
ANINTRODUCTION TO VREXX

CRAIG SWANSON
UCSD

An Introduction to VREXX
Craig Swanson
San Diego OS/2 User Group

REXX symposium
La Jollsr, California
May 18,. 1993

I

vRJ%xx - Gateway to Gr8phk8l REXX for OS/2

is lwa-sware applications for OS/2 2.0 a& 2.1
Come to maAe$ the system scripting abilities of the lau-
guagewillallowOS/2userstowriteaREXXpmgramsto
tie together multiple applications to perfoxm complex
actious. For example, a REXX script for OSE might allow
a user to double-click an icon in the W-lace Shell to stari
a telecommuuications proep’dm, dial up a remote service
such as CompuServe, retrieve stock prices-and news regard-
ing a stock portfolio, and then take that infom&ion and
sendittoaspreadsheettocreatenewstock~dEp;lghsand
update the current value of the portfolio. But even without
using such m-aware pmgrams BS Borkznd ObjectVision
for 092, REXX pmgmms for OS/2 can have a graphical
user iuterface. w short for Visual RJZX for ptesen-
tation Manager, was wit&en by Richard B. Lam of the IBM
T.J. Watson Research Center to allow REXX for OS/2 to
have a prescntation Manager user interface complete with
windows, dialog boxes, text (even in varied fonts and col-
ors) and graphics without the pmgmmm having to’leam
theintricaciesofwritingPMprognunsinCorCt+pn;
gmmming languages. VREXX can be fcrrmd in the archive
called VRExX2 .2 IP which is available on OS/z Cbnnec-
tion bulletiu board iu La Jolla (619-558-9475) and many
other bulletin boards and FIP sites. It is distributed under
the IBM Employee Written Software plan that permits pm-
gnuus to be released free of charge but without any
guarantee of product support from IBM.

simple VREXX cllenktor Exampk

We’ll examine a short VREXX pmgram to show the
essentials of using the package. Take a look at the program
listing labelled VCALC. CXJI. Please note that the line
numbers are not nzally part of the program but are simply
there to make it e&er to point out the interesting parts of the
propam. The fint six lines of the pmgram are comments.
As you know, every REXX program must start with a
comment. I added a few others to note what the program is
mpposedtodoaudwhenitwaswritten. Line7isthefhst
that do13 any ns-il work. The CALL instruction tmnsf&s
coutrol OI me program to a subroutine pmvided by REXX
for OS/2. This subroutine is named RxFuncAdd aud will
add a new function to the REXX environment called
VInit. TheVInitfimctionis found intheVREXX.DLL

Ne andiusidethat NehasthenameVINIT. Then online
8,theVInitfunctioniscalledtoaddalltheotherVREXX
limctions to the REXX entinment. If it fkils, the value
"ERROR" is stored in the variable “initcode” and the
SIGNAL VREXXCleanup in~tfu~ti~n is Ron, thus tram-
ferring control of the program to code that will P&ut dowu
VREXXaudtermiuatethepmgram.

NormallytheVlnitcallshouldnotfXl,soin!hiscase
~lO~ildllteU.eprogramtojumptotheVREXX-
Cleanup label if the program fails or is asked to end for
somp IWXXL Tixough experimentation, I found that line 15
isre@redtohz&ecaseswheretheusertypesiuabad
expression l&e “5 / 0” which causes a divide by zero
error. REXXcousidersth”:asyntaxerrm. Whenanermr
like this happens,VCALC.CMD assumes it isbecause the
user made a mistake and then jumps to a block of code that
will tell the user a bad expression was entered

SofarthepmgramhassetuptheREXXenvimnmentto
permittheuseofVREXX. Lines21 to23specifythetitle
for the input window, its width iu chamcters, and the type of
buttons it should have. For some reason n-must be
used for button types and the numbers are not very well
docrnmmw possibly because VREm is fieem. I fig-
ured out which number to use by examiniug the sample
pmj5mmsthaicamewithVR~~~2.ZIP. Lines28and29.m
setupthesetofstringsMatwillbeusedtop~~ttheuser
for input Stem variables are used for this and the variable
endingin” .O” tellsVREXXhowmanypmmptstr&sto
expect starting with the one endipg in “.l ‘I. The variable
endiugin” .vstring*isusedtospecifytheinitialstring
displayed in the input box entry field. For this pm- I
did& want them to be any text iu the entry field at first, so
the two adjacent double quote marks are used to indicate an
empty string. Line 33 finally displays the input dialog box
and waits for the user to press the OK or CANCEL buttons.
The name of the button that was pmssed is stored in a vari-
able named "but ton" and the user’s input is stored back
in~"~ompt.vstring~which onliue35isthencopied
into the variable axpr.

Line 37 checks to see if the OK button was pressed. If
it was, then lines 38 to 47 evahute the expression usiug one
Of the mm? unique features ofREXX, the INTERPRET
instxuction. The answer is stored in the variable named
"result" and fmslly displayed on the screen in a mes-
sage box that will be displayed until the user clicks on the
OK button. Then thepmgramjumps to the InputLoop

233

.-
I

4

label to get the next expression from the user. usingasasefver.
Ifline37decidedthattheOKbuttonhadnotbeen

pressed, the THEN dause would not have been mu and
instead the next instruction nm would have been on line 53.
ThemCALL VExitn&lxuctiontellstheVRJ5.XXc0det0
shut itself down. Finally, line 54 terminates the REXX
program Ifyoudonotdoa”CALL VJZxit”befmend-
ingaVREXXprogram,thereisapmgramfiIenamed
VREXX. EXE that is left running. Until that program is
brminated, other VRFXX pmgrams will not be runnable
from the session where you started VCALC. CMD.

.You may be wondering that if line 54 termbkd the
RExxpmgmm,whyaretheIelinesafterit? Ide&Wto
put the block of code to handle expression ermrs after the
EXIT instruction. Siuce this block of code is jumped to
because of the SIGNAL ON instruction on line 15, it is OK
fm it to be after the EXIT instruction. Lines 57 to 69 l~lczely
display a message box telling the user that the expression
typed was bad. After the uses clicks on the OK bytton in lhe
message box, then the SIGNAL Inpu tLoop ~truction
causes the pmgram to loop back to get m input.

VREXX has a lot of other abilities that I haven’t cov
ered, but this pmgram ill&rates the basics of calling
lfRJ3XX functions that youll need to do anything more
complicated. VCALC. CMD may not very useful as a tool,
but it was a helpful exe&e for me to leam the basics of
VREXX by writing a program that accomplished something..
IfyouNnOSn,typeintheprogramand~itout. Ifyou
don’t waut to Wype if you can get a copy of VCALC.CMD
in the electronic version of the March 1993 issue of the San
Diego OS/2 Newsletter which is available as
SDIN9303 .ZIP on OSY2 Gmnedion. VCALC.cMD is
included inside the ZIP archive file.

VREXX . EXE has two thre@s. I’d speculate that one of
WsethxeadscontainsthemainPMmessageloopaudthat
the other commuru‘cateswit.htheREXXprogmm Ituses
the sexvices of two DLL files supplied with VREXX which
are DEVBASE.DLL and VREXX.DLL. DEYBASE.DLL
appearstobemorethanjustasupportinghmfor
VREXX as inside it has text strings such as “OS&AM
Development Base” and what look to be Adobe PostScript
commands. What else it might do it unclear to me.

VRElXX.DLL appears to be code used by both the
CMD.EXEandVREXX.EXEpmceWs. Ifyoukilloneof
these proccas without killing the other, the remaining
pmcessappearstobedestabilizedsoiitcrasheswithapr+
tectionfault.1Alsoifyoudonotdoa”CALL VExit"in
your RExx‘program, the CMD.EXE process caanlo run
additional VREXX w and in fact may disappear
entirely in what also “w to be the result of a pr&ection
fauii Lastly, it a-q that there is a limif on the number of
VREXXpmgfamsthatcanberunatonetime. Iwasnot
able io M more ‘ban two at once. Tryiug to start additional
VREXX pqrams resulted in the command line sessions ::
disappearing, pxobabiy due to a protection fault while mn-
ningintheVREXX.DLLczle. Idonotseeanyreasonwhy
suchalowlimitisFequi&bytheappmachthatappearsto
beusedtomakevRExx~ction,soperhapsthiswasan
oversight in the original code. A&r al& it is a 1 .O release. -- . .
Or maybe something is not being cleaned up properly due to _
the way VREXX is architected using DLL’s and shared ~-

-memmy. While experhenting with m Itre noticed
symptoms such as the second of two concurrently executing *
VREXX scripts not starting up consistently which indicate
that the latter might be what is really happening.

How VREXX Worka Helpful Tools for VREXX Programmers

If you are beady familiar with OS0 programming you
mightknowthatREXXprogmms~usuallynmbythe
CMD . EXE command line interpreter using various DLL files
stored in the \OS2 \DLL directory such as REXX . DLL and
REXXAPI.DLL. You might be wondering how a text
modeprogramlikeCBlD.EXEcandisplayPMwindowsand
dialog boxes. The answer is it can’< at least not on its own.

&using the PSTAT, PSPMZ, and OS2OMEMUtools
while running a VREXX program, l’ve been able to deter-
minethattheVREXXpmgmmisactnallytict.ioningasa
ClientofaPMprogramthatithasspawnedto~ethe
display. When the VInit() function is executed in the
REXX program, it appears that a shared memory region
named W\MEM\VREXX\V#~ (where # is anumber-
senting the particular VREXX program mnning) is created
Then a ?M prow named VREXX . EXE is spawned. The

CMD.FXE and VREXX.FXE programs communicate via
this shared memory region. This allows the client REXX
script being nm in the W-EXE process to request PM
services to be provided by the VREXX. EXE process it is ^_

Since sometimes things go wrong when writing a
~program(afteraprogrammers do make mis-
takes), it is possiile that you- will leave VREXX. EXE
~runningwhenaVREXXprogmmstopswithan
errorbeforeexecuting "CALL VExit" to terminate the
VREXX environment nicely. Therefore rd recommend that
you download a pair of files tirn OS0 Connezfion called
PROCSZl.ZIP and KILLEMZl.ZIP. These programs
will let you list running processes to find the process ID
number of VREXX using the nprocs" program and then
let you kill the VREXX program using *killem" fol-
lowed by the process ID number of VREXX. The archive
PSPMZ . ZIP contains a single PM program to perfm the
same functions if you prefer graphical user interfaces.

I hope this introduction to VREXX has given you a
starting point to experimenting with graphical REXX pro-
grams. If you have questions or feedback for me, you can
send them to “Cmi~Swanson@f354.n202.zl .fidonetorg”
on Internet. Please include a reply-to addmss in your mes-
sage in case your address is stripped by any mail gateways.

234

vcALc.cMD

1: /* VRRXK simple calculator program l /
2: /* San Diego OS/2 Newsletter
3: /* March 1993 edition 1;
4:
51 /* Program Initialization */
6:
7: CALL RxFuncAdd .VInit., wVRRXXg, .VINIT. /* Add VInit function to attach to VREKK '/
8: initcode = VInitO /* Initialize VRRXK */
91 IF initcode = *ERROR* TRRN SIGNAL VREKXCleanup /* Exit program if VInitO failed l /

101
11: SIGNAL ON PAILURE NAME VREXXCleanup /* If the program fails or stops for any
12:. SIGNAL ON RFLT NAME VREXKClanup /* reason, the VRFXK cleanup must be done
13: /* in order to leave VREXK in a known state */
14;
15: SIGNAL ON SYNTAX NAME SyntaxError /* Syntax errors should only be triggersd by bad */
16: /* user input, so when one happens, tell the user l /
17: /f the math expression was bad. * f
18:
19: /* Main Program l /
20:
21: windowTitle = WVREXX Calculator 1.0" /* Title of input window l /
22: dialogwidth = 50 /* Input dialog should be 50 characters wide l /
23: buttonType = 3 /* type 3 means use OK and CANCEL buttons */
24:
25:
25; InputLoop: /* Label used for lo-ping back to get more input l / 7.
27:
28: prompt.0 - 1 /* Only one prompt string */
29: prompt.1 = CENTER("Enter a math expression:", dialogwidth) /*-This is the prompt string. l /
30: prompt.vstring = *I /* No default expression */
31:
32: /* Get input from user l /
33: button = VInputRox(windowTitle, prompt, dialogwidth, buttonType)
341
35: expr = prompt.vstring /* Store the expression the user typed */
36: ,-
378 IF button = gOK. THEN DO /* If the OK button was pressed */
38: INTERPRET -result =* (1 expr /* evaluate the expression */
39:
40: text.0 = 1 /* and then show a one-line result l /
41: text.1 = result /* in a message box on the screen */
42:
43: /* Show the message box */
44: CALL VMsgRox "Result of <" 11 expr 11 l >", text, 1
45:
46: SIGNAL InputLoop /* Go get the next expression */
47: END
48:
49: /* The OK button wasn't pressed. so exit the program. l /
50:
51: /* Program Rxit */
52: VRRXXCleanup:
53: CALL VRxit /* Clean up the VRRKX resources */
54: EXIT /* Terminate the program l /
55:
56:
57: /*"*** ERROR RANDLER l ****/
58:
59: /* Display an error message l /
60: SyntaxError:
61: SIGNAL ON SYNTAX NAB SyntaxError /* Reinstall error handler l /
62:
63: text.0 = 2 /* Show a two line display */
64: t&ct.1 = -Bad expression:. /* of the mistake .*/

65: text.2 = l � II e⌧pr

66:
67: CALL VMsgBoX gErrorm, text, 1 /* Show the message box with just an OK button '/
68:
69 : SIGNAL InputLoop /* Go back and get more input */

.zj:,

