
REXX I/O ON VM

GARYBRODOCK
IBM

REXX l/O on VM

Gary Brodock

IBM G09,‘26-4
P.O. Box 8009

Endicott, NY 13760
607-752-5134.

5/l 8193

Introduction REXX I/O Introduction /Hater

REXX Language statements for input and output

The VM support follows the defined REXX l/O model

- Seven new builtin functions

- A new variant on the PARSE instruction

Additinnal related support

- A ne-% NOTREADY condition

- SIGNAL and CALL enhancements

The VM l/O model

-- ---.
GKB

Contek
..__--

REXX I/O

Introduction
lhe General I/6’&dei : :
Line iunctions .
The Character functions
The STREAM function
Stream states
Stream-commands
Vhl Speciiic Stream name9
Additional inlormation
Examples
Summary

.I
2

.3

.4
5

.6

.7

.a

.9
10
13

______--_
GKB

---____I_-
-~~

REXX I/O

The definition for input and output is published in “Tha REXX Langn;lge’ by Mike Cowlishaw It
WBR Implemented in the OS2 oparatlng system in 1990 and this delirritlon is what will bs
followed for VM. The goal is to provide input and output cnpahili+y thro!~qh REYX I~ngllag~
statements on the VM pintform.

l/O is dsiined througlr the use of swen new builtin functions. three for charnct~r hnred
operations, three for linr! based operations, and one for garwrnl stlevn functions In addition. a
new varinnt lor PARSE, PARSE LINEIN, is added to read n liw from the dsfoult input stream and
parse the contents according to the template.

One new condition (in addition to ERROR, HALT, SYNTAX, and NOVAL’JE) I$ provided to handle
error conditions while doing I/Cl This is the NOTREADY condition nnd it is supporti?d by the
SIGNAL and CALL instructions for error handling

2

GKB
-__- -

The General I/O Model REXX I/O

l CMS is a line based system

l Line based operations are easy

l Character based operations need special support

- Need to buffer data

- Perhaps need to indicate line ends

l Two l/O pointers, one buffer

-- Can cause extra l/O when doing both input and
output in the same data stream

Line functions

GKB

REXX I/O

l LINEIN(<name> <,<line> <,count> >)

returns 0 or 7 lines from the input stream

- name - the stream name
line - the line number to read
count - 0 or 1, the number of lines to read

o PARSE LINEIN template

l LINEOUT(<:name> <,<string> <,line> >)

returns t>a number of lines not written (0 or 1)

- name - the stream name
string - the line to be written
line - the line number to write

o LINES(<name>)

returns the number of lines remaining in the input
stream

- name - the stream name

The General I/O Model /Notes REXX I/O

All CM’S functions read and write lines of data, not characters. Since the tine functions read end
write complete lines, they fit into the CMS model very welt. When character operations are
requested. special processing must be done to properly interface with the line oriented operating
system On input, a data stream line is read end placed in a buffer. Then, characters ere given
to the user es reoueeted If more characters are reauested then ore available, another data line
is read and Qroce’swng continues On output, the cf&cters supplied by the user ere placed in
the buffer and written 88 a line to the data stream only under certain conditions These
conditions are: either l/O pointer is changed, a line end character is given by the user and the
data stream is in TEXT mode (explained later). the Stream is closed, or an entire buffer of data
is given. Othemiso, the data just remains in the buffer end gets added to on the next output
operation

TEXT mode is specified on the STREAM function when opening a data eveam. The meaning of
this option is that line end characters are significant when doing character based 110. On input,
a line end character is appended to the date et the end of each line read ill. On output, the
character string to be written is scanned for line end characters and appropriate lines are written
as they are found If any character ten be in the data stream. then the USRT should “pen the
stream vrith the BINARY option, signifying that line end checking should not be done.

Since there are two t/O pointers and only one buffer, doing both character based input and output
on the same stream can cause some flip-flop of the buffered data This could cause QdOrmanCe
oeqradat;on

ih@ functions /Notes REXX I/O

The three line functions ere used when the l/O is to be performed A line et R time. LINEIN will
reed COUNT (either 0 or 1) lines from the input etreem, NAME This will by default read the line
at the current rend position unless nnothe, line is specified by the LINE patomster If zero is
specified for the COUNT, then the current read position is set to LINE and nothing is rend from
the stream II part of a iine ha already been read with the CHARIN fun&on ,and LINE is not
6peclfied on the command, LiNEIN will return only the remainder of the line

The new verbant of PARSE, “PARSE LINEIN template”. can be used to read a line from the default
input stream and parse it according to the supplied template Tlris 15 a ch”!tel form of ‘PARSE
VALIJE LINEINO WITH templnte”

LINEOUT will wrote the line contained in Ihe STRlNG parameter to the sheam NAME. This write
will by default start at the current write position unless a new positton 1s spoclfipd by the LlNE
paremeter. If there we charilctel-s in the buffer from n previous CHAROCIT and n new line is not
specified on the LINEOIJT tail, the STRING is appended to +he characters air-ndy in the buffer
and then the entire line is written. If Sl RING and LINE are both omittsd, the stream will be _
closed.

The LINES function will return the number of completed fin’s rrmninlng in the Input etreom
This count may include a partial line if the stre;lm lhas been lead will, th- CHARIH function.

3

GKB

--
-

-~
The- Character functions REXX l/O

CHARIN(<name> <,<start> <,length> >)

returns LENGTH characters from the input stream

- name - the stream name
start - starting character number (only 1 is valid)
length - number of characters to iead

CHARCWT(<name> C,<string> <,start> > 1

returns the number of charatiters not written

- name - the stream name
string - the string of charackrs to write
start - starting character number (only 1 is valid)

CHARS(<name>)

returns 0 if no more characters, 1 if there are

- name - the stream name

GKE

The STREAM function REXX l/O

a STREAM(name < ,action < ,stream-command > >)

- returns a string describing the state of, or the result
of an operation upon, the stream

- action - Command, State, or Description

Command - perform the stream-command given
on t:ia named stream

State - return a string indicating the state of the
named stream

Description - same as State, with additional
information: return code and reason code from the
last I/C;

- stream-command - specific command to be
performed on the named stream

GKB

-. -
The Character functions ~~~~~~

-___
REXX I/O

The three character hased functions are used when the l/O is to be done as a string of characters
and not whole hnes. The CHARIN function will read in a specified number of characters,
LENGTH from a ttream, NAME Optionally, a start position of 1 can be specified to reset the read
position to the begmning of the stream. CHAROUT will write a string of characters, STRING, to
8 stream, NAME. Again. optionally, a star3 position of 1 can be specified to stati writing at the
beginning of the stream. A read and a write position is maintained for each persistent stream
and if not reset, reading and writing will start from these positions The CHARS function can be
used to indicate if there are more characters in the input stream NAME.

If the nome of tha stream is omitted, characters are read or written to the default ntresm If the
stream was opened with the TEXT option, then a LINEEND character is appended to the input
chorocters at the end of each line. For output operations on a stream opened with the TEXT
option, the string is scanned for LINEEND characters and lines nre written as appropriate. The
LINEEND character is not written to the stream in this case For streams opsned with the
BfNARY option. no indication of line ends is given on input and output records are written when
the buffer is filled

GKB

The STREAM function /Notes REXX I/O

The STREAM function is used to get the status of a 51re~m or to perform an owration on a
stresm Users con request the State, request the Description, or tssue B Comrmnrl State will
return only the current state of the ~w?am Description will return the Itate and also the return
and renson codes from lhe last Iin done on the stream. If Command is speclfwd for ACTION,
then a STREAM COMMAND must be gwn The various cnrnmsndn arc dkvrihed on a late_ foil

4

GKB

Stream states REXX I/O
--

o ERROR - an l/O has caused an error condition

l NOTREADY - an l/O has made the stream not ready
and 110 to that stream could raise the NOTREADY
condition

l READY - the stream is ready for 110

l UNKNOWN - the stream is closed or has not been
opened yet

Stream-commands REXX I/O

l OPEN <options>
- READ/WRITE/NEW/REPLACE
- LRECL nnnn
- TEXTBINARY
- LINEEND xx

o CLOSE

o LINEPOS offset type
- offset is a whole number optionally preceded by

=, <, +,or-
- type % READ or WRITE

l QUERY option
- DATETIME
- EXISTS
- FORMAT
- INFO
- LINEPQS READ
- LINEPOS WRITE
- SIZE

--
Stream states Oiotas REXX I/O

There are four states ihet a stream can be in. ERROR means that the stream was subject to an
erroneous operation. such as a disk problem when writing to a minidlnk file NOTREADY is
similar to ERROR, only it usually mesns that recovery is easier This could be the case when
the user tries to set the read or write pointer to a nonexistent line in the stream or to read past
the end of the stream. Recovery would be to reset the pointer toe valid place and then continue
the input or output. READY specifies that the stream is ready for I/O operations but does not
gusrantee that an operation will succeed. UNI<NOWN specifies that REXX does not know the
sta?e of the stream, such as when the stream does not exist or it has not been opened yet.

GKB

Stream-commands /Notes REXX I/O

OPEN. is used to open a stream. with addltionnl options to tell the chotxterintirs that ore
desired.

READ specifies ‘hat the strewn will be opened for read only and it must exist

WRITES spwifies that the strnnm will be opened for readlwritn and ut wtll be cr~nlpd if it doesn’t
exist.

NEW specifies the stream will be opened for read/write sod it must not exist allendy

REPLACE, specifies that the stream will be opened for read:wrlte and will be crr~tetl if it
doesn’t exist or be replaced (old version thrown nwny) if it does

LRECL: indicates the size of the buffer that will be used for input or oulput Most of the time,
for en ensting stream, the current lfecl will be used. However. for new streams or certain
existing streams, this is not known 2nd users wll have to sp-ziv it or take the default of 1024.

1EXT. specifies that line end characters are significant when doing charactw bawd operations
lhis meow that n LINEEND character is appended to the input string at th? cud of oath line as
sn indication that the line is complete On character output operations. lirw’i .a10 writfen when
the LINEEND character is encountered in the string.

RINARY’ means that ail charxter codes may be present in the data stfearn and no indication of
LINEEND characters will he provided or srarclrcd for Line based op”tntlow a!? not nffncted by
this option.

LINEEND specifies the charxter to be used to indicate line ends lhis con be specified as one
or two hexadecimal digits with the default being 15

CLOSE: is used to write out any data left in the buffer due to a character output operation and
close the stream.

LINEPOS: is used to change the read of the write line pointer to the beginning of a specified
line. The specification can be just R number, such as 10, meaning to mow the pointer to line 10.
The sanw move con be made using = 10. If you want to move to an offset from the end of the
stream. use the < <O means point just past the end of the stream. < 1 means point at the last
record, etc Relative offsets from the current position we done with the -F and - prefixes.

QUERY: the remainder of the commands are various query?. to obtain information on a stream
DATETIME gives the date and time that the stream was Ins1 modified. EXISTS returns the fully
qualified name if the stream exists. FORMAT returns the record format and the logical record
length of the stream, INFO returns formst data, size data. and date/time, LINEPOS READ/WRITE
return the current position of the read or write pointer. and SIZE returns the number of lines in
the stream

GKB

VM Specific Stream names REXX I/O vti Specific Stream names /Notes REXX l/O

l Reader file - nnnn RDRFILE CMSOBJECTS.

e Punch - VIRTUAL PUNCH CMSOBJECTS.

l Printer - VIRTUAL PRINTER CMSOBJECTS.

l SFS file - filename filetype dirname

l Minidisk or accessed SFS file - filename filetype
filemode

- filemode is opttonal for an input file, or c?n be *

- filemode must be specified for an output file

@ Program stack - PROGRAM STACK CMSOBJECTS.

e Default stream - no name specified or name is null

l Or may use the unique ID returned on the OPEN
command

GKD

Additional information REXX I/O

l All l/O is done by calling CSL routines

- these routines pass back a return code and a
reason code on every call

* The STREAM(name,‘D’) command cati be used to get
these codes when errors occur

a NOTREADY traps should be used to handle error
conditi&

- both SIGNAL ON and CALL ON are supported

- the CONDITION function can be used to get
important information

GKEt

Case is insignificant when speciving the names lor the reader, punch, printer or program stack
When specifying rf minidisk rile, sn ttccessed SFS directory file or an SFS file, the case is
significant (thus allowing you to process files with mixed case names) As a point of clarification,
a little background is necessary on the names we have choosen. We are working on e standard
form of 110 that accesse3s a varietv of dnta streams. In creatina this standard 110 model. we
wanted to have names that would’totally describe the data et&m. That is, if you know’the data
stream name, you know its characteristics The strenm names used by REXX 110 ilre pati of this
model

Render - nnnn is the spool file number that you want to process Specifying a!? asterisk for nnnn
means to use the first file in the reader Normal roles apply its to render clws nnd the class of
spool files.

SFS file the directory does not have to be accessed, all you have to do is specify the directory
name - “dirnome”. Wild card chsracters are not permitted

minidisk or ewessad SFS file - You can omit the file mode if you ilre wotktng with sn input file.
If you are working with an output file, you must give the file mode \nlild card characters are not
permitted

Drogram stack _ The default for this is FIFO stncking for output. You can add FIFO or LIFO to the
name to explicitly use FIFO or LIFO stacking. The name for LIFO stacking would be -PROGRAM
STACK CMSOBJECTS.LIFO”. The name for FIFO stacking would he “PROGRAM STACK
CMLudJECTS.FIFO”.

default stream This is the terminal input buffer for ir,put and the users display for output. On
input, if there are no lines in the terminal input buffer, a VM READ weultc; You can omit the
name on the 110 func~ons (except STREAM) to specify the default stream You can also use a
null nnme on all functions to specify it

When you we the STREAM function to open a data stream. the returned string on e successful
open contains the string READY: followed by 8 unique ID. This ID can be IHer used on all I/O
function calls in place of the n-lj~e, and it will speed up processing. An enn ?le of obtaining and
using the unique :D is as follow%:

r show use of the unique ID GI<B 5193 */
parse value etream(‘TEST FILE Al’,‘c’.‘open read’) with ok id
if ok - = ‘READY:’ then zignal open error
say lireirl;id) ‘*will read and displnyn line from TEST FILE RI ‘I

GKB

Additional information /Notes REXX I/O

REXX uses calls to CSL routines to do the actunl I/O. A retuin code and a TFPSOII code is always
passed back from the CSL routine and th!s information is kept in the data stream control block.
Usirrg the STREAM function with a requ*zt for a ‘Description” will r~lurr, lh~se codes to the user.

Ii is also a very gpod idea to have a NOTREADY tmp set up in your proqram to handle the-error
conditions as they occur SIGNAL ON NOrREADY and CALL ON NOTREADY ille both
supported. While in the NO1 READY processing routine, tile CONDITION function can be used
to retrieve the error string passed back from the I/O routine lhls string co!~ta~ris tlrc return and
reason codes from the error condition and will show emctly why the error occv~ red

GKEI

_
Examples REXX I/O

/w This routine copies the stream or WI
1% file named by the first argument ~1
/i to the stream or file named by Y/
1% the second, as lines. 36/

parse a*g inname, outname

[inname 110
outname, line%(innamel

da while lines
call lineout

end

Examples . . .

GKB

1% Read the first line of the input w/
/X file and get the number of lines W/
1% in the file. Generate a random %/
/r number from 2 to the number of WI
1% lines in the file and then read WI
1% that line number. Y/

infile = 'SAYINGS SCRIPT A’
parse value stream(infile,'c','open read'),

with ok handle
if ok -= ;%EADY: 1

then do
‘MSG Error in opening' infile
‘MSG Description string =*,

stream[infile,'d'l
exit 100

end

how-many = word~lineinlhandle,ll,1)
num = random(2,how-many1
saying = lineinIinfile,numl
call lineout(infile1

Examples . . .
--

REXX i/O-

/X This routine collects characters n/
/w from the stream named by the w/
/3(first argument until a line is xc/
/X completet and then places the 361
/w line on the external data queue. XI
1~ The second argument is the single 3(/
/w character that identifies the end *I
/X of a line. x/

Parse arg inputname, lineendchar

buffer=’ ’ /3(initialize accumulator 361

do forever-
nextchar=charin(inputnameI
if nextchar=llneendchar then leave
buffer=buffer Ii nextchar

end
queue buffer .% place on data queue *I

GKB

e Native REXX language IriputlOutput

a The general VM 110 model

@ Three line based functions

- a line based variant of the PARSE in.slrucUon

o Three character based functions

a A STREAM function for minipulalion of a data stream

- stream states

- stream commands

o Stream names in VM

@ Additional information

GKB]I - - GKE

I

