
IBM COMPILER AND LIBRARY

WALTERPACHL
IBM

IBM Compiler and Library for SAA Rexx1370

Walter Pachl

IBM VSDL Vienna
Lassallestrasse 1

A-l 020 Vimma
@JtY!43-l-) 21 l-45-4420

PACHL at VABVMl(.VNfT.lBM.COM)

May 20, 1993

Chapter 1. IBM Compiler and Library for SAA Rexx/370

In a weeks time, Release 2 of these products will become generally available. In the
following this release’s highlights and a number of related matters are described..

1.1 Highlights of Release 2

1.1.1 Support of the Interpret Instruction

When the first Rexx compiler wa; implemented, it was decided not to support the Inter-
pret instruction was not to be sutgorted. The main reasons were

l the implementation effort involved

l the relatively little use of this instruction

The compiler’s Users Guide and Reference did eiaboratc on ways to circumvent the use
of Interpret. For the most frequent use, that is assigning a value to a variabie whose
name is dynamically determined, a small rou;ine was shipped with the product that could
be used for that purpose:

varname='ABC'
Call setvar varname,expression

The assembler routine (RXSETVAR) used the variable pool interface to assign the
second argument’s value to the variable with the name passed as first argument.

This restriction was not removed with the first release of this compiler’s successor
product because more important user requirements had to be addressed. SETVAR was
also provided for the new environment supported by that release: MVS.

However infrequent the use of Interpret may be, there is still the chance (or danger) that
a package that you want to compile contains one or more programs that use Interpret
and it is not always feasible to modify the programs. And there has been a steady
stream of user requirements, asking for the support of Interpret. Therefore, it was finally
decided to add this support to the compiler and library.

Incidentally, invocations of setvar can and should now be replaced by equivalent calls to
the value built-in function which has been extended with the capability to set variables
(see 1.1.3.3, “VALUE with 2 or 3 arguments” on page 3):

varname='ABC'
Call value varname,expression

(rx)setvar is still shipped with this release of the product; the chapter on how to avoid the
Interpret has been removed from the User’s Guide.

181 Chapter 1. IBM Compiler and Library for SAA Rexx/370 1

1.1.2 C/370 Library no longer required for compilation

The stated requirements for compiling Rexx clearly indicates that the compiler is written
in the C programming language. As the cost of pre-required software must be added to
that of the software a customer is interested in, this has probably kept some Rexx users
from installing the compiler. Version 2 of the C/370 compiler offers the option to linkedit
required library routines with the program that was implemented in C and to ship the
“complete” package. After the price adjustments made with release 1 of the current
product, exploiting. this option is an essential step in making Rexx compilation less expen-
sive.

In addition to reducing cost, compilation of programs became faster. (The library rou-
tines have been customized for the specific needs of the compiler.)

1.1.3 Language level 3.48

Mike Cowlishaw’s “Red Book” and IBM’s SAA Procedures Language Level 2 define
what is called language level 4.00 of REXX. (Parse Version returns the language level as
the second token.) Level 3.48 is all of 4.00 v:ith the exception of the Rexx input/output
functions. These functions have first been implemented on OS/2 and are just about to be
provided on VM and OS/400. The language elements that were added for language level
3.48 are discussed in the following.

1 .I .3.1 Binary strings, X2B, 82X

A literal string, immediately followed by the symbol b is interpreted as binary string.
The literal string must in this case contain only the characters 0 and 1, optionally sepa-
rated by blanks in certain positions.

x=‘llll 1001'b >
x='F9'x
p'g'

i these are all the same (on EBCDIC)

This language extension leads to a slight incompatibility. Before the introduction of
binary strings, x= ‘abc’b was the concatenation of a constant with the value of variable
b. This expression will now cause an error message from the compiler (or raise the
syntax condition when interpreted). The instruction x = ‘1101/b will, unfortunately,
change its semantics without being noticed. The lesson learned: Rexx taught me to avoid
the variables I used in high school (x, y, z); now I avoid also a, b, and c.

The new built-in functions, X2B and B2X, support the conversion from hexadecimal
strings to binary strings and vice versa

X2B('A') --> '1010'
B2X('llll') --> 'F'

Conversions from character strings to binary can be achieved by a two-step process:

182 Chapter 1. IBM Compiler and Library for SAA Rexx/370 2

X2B(C2X(‘9’)) --> ‘11111001’

1 .I -3.2 Parsing templates i- (v), -(v), =(v)

Variables could always be used for literal patterns in parsing templates. Now they can
also be used as relative and absolute positional patterns.

1.1.3.3 VALUE with 2 or 3 arguments

The VALUE buil<in function has been extended to allow for assigning a value to a
dynamically determined variable. Additionally this function can be used to set the value
of an “environment variable.” (Tyis is supported under VM beginning with CMS Release
G.) Tne name of the environment must then be specified as the third argument and the
value of the first argument must in this case be a variable name that is valid for that
environment.

1 .I .3.4 Drop (ivar), Expose (ivar)

One other use of Interpret was the following illegal Rexx snippet:
a: Interpret 'Procedure Expose' vl

This is invalid because Procedure must be the first instruction of a subroutine, if it is
used. Early CMS implementations of Rexx did not enforce this rule, an error that has
since been corrected. The reason for using this construct was mainly to cast the list of
variables to be exposed into a variable and to use this variable name instead of the long
list. This use is now officially supported by using an indirect variable

a: Procedure Expose (vl)

For consistency, the other instruction that deals with lists of variable names, Drop, has
also been extended in the same way.

1.1.4 DBCS symbols (and comments)

With the new release, pure and mixed DBCS strings can be used as symbols, that is vari-
able names, labels, etc.

At this time the remote possibility of a bug was removed: the occurrence of ‘*/’ or ‘/*’ as
bytes within a DBCS string used in a comment.

1.1 .S Smaller executables

The first compiler offered already significant performance improvements. However, com-
piled programs were, in general, larger than the source programs; sometimes significantly
so. Release 1. of the IBM Compiler for Rexx/370 introduced the CONDENSE compiler
option use of which results in significant disk storage and I/O savings, With release 2,
another little reduction in the size of compiled programs was achieved. Compiling

183
Chapter 1. IBM Compiler and Library for SAA Rex-x/370 3

REXXDX, the program that implements the CMS compiler invocation dialog, shows the
following disk requirements:
kBytes

160 Source program
266 CMS REXX
230 REXX/370 Rl
221 REXX/370 R2

73 REXX/370-R2 (with CONDENSE)

.I .I .6 Improved Compiler Listing

Several improvements have been made to the iisting that is produced by the compiler:

l A summary of messages issued and their severity is printed at the beginning of the
listing.

1 message(s) reported. Highest severity code was 12 - Severe
or, the better alternative:

Compilation successful

The user can immediately check the sompilat;on’s success.

l The compiler options used are now printed in alphabeticai order of their keywords
proper (disregarding the NO prefix, where applicable).

Sample Listing of Compiler Options:

Compiler Options

CEXEC (DAMEN EXEC Al)
NOCOMPILE (9

CONDENSE
NODLINK
NODUMP

FLAG (1)
LINECOUNT (55)
OBJECT (DAMEN TEXT Al)
PRINT (DAMEN LISTING Al)

NOSAA
NOSLINE

SOURCE
NOTERMINAL
NOTESTHALT
NOXREF

l A list of flagged instructions is now printed at the end of the compiler listing, if appli-
cable.

184
Chapter 1. IBM Compiler and Library for SAA Rexx/370 4

-

1.1.7 Support of VSE

As of this fall, Rexx will also be supported in the VSE environment. It will be possible to
run Rexx programs compiled under CMS or MVS in that environment. The support for
compiled Rexx will be integrated with the Rexx Interpreter on VSE.

1.2 Performance

1.2.1 Language Features

The speedup for a particular Rexx program depends on the language constructs being
used in the progralm. The followilig table relates miscellaneous constructs with the per-
formance improvement to be expected.
Programs with a lot of this . . . are that much faster than the SPI
==
Arithmetic operations of default precision 9.7
-------------------_____________________--------------------------
Constants and Variables 5.8
_____-_-_____-______------------------------ __--_-__----___-_____

Ref. to built-in functions and procedures 4.9
--
Changes to variables' values 8.7
--
Assignments 25.2
__---_----------_--_--
Re-use of compound variables 4.4
_________----______---
Host commands 1.0

1.2.2 A Benchmark Program

A program that demonstrates the performance improvements is the following program
that computes the number of ways you can place eight queens on a chessboard so that
none interferes with the others.
/* Position n queens on a chess-board of n*n fields so that no queen **
** can beat any other on the board *************************************

Change Activity:
871211 PA Rexxified from the BASIC algorith supplied by Alfred Gschwend
881104 PA give return code Q if 92 solutions were found
910919 KY remove test code

185
Chapter 1. IBM Compiler and Library for SAA Rexx/370 5

,*****R****k****************************~~~~~~~~~~~~~**.~~~~*~~~~~**~~~~

DG REM *** Das Acht-Damen-Problem ***
18 I = I+1
28 D(I) = 1
38 FOR J = I TO I-l
48 IF D(I) l D(J) 1 ABS(D(I)-D(J)) - I-J THEN 98
58 NEXT .I
68 IF 1~6 THEN 10
78 R = D(l)*lE7 + D(2)*1E6 + D(3)“lES + D(4)*1E4 + D(5)*1E3
88 PRINT ' -a'; R + D(6)"lDD + D(7)"lD + D(9);
90 D(I) = D(I) + 1

180 IF D(1) <- 8 THEN 39
110 I = I-l
12D IF I>Q THEN 90
138 END
*****R**********************************~~~~~~~~~~~~*~~~~*~*~~~*~~~~~*~,

Parse version v
Say v

-Call time 'R'
cs=cputime()
nq=6 /* set number of queens
If arg(l)c>” Then nq=arg(l) /* allow dynamic specification :;

n=O /* number of solutions
x.1 ' /* output buffer 1;

i-1 /* number of positioned queens */
sym-'0123456789ABCDEFGHIJKLMNDPD /* symbols indicating row of queen*/
ende=D /* end indication
d.-D /* initialize the queen positions ::
d.l-1 /* start at field A-l */
Do nn=l By 1 While endeol /* with a counter to show pro:r?ss*/

/*call out*/ /* debuggfng
further-Q /* flag indicating prugrecc :$

Do j=l To i-l /* check if queens 1 thru i are ok*/
If d.i-d.j 1 , /* on the same row */

abs(d.i-d.j)=i-j Then Leave /* or on the same diagonal is bad */
End /* */

If j-i Then Do /* queens 1 thru i are okay
If i=nq Then Do /* we have another solution :;

n=n+l /* increment solution count
/*call out*/ /* and show it to the user :;

End
Else Do /* not yet 8 queens */

i-i+1 /* move on to next column
d.i=1 /* starting at base line
further=1 /* indicate progress

g

End
End

If further=G Then Do /* stay on colllmn or track back */
Do i=i By -1 while(d.i=nq) /* search first column where

End /* queen may be moved up :;

If i<l Then ende=l /* all queens on row 9, so end it */
d.i=d.i+l /* move up a field */
End /* of move up and/or backtrack */

End /* end of main loop */

Say x /* show buffered solutions *I
Say n 'solutions computed'

Say 'DAMEREXX: elapsed:' time('E') 'CPU:' cputime()-cs
Exit n-92 /* end of benchmark */

The System Product Interpret& needs about 13 seconds to run that program (on a
9121-400). My PS/2 model 95 takes 75 seconds. The following table shows the timing of
the same program with the possible combinations of compilers and run time libraries.

I” Chapter 1. IBM Compiler and Library for SAA Rexx/370 6

COMPILE Time EXECUTION Time

CMS/REXX REXX/370 Rl REXX/370 R2

CMS REXX 0.28 1.14 1.16 1.17
0.29 1.12 1.15 1.15

1.13 1.16 1.15

REXX/370 Rl 0.24 1.09 1.08
-0.24 1.08 1.08
0.24 1.09 1.07

REXX;370 R? 6.21 1.11
0.21 1.10
0.21 1.11

1.2.3 Compiler Options

Some compiler options affect the runtime performance of the compiled programs. These
are discussed in the following.

1.2.3.1 CONDENSE

The CONDENSE option causes the compiled program to be stored in a condensed
format. This has the following advantages:

1. The compiled program uses less disk space.

2. Preloaded compiled program use less virtual storage.

3. Loading the program requires less I/O activity.

4. Literals in a program become illegible (and un-“ZAP”-able).

On the other hand there are a number of little disadvantages:

l There is a minimum overhead for unpacking the program at execution time.

l The virtual storage required while the program is being executed is larger.

l It takes some time to do the packing at compile time

l The CONDENSE option is mutually exclusive with the DLINK option.

1.2.3,2 TESTHALT

Compiling with the TESTHALT option causes tests to be included in the executable code
that determine whether the user has attempted to interrupt the program’s execution (by
entering the immediate command HI, for example, under CMS). The cost of these tests
at execution time is negligible.

Chapter 1. IBM Compiler and Library for SAA Rexx/370 7

1.2.3.3 DLlfUK

This option results in the most spectacular performance improvement if a large number
of external function and subroutine calls are made during a program’s execution. Using
this option, a program and its external subroutines can be packaged into a module that
uses branch-and-link instructions to invoke external subroutines. Avoiding the CMS (or
MVS) search order for external routines is the reason for the dramatic performance
improvement. A fringe benefit of using this technique is that changes in the program’s
environment (name clashes with invoked external routines) do not have any effect on the
packaged program.

<.3 TTestirq the Rexx Compiler

Beginning with the first Rexx compiler, the CMS Rexx Compiler, a test project was set
up to develop a suite of function test cases to test the language implementation as exten-
sively as possible. Rexx was used to implement a highly automated test enviro=lment and
to minimize the effort of test case writing.

1.3.1 Original Test Ideas

As any other test, the test cases for Rexx must compare the iesults from a language con-
struct with the expected results. Results include

the values of variables after executing the construct to be tested

flow of control

error messages

- at compile time (for errors that are detected by the compiler)
- at run time

the contents and layout of compiler listings

compiler and runtime performance

etc. etc.

The test project was given significant lead time and could use the existing implementa-
tion, the System Product Interpreter, for testing the test cases and for constructing the
test environment.

An ideal test case would consist simply of the construct to be tested, for example:

The expected result was either that produced by the Interpreter or that from a “pseudo-
implementation” of Rexx (very much like the approach now being taken by the Rexx
standardization committee).

188 Chapter 1. IBM Compiler and Library for SAA Rexx/370 8

Most of the test cases have been constructed to be self-checking. Techniques were devel-
oped to automatically handle error situations like Syntax and Novalue conditions being
raised. The test environment performs the bookkeeping of successful test runs and the
notification about failing test cases. With the completed test suite, human involvement is
only required

l to request the execution of the test suite for a particular implementation

l to run those test cases for which human action or attention is required

l to verify, on a glance, on the morning after that no errors occurred

l or to report errors to the developers

l to extend the test suite w1:en a: error is discovered or reported or when a new test
idea crosses the mind.

l and, of course, to rework the test cases for new implementations or new environments.

1.3.2 Reuse’ of Test Cases

The test suite has been kept alive over the ppst vears and was extended to test all releases
of the compiler in all supported environments (currently CMS and MVS, with VSE to -
come soon) and other Rexx implementations (such as the interpreters on most IBM plat-
forms). This approach has not only resulted in a very high quality of the compiler pro-
ducts but has weeded out some errors in the other implementations.

A significant effort is, however, involved in keeping the test suite up to date for all imple-
mentations it is used for and one has to take care that the number of “generation direc-
tives” does not become excessive. Variations to be catered for include

l changes of the language
x='123'b /* changes meaning in 3.38

l implementation improvements
x=‘a’

*/

1: x=x+1 /* is now a compiler detected error if 1 is not used */

l character set
x='Fl'x /* is two things on ASCII and EBCDIC */

l extensions of the language.
x=value('x',123) /* new second (and third) parameter */

The forthcoming Rexx standard will, of course, be considered for further extensions and
customization of the test suite.

1” Chapter 1. IBM Compiler and Library for SAA Rexx/370 9

1.3.3 Sachet-torte

As it is typical for this product, the current release was “finished” quite some weeks
before the committed end date. This situation was (again) exploited to our customers’
advantage by exposing the compiler to a large number of IBM internal users. This time
the development team had to motivate their users to try hard in finding problems, that is
bugs, in this very well tested product. A contest was put’in place that every person
finding one or more reasonably severe errors was to be awarded with a Sachertortel. The
person who found the most problems is to collect the cake in Vienna where he can meet
the developers and testers and can enjoy a few days in not too bad a town. Rewarding
customers for problems they find is a process yet to be explored and defined; for the time
being we try to deprive their the “pleasure” to find problems.

Meanwhile here is the recipe for the Sachertorte that my wife is using:
Sachertorte
..1.1.*....

allegedly the original recipe from Sacher.
translated By Walter Pachl 968531
(with &I's help - on the English side).

Ingredients

146 g butter
166 g sugar
186 g ground chocolate

8 eggs
36 g powdered sugar

146 g wheat flour
1 level tea spoon baking powder

26Q g apricot jam
266 g icing

Stir butter and sugar to get a foamy cream. I

Melt the ground chocolate OVER (not in) hot
water, stir well until cooled down

Add the chocolate to the butter/sugar mixture.

Keep stirring until the mixture is thickly foamy
I

Slowly, by and by add egg yolks, beat heavily
until you have a chocolate cream.

Beat whites of the eggs and powdered sugar until
stiff and put this on top of chocolate cream.

Mix flour and baking powder, add on top
of all the above.

I
Mix it all cautiously (slowly, carefully).

Bon appetit.

Fill the dough into a cylindric cake-form
that you have coated (on the inner side :-
with aluminum foil or baking paper
(ours is about 12 inch in diameter).

Bake (use a knitting needle to check
if done - it'll come out dry then)

Let the cake cool down, take it out
of the form. Heat the apricot jam
and smear It on top and on the side
and let it soak a little into the cake,

Heat the icing in hot water and cover
the cake with it.

Note: Almonds, nuts, cream are NOT
to be used in Sachertorte.
Whipped cream Is recommended wfth it.

1 A famous chocolate cake produced (not only) by Hotel Sacher in Vienna.

“’ Chapter 1. IBM Compiler and Library for SAA Rexx/370 10

