader, punch, printer or program stack.
When specifying a minidisk file, an accessed SFS directory file or an SFS file, the cass is
significant {thus allowing you to process files with mixed case names). As a point of clarification,
a little background is necessary on the names we have choosen. We are working on a standard
form of /O that accesses a variety of data streams. In creating this standard /0 model, we
wanted to have names that would totally describe the data stream, That is, if you know the data
stream name, you know its characteristics. The stream names used by REXX /O are part of this
model.

Reader - nnnn is the spoot file number that you want to process. Specifying an asterisk for nnnn
means to use the first file in the reader. Normal rules apply as to reader class and the class of
spoal files.

SFS file - the directory does not have to be accessed, all you have to do is specify the directory
name - “dirname”. Wild card characters are not permitted.

minidisk or accessed SFS file - You can omit the file mode if you are working with an input file.
If you are working with an output file, you must give the file mode. Wild card characters are not
permitted.

Program stack - The default for this is FIFO stacking for output. You can add FiFO or LIFO to the
name to explicitly use FIFO or LIFO stacking, The name for LIFO stacking would be "PROGRAM
STACK CMSOBJELTS.LIFO". The name for FIFO stacking would be "PROGRAM STACK
CMSUBJECT 3. FIFO".

default stream - This is the terminatl input buffer for input and the users display for output. On-
input, if there are no lines in the terminal input buffer, a VM READ results. You can omit the
name on the I/0 functions {except STREAM) to specify the default stream. You can also use a
nufl name on alf functions to specify it.

When you use the STREAM function to open a data stream, the returned string on a successful
open contains the string READY: followed by a unique ID. This ID can be later used on alt 1/0
function calls in place of the name, and it will speed up processing. An exan nle of obtaining and
using the unique !D is as follows: .

" show use of the unique ID 3KB 5/93 */ i

parse value stream{ TEST FILE A1''¢’,'open read’) with ok id

if ok —~ = 'READY:’ then signa! open_error

say lireiniid) * will read and display a line from TEST FILE A1 */

GK8

GKB

Additional information REXX 1710

Additional information ot REXX I/O

e All VO is done by calling CSL routines

— these routines pass back a return code and a
reason code on every call

® The STREAM(name,’D’) command can be used to get
these codes when errors occur

® NOTREADY traps should be used to handle error
conditicss

— both SIGNAL ON and CALL ON are supported

- the CONDITION function can be used to get
important information

REXX uses calls to CSL routines to do the actual I/O. A return code and a reason code is always
passed back from the CSL routine and this information is kept in the data stream control block.
Using the STREAM function with a request for a "Description” will return these codes to the user.

1t is also a very good idea to have a NOTREADY trap set up in your program to handle the_error
conditions as they occur. SIGNAL ON NOTREADY and CALL ON NOTREADY are both
supported. While in the NOTREADY processing routine, the CONDITION function can be used
to retrisve the error string passed back from the /O routine This string contains the return and
reason codes from the error condition and will show exactly why the error eccurred

5

GKB

GKB

Exanuﬂes REXX 1/0

Examples ... REXX /0

s% This routine copies the stream or %/
s% file named by the first argument x/
7% to the stream or file named by %/
7% the second, as lines. %/

parse arg inname, outname
do while lines(inname)>0

call lineout outname, linein(inname)
end

% This routine collects characters x/

7% from the stream named by the x/
7% first argument until a line is 94
s%¥ complete, and then places the %/

/% line on the external data queue. ¥/
7% The second argument is the single x/
s% character that identifies the end %~/
7% of a line. %/

parse arg inputname, lineendchar
buffer='' /,x initialize accumulator x/

do forever
nextchar=charin(inputname)
if nextchar=lineendchar then leave
buffer=buffer || nextchar

end -

queue huffer /x place on data queue x/

GKB

GKB

Examples ... REXX /O

Summary REXX 1/O

/% Read the first line of the input x/
7% file and get the number of lines ¥/
s% in the file. Generate a random %/

7% number from 2 to the number of %/
7% lines in the file and then read %/
s% that line number. %/

infile = "SAYINGS SCRIPT A’
parse value stream(infile, 'c’', 'open read’l},
‘with ok handle
if ok -= “READY:'
then do
'TMSG Error in opening' infile
'MSG Description string =°',
stream(infile, 'd")
exit 100
end

how_many = word(linein(handle,1),1)
num = random(2,how_many)

saying = lineinlinfile,num)

call lineout(infile)

-® The general VM I/O model

¢ Native REXX language Input/Output

® Three line based functions

— a line based variant of the PARSE instruction

e Three character based functions

s A STREAM function for minipulation of a data stream
— stream states

~ stream commands

& Stream names in VM

* Additional information

GKB

GKB

