AN INTRODUCTION TO VREXX

CRAI GSWANSON
UCSD

732

Craig Swanson

REXX symposium

May 18, 1993

VREXX - Gateway to Graphical REXX for 0S/2

_is PEXX-aware applications for 08/2 2.0 an 2.1
come to market, the system scripting abilities of the lan-
guage will allow OS/2 users to write a REXX programs to
tie together multiple applications to perform complex
actions. For example, aREXX script for 0$/2 might allow
auser to double-click anicon in the Workplace Shell tostart
a telecommunications program, dial up a remote service
such as CompuServe, retrieve stock prices-and news regard-
ing a stock portfolio, and then take that information and
send it to a spreadsheet to create new stock trend graphs and
update the current value of the portfolio. But even without
using such REXX-aware programs as Borland ObjectVision
for 05/2, REXX programs for 08/2 can have a graphical
user interface. VREXX, short for Visual REXX for Presen-
tation Manager, was written by Richard B. Lam of the IBM
T.J. Watson Research Center to allow REXX for 0S/2 to
have a Presentation Manager user interface complete with
windows, dialog boxes, text (even in varied fonts and col-
ors) and graphics without the programmer having to leam
the intricacies of writing PM programs in C or C++ pro-
gramming |anguages. VREXX can be found in the archive
called VREXX2.2 | P whichisavailable on 082 Connec-
tion bulletiu board in La Jolla (619-558-9475) and many
other bulletin boards and FTP sites. It is distributed under
the IBM Employee Written Software plan that permits pm-
grams t0 be released free of charge but without any
guarantee of product support from IBM.

Simple VREXX Calculator Example

We'll examine ashort VREXX program to show the
essentials of using the package. Takealook at the program
listing iabelled VCALC. CMD. Please note that the line
numbers are not really part of the program but are simply
there to make it essier to point out theinteresting parts of the
program. The first Six lines of the program are comments.
As you know, every REXX program must start with a
comment. | added afew othersto note what the program is
supposed to do and when it was written. Line 7 is the first
that does any real work. The CALL instructiontransfers
control o1 de program to a subroutine provided by REXX
for OS/2. This subroutine iS named RxFuncAdd aud will
add a new function to the REXX environment called
VInit. The VInit functionis foundin the VREXX.DLL

La Jolla, California

An Introduction to VREXX

San Diego OS/2 User Group

file andiusidethét file has the name VINIT. Then online
8, the VInit function is called to add all the other VREXX
functions to the REXX environment. If it fails, the value
"ERROR" is stored in the variable"initcode” and t he
S| GNAL VREXXCleanup instructioni S run, t hus trans-
ferring control of the program to code that will saut down
VREXX and terminate the program.

Normally the VInit call should not fail, so in *his case
linee 10 aid 11 tell the program to jump to the VREXX-
Cl eanup label if the program fails or is asked to end for
some reascn. Through experimentation, | found that line 15
is required to handle cases where the user types in a bad
expression Like "5 / 0™ which causes adivide by zero
error. REXX considers th*s a syntax error. When an error
liket hi s happens, VCALC.CMD assumes it isbecausethe
user made a mistake and then jumps to a block of code that
will tell the user a bad expression was entered.

So far the program has set up the REXX environment to
permit the use of VREXX. Lines 21 to 23 specify the title
for the input window, its width in characters, and the type of
buttons it should have. For some reason numbers must be
used for button types and the numbers are not very well
documented, possibly because VREXX is freeware. | fig-
ured out which number to use by examining the sample
programs that came with VREXX2.ZIP. Lines 28 and 29 -
set up the set of strings that will be used to prompt the user
for input Stem variables are used for this and the variable
ending in " . 0" tells VREXX how many prompt strings to
expect starting with the one ending in *.1*. The variable
ending in " .vstring® is used to specify the initial string
di spl ayed intheinput box entry field. For this program, |
didn't want there to be any text in the entry field at first, so
the two adjacent double quote marks are used to indicate an
empty string. Line 33 finally displays the input dialog box
and waitsfor the user to press the OK or CANCEL buttons.
The name of the button that was pressed iS stored in a vari-
ablenamed "but ton" and the user'sinput is stored back
into "prompt.vstring" which on line 35 is then copied
intothevariablee pr.

Line 37 checks to seeif the OK button was pressed. If
it was, then lines 38 t0 47 evaluate the expression usiug one
O the more unique features of REXX, the | NTERPRET
instruction. The answer is stored in the variable named
"result® and fimally displayed on the screen in a mes-
sage box that will be displayed until the user clicks on the

OK button.Then the program jumps t 0 t he InputLoop
233

label to get the next expression from the user.

If line 37 decided that the OK button had not been
pressed, the THEN clause would not have been nm and
instead the next istruction ran would have been on line 53.
The "CALL VExit" instruction tells the VREXX code to
shut itself down. Finaly, line 54 terminates the REXX
program If you do not do a "CALL VExit" before end-
ing a VREXX program, there is a program file named
VREXX . EXE that is left running. Until that program is
terminated, other VREXX programs will not be runnable
from the session where you started VCALC. CMD.

“You may be wondering that if line 54 tenminated the
REXX program, why are there lines after it? I decided to
put the block of code to handle expression errors after the
EXIT instruction. Since this block of codeis jumped to
because of the SIGNAL ON instruction on line 15, it is OK
for it to be after the EXIT instruction. Lines 57 to 69 merely
display a message box telling the user that the expression
typed was bad. After the uses clicks on the OK button in the
message box, then the SIGNAL | npu tLoop instruction
causes the program to |oop back to get more input.

VREXX has alot of other ahilities that | haven't cov
ered, but this program illustrates the basics of calling
VREXX functions that youTl need to do anything more
compl i cated. VCALC. CVD may not very useful asatool,
but it was a helpful exercise for me to leam the basics of

VREXX by writing a program that accomplished something..

If you run OS/2, type in the program and try it out. If you
don’t want to retype if you can get acopy of VCALC.CMD
in the electronic version of the March 1993 issue of the San
Diego OS/2 Newsletter which is available as
SDIN9303 .ZIP on OS2 Connection. VCALC.CMD is
included inside the ZIP archive file.

How VREXX Works

If you arealready familiar with OS/2 programming, you
mmight know that REXX programs are usually run by the
CMD . EXE command line interpreter using various DLL files
stored in the\OS2\DL L directory such asREXX . DLL and
REXXAPI . DLL. Youmight be wondering how atext
mode program like CMD . EXE can display PM windows and
dialog boxes. The answer isit can't, at least not on its own.

Pv using t he PSTAT, PSPM2, andOS20MEMU tools
while running a VREXX program, T've been able to deter-
mine that the VREXX program is actually functioning as a
client of a PM program that it has spawned to manage the
display. When the vInit () functionisexecutedinthe
REXX program, it appears that a shared memory region
named *\MEM\VREXX\V#" (where # iSa number repre-
senting the particular VREXX program running) is created.
Then a™M program named VREXX . EXE is spawned. The

CMD.EXE and VREXX.EXE programs communicate via

this shared memory region. This allows the client REXX
script being run in the CMD . EXE process to request PM
services to be provided by the VREXX. EXE processit is

using as a server.

VREXX . EXE hastwothreads. |'d speculate that one of
these threads contains the main PM message loop and that
the other communicates with the REXX program. It uses
the services of two DLL files supplied with VREXX which
are DEVBASE.DLL and VREXX.DLL. DEVBASE.DLL
appears to be more than just a supporting library for
VREXX asinside it has text strings such as "08/2-AIX
Development Base" and what 1ook to be Adobe PostScript
commands. What elseit might do it unclear to me.

VREXX.DLL appears to be code used by both the
CMD . EXE and VREXX.EXE processes. If you kill one of
thcse processes without killing the other, the remaining
process appears to be destabilized so it crashes with a pro-
tection fault. : Also if you do not do a "CALL VExit" in
your REXX ‘program, t he CVD. EXE pr ocess caanot r un
additional VREXX programs and in fact may disappear
entirely in what also appears to be the result of a protection
fauii Lastly, it appears taat thereis alimif on the number of
VREXX programs that can be run at one time. I was not
able iv nm more than two at once. Tryiug to start additional
VREXX programs resulted in the command line sessions _
disappearing, probably due to a protection fault while run-
ning in the VREXX . DLL cede. 1do not see any reason why
such a low limit is required by the approach that appears to
be used to make VREXX function, so perhaps this was an
oversight in the original code. After all, itisal.0 release.
Or maybe something is not being cleaned up properly due to
the way VREXX is architected using DLL’s and shared ~
memory. While experimenting with VREXX, T've noticed
symptoms such as the second of two concurrently executing
VREXX scriptsnot starting up consistently whichindicate
that the latter might be what is really happening.

Helpfual Tools for VREXX Programmers

Since sometimes things go wrong when writing a
VREXX program (after all, programmers do make mis-
takes), it is possible that you- will leave VREXX. EXE
processes running when a VREXX program stops with an
error before executing” CALL VExit" t o terminate t he
VREXX environment nicely. ThereforeTd recommend that
you download a pair of files from 0572 Connection called
PROCS21.ZIP andKILLEM21.ZIP. These programs
will let you list running processes to find the process ID
number of VREXX using the*procs® program and then
let you kill the VREXX program using *killem" fol-
lowed by the process ID number of VREXX. The archive
PSPM2 | 7| P containsasingle PM program to perform the
same functions if you prefer graphical user interfaces.

| hope thisintroduction to VREXX has given you a
starting point to experimenting with graphical REXX pro-
grams. If you have questions or feedback for me, you can
send them to "Craig_Swanson@f354.n202.z1 .fidonet.org”
on Intemet. Please include a reply-to address in your mes-
sagein case your address is stripped by any mail gateways.

234

65:

VCALC.CMD

1:
2:
3:

18:
19:
20:
21:
22;:
23:
24:
25:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

66:
67:
68:
69:

/* VREXX simple calculator program @ /
/* San Diego 0S/2 Newsletter */
/* March 1993 edition */

/* Program Initialization */

CALL RxPuncAdd *"VInit®, "VREXX", “VINIT* /* Add VInit function to attach to VREXX */

initcode = VInit()

/* Initialize VREXX */

IF initcode = *BRROR" THEN SIGNAL VREXXCleanup /* Bxit program if VInit() failed ® /

SIGNAL ON PAILURE NAME VREXXCleanup
SIGNAL ON HALT NAME VREXXCle.nup

SIGNAL ON SYNTAX NAME SyntaxError

/* Main Program @ /

windowTitle = “VREXX Calculator 1.0"
dialogWidth = 50
buttonType = 3

;: InputLoop:

prompt.0 = 1

/* 1If the program fails or stops for any */
/* reascn, the VREXX cleanup must be done ®/
/* in order to leave VREXX in a known state */

/* Syntax errors should only be triggered by bad */

/* user input, so when one happens, tell the user ® /
/* the math expression was bad. */

/* Title of input window @ /
/* Input dialog should be 50 characters wide ® /
/* type 3 means use OK and CANCEL buttons */

/* Label used for louping back to get more input @ /

/* Only one prompt string */

prompt.l = CENTER(*Enter a math expression:*, dialogWidth) /*_ This is the prompt string. ® /

prompt.vstring = "%

/* Get input from user @ /

/* No default expression */

button = VInputBox(windowTitle, prompt, diaioqwidth, buttonType)}

expr = prompt.vstring

IF button = "OK* THEN DO

INTERPRET ®"result =" |} expr /*

text.0 = 1
text.l = result

/* Show the message box */

/* Store the expression the user typed */

/* 1f the OK button was pressed */
evaluate the expression */

/* and then show a one-line result ® /
/* in a message box on the screen */

CALL VMsgBox "Result of <" || expr || ® >", text, 1

SIGNAL InputLoop
END

/* Go get the next expression */

/* The OK button wasn't pressed. 30 exit the program. ® /

/* Program EBExit =*/
VREXXCleanup:
CALL VExit
EXIT

/*#**** ERROR HANDLER @ =*##s/
/* Display an error message ® /
SyntaxError:
SIGNAL ON SYNTAX NAME SyntaxError
text.0 = 2
text.l = *"Bad expression:*
text.2 = . * expr
CALL VMsgBox “Error®, text, 1

SIGNAL Inputl.oop

/* Clean up the VREXX resources */
/* Terminate the program ()

/* Reinstall error handler ® /
/* Show a two line display */
/* of the mistake x/
/* Show the messagebox with just an OK button */

/* Go back and get more input */
AN

