
Techniques for Performance Tuning 
REXX Interpreters-A Case Study of Regina 

Anders Christensen 
Sintef Runit 



Techniques for Performance Tuning Rexx 
Interpreters -A Case Study of Regina 

Anders Christensen 
<anders.christensen@runit.sintef.no> 

The Rexx Symposium for Developers and Users 
Boston, May 1-4, 1994 

Abstract 

This article describes some of the techniques and methods used for optimizing the Regina 
interpreter, a REXX interpreter written in C, originally for Unix systems. The methods 
described first may be regarded as optimalization techniques in isolation, but they are also 
prerequisites for the last technique described here: the creation and maintenence of shortcut 
pointers from the parse tree to the variable structure. 

1 Introduction 
R 

When tuning a program like a REXX interpreter for improved speed, a number of general tech- 
niques are used. Some of these are interesting in themselves, but not very specific to REXX 
interpreters. The scope of this text is to present some of the techniques that are closely related to 
the datastructures and operations of REXX interpreters. 

2 Datatyping Variables 
The fact that REXX is a typeless language is often described as one of its major advantages. Thus, 
it might be a great surprise to learn that one of the techniques boosting the performance the most, 
was introducing typed variables. Another technique was introducing typed expressions, which is 
described in the next section. 

Internally, a Regina variable can hold either a string value, a numeric value, or both. When 
setting a variable, either a string or numeric value is set, depending on the context. Whenever 
the value of a variable is retrieved, it can be retrieved as either a string or a number. If a string 
value is retrieved for a variable currently holding only a numeric value, that value is converted so 
the variable holds both data type formats and then the string value is returned. 

To understand the difference between these two formats, it might be instructive to look at 
their definitions in Regina. 

Length 123456769 n-l n ---~__ 
: j 

Numeric 
format 

Length Sign Exponent 1 2 3 4 5 n 

Figure 1: Storage formats for variables in Regina 



For the string format, the values “2”, “ 2 “, and “2EO” are different, but for the numeric 
format, these are identical. The string is simply a sequence of characters, having a specific length. 
The numeric format is a sequence of decimal digits, to which there are connected three pieces of 
information: the length (number of digits), the sign, and the exponent (a native integer). -- - 

Consider the REXX statements: - 
REXX statement Numeric String 

1 foo = I+1 2 N/A 
2 bar = foo Ii ‘.’ 2 ‘2’ 
3 foo = (foe * 3) I I ’ ’ N/A ‘3 ’ 
4 say foo*3 3 ‘3 ’ 

l After the first line, foo contains the numeric value 2, while its string value is not set. Note 
that it is not undefined, it can easily be converted from the numeric format, if necessary. 

l In the second line, the string value of f oo is retrieved, which means that the numeric value 
is converted. After the second line, both a numeric and a string value are stored for the f oo 
variable. 

l In the third line the numeric value of f oo is retrieved and used in an expression which results 
in a string value. At the end of that statement, the f oo variable is set to a new string value, 
and the numeric value becomes unset. 

l In the fourth line the numeric value of foo is retrieved. However, at that point the f oo 
variable have only a string value, so when retriving the value, the current string value is 
expanded to a numeric value. After the fourth line both a string and a numeric value are 
set. 

Why maintain this double accounting? It turns out that variables set to a string value are very 
rarely used in numeric expressions . And vice versa, when a variable is set to a numeric value, it 
is seldom used in a string context; except for output statements, which tend to be slow anyway. 

Based on these two observations, it makes sense to have two parallel, highly optimized sets of 
functionality for operating variables: one for numeric values and one for string values. Since the 
conversion between them are rather rare, the more time-consuming code for conversion between 
the two formats does not significantly increase the total execution time. 

As a future extension, the scheme may be expanded to handle boolean variables too. However, 
it may turn out that the increased complexity this requires (six conversion types as opposed to 
only two above) may not justify the increase in speed. The use of boolean variables are much 
less widespread than string and numeric variables; and besides, boolean variables can be emulated 
through numeric variables. 

In addition, the native floating point numbers could be used. It beats REXX numbers in speed, 
but it is difficult to avoid loosing accuracy wrt the definition of REXX arithmetics. 

3 Construction of a Parse Tree 
In order to explain what comes next, we need to know the format in which Regina stores a parsed 
REXX program. As an example, consider the following REXX code: 

if (‘xxx J /=bar) & (bar*f oo>lOOO) then 
exit 

Regina converts this sequence of tokens to a parse tree, the expression in the if-clause is shown 
in figure 2. The conversion between a sequence of tokens and a parse tree is described in most 
text books on compiler construction. As an aside note: parse trees are often considered to be 
incompatible with the customary way REXX programs are stored internally-a list of tokens. 
However, a static tree can easily be converted to a list of tokens. The difference lays in generating 

26 



i, and ) 

- - 
8, grtn ; ( lstn 

‘- ! - 
‘1 XL - 

bar 1 

( bar) \ - 

Figure 2: A parse tree built by Regina 

a parse tree, which requires a more thorough analysis than a simple conversion of the source code 
to a list of tokens. 

The most obvious approach for executing the code represented by the parse tree would be to 
traverse the parse tree, and for each binary operator (“=/“, “&“, “*‘I, etc) first traverse the left 
subtree, then the right subtree, and in the end apply the operations to the two strings obtained 
from the traversals. 

It is possible to add some optimalizations here: 

bar =/ ‘foo’ 
We know that this must always be a non-numeric comparison, this there is no need to try 
anything but a normal string comparison straight away. 

2*bar 
In this expression, we are only concerned with the numeric value of bar, so we retrieve its 
value in numeric “mode”, as described in section 2. 

(a>b)&(c<d) 
Here, each of the two pairs of parentheses can result in either “1” or “0”. Thus, we use the 
native integer format of the computer to signify the values, rather than using the Regina 
string or numeric format. 

4 Datatyping Expressions 

Using these techniques, the dataformat of the data transmitted from a subtree to its parent node 
depends on the context. For instance, consider the parse tree shown in figure 2. After adding the 
datatypes, the new parse tree is shown in figure 3. 

5 Hash Tables to S tore Variables 
Regina uses hash tables to store the variables defined at any given point during the execution of 
a REXX script. This technique can make the retrieval of a variable a constant-time operation. if 
given a well balanced hash table. However, once the hash table becomes full, the efficiency drops. 

One of the key points with hash tables is to choose the correct size. If the size is too small, the 
handling of overflow adds a large overhead. If the table is too big, the extra work of initialization 
and deallocation adds unnecessary overhead. One solution is to have only one huge hash table for 
the whole interpreter, in which case the work of initialization and deallocation of the hashtable is 
done only once. However, this requires some extra overhead for insertion and deletion of variables. 



- 
[and 1 

bool .- bool 

---_ 
(, I= 1 

..- 
str i “,s, str 

-( >) 
--’ - 

num,f’ ’ ,num ~-- 

- 
j ‘xxx’ : bar j 

-. 
( “j 

-\ - 
num ’ ‘,i, num 

Figure 3: Parse tree with datatypes of transmitted results 

Among other things, it makes the operations of deleting all tails of a particular stem a bit more 
complicated. 

Another solution is to use dynamic hashing, where a small hash table is used initially, and the 
table is expanded when it is filled. The advantage of this technique is illustrated by the fact that 
the interpreter has no way of predicting the number of tails used by a routine at the entry of the 
routine. (Except that it may cache the number of tails used at earlier calls.) 

Figure 4 shows how Regina stores its variables. There is one hash table for each subroutine 
having a PROCEDURE clause, and within each such hash table, there is another hash table for each 
stem in use. 

6 Shortcut Pointers from Parse ‘Tree 

A well-known technique for optimizing computer code is to cache any value for which you may 
have need later. Regina makes use of this several places. For instance, whenever Regina executes 
a CALL clause or a function call for the first time, it must determine which routine to call. If the 
destination routine is an internal or built-in function, it is cached by setting to pointer in the parse 
tree to point to it. 

7 Shortcut Pointers to the Variable Structure 
Whenever a REXX clause refers to a variable name, the value of that variable must be retrieved from 
the variable structure. This involves some navigating, which can be time-consuming. However, it 
often turns out that multiple invocations of the same variable reference in a clause navigate through 
the variable structure only to end up at the same variable box. Thus, it may be advantageous to 
cache the result of the most recent navigation for each variable reference of the program. This 
means storing a pointer in the parse tree, pointing into the hash table of the variable structure. 

Consider the following trivial code: 

foo = 1 
do 1000 

foo = foo + 1 
end 

If we restrict the analysis to the contents of the loop, the variable foo is set 1000 times and its 
value is retrived 1000 times. I.e., navigating the variable structure 2000 times. 

Then we add functionality for caching the result of each navigation. Neither retrieving nor 
changing the value of a variable are operations which change the identity of the box in the variable 

28 



Entry point for 
variable structure 

/ 

- - I_  

\ 
Hashtable for the 1”’ ‘U 
A. compound var ,<i’ 

Figure 4: The structure of variables in Regina 

structure where the variable is stored. Thus, if we can cache a pointer to the variable, the number 
of walks through the hash table structure drops from 2000 to 2. 

On the other hand, the cost of this is caching the pointer after each navigating walk, unless it 
was already cached. And the cost of verifying that the shortcut pointer is still valid. In particular 
the latter of these introduces a number of subtle points. Consider the following code: 

/* first example */ 
call foo 
exit 

foo: do i=l to 2 
say i 
if i=i then do 

procedure 
i I I 
end 

end 

In this example (which is only allowed for TRLl-not TRL2) the variable i in the SAY clause 
refers to different variables during the first and the second iterations of the loop. This is due to 
the execution of the PROCEDURE clause during the loop, which changes the scope of the i variable. 
Thus, the shortcut pointers cached during the first iteration must be tested during the second 
iteration, and the fact that they are invalid must be detected. 

This is achieved using a generation number, which is identical to the number of currently 
nested functions having executed the PROCEDURE clause. Whenever a new PROCEDURE clause is 
executed, the generation number is incremented, and whenever a RETURN clause is executed for a 

R 



routine which have-during its course-executed a PROCEDURE clause, the generation number is 
decremented. 

To verify the validity of a shortcut pointer, the current generation number is recorded in the 
-.--_ box pointed to by the pointer. Whenever a recorded pointer is to be validated, it is considered 

invalid if the current generation number is greater than the nqmber recorded in the box pointed 
to by the shortcut pointer (i.e. a PROCEDURE clause has been executed since this pointer was made, 
invalidating the pointer). In this case, the recorded shortcut pointer is attempted deallocated, and 
the variable is located using the standard procedure-the new location is of course cached if the 
current generation number is greater than the recorded number. 

The next example shows a function. 

/* second example */ 
say bar(3) 
exit 

bar: procedure 
parse arg i 
if i=l then 

return 1 
else 

return bar(i-l)*i 

Here, the last clause in the routine is executed twice, as a result of the recursion. However, 
due to the rules for evaluation of REXX expressions, the retrieval of the i variable at the end of 
the last clause is executed twice: first at end of the second invocation of bar, and then at the end 
of the first invocation of bar. (Note: i is referred to after the recursion itself.) 

According to the rules outlined above, the shortcut pointer is cached at the end of the second 
call to bar (the first recursive call). Thus at the end of the first call to bar, this cached value is 
picked up, but the generation number does not match (the recorded generation number is greater 
than the current generation number), so the shortcut pointer is discarded and the variable is 
located using the standard procedure (i.e. since the pointer was made, the routines in which it 
was made has been terminated). 

There is another, less subtle point here, too. All variables local to the second (recursive) call 
to bar are discarded when that routine returns. Thus the shortcut pointers appear to point to 
undefined memory! This is easily fixed by maintaining a counter with each variable box. Whenever 
a shortcut pointer is set to point to that box, the counter is incremented; and whenever a shortcut 
pointer is removed from pointing to a variable box, the counter is decremented. As soon as this 
counter mechanism is in place, a variable box can be marked for deletion, and retained until all 
shortcut pointers to it have been killed. 

/* third example */ 
do i=l to 2 

call bar 
end 

exit 

bar: procedure expose i 
if i=l then 

foo = )' 
say foo 
return 

Here, the second invocation of bar finds the cached pointer in the SAY clause, but the pointer is 
invalid, even though the generation number is correct. To handle this case, variables discarded 
during the execution of the RETURN clause are not immediately discarded if there are any shortcut 

30 



pointers pointing to it (as recorded by the shortcut counter field). Instead, it is suspended until 
all shortcut pointers point elsewhere, at which time the box is deallocated. In the meantime a flag 
is set for the variable box, so that the interpreter can discover that the box is invalid if it tries to 
dereference the shortcut pointer. -- ~~ 

/* fourth example */ - 

do i=l to 4 
if i=2 then do 

drop i 
1= 2 
end 

end 

The code of the fourth example, as shown above, illustrates why the delete flag is necessary. 
The variable box created at the start of the loop is dropped during the loop, so a mechanism is 
necessary to detect that the box is invalid at the start of the next iteration. 

8 Algorithms 
The two algorithms shown are the the central for the correct operation of the shortcut pointers in 
Regina. The first algorithm is shown in figure 5, and describes how to access (retrieve or update) 
the value of a variable. To be effective, it requires that the code has been executed at least once 
before, so that shortcut pointers have been created. 

foo is a variable reference to access 
if exists a shortcut pointer for var then 

if points to a variable not deleted then 
if the generation number is correct then 

retrieve/set the value 
return 

else 
decrement counter 
remove shortcut pointer 

else 
decrement counter 
remove shortcut pointer 

if counter=0 then 
delete/deallocate variable box 

access variable “the hard way” 
cache the found box in the shortcut pointer in the parse tree 
increment counter 
return 

Figure 5: Retrieving/setting value of variable reference in the parse tree 

The second algorithm is used to delete variables during the execution of the RETURN clause 
from a routine which had its own “private” PROCEDURE clause. It will always detach the variable 
boxes, but it will only deallocate the space if there are no shortcut pointers pointing to the box 
(as recorded by the counter in the box). 

32 



for each local variable 
disconnect it from variable system 
if counter is greater than 0 then 

__-_ mark variable box as deleted 
else _ - . 

deallocate variable box 

Figure 6: Deleting local variables at return from routine 

9 Why So Complicated? 
Most computer languages keep track of their variables in much easier ways, so why introduce 
this complexity for REXX? Because of the enormous degree of freedom in REXX. REXX does 
not have compile-time routines, it has “only” run-time routine entry and exit points! Therefore, 
it is virtually impossible to bind a given clause to a particular “routine” at parse time. The 
possibilities of “SIGNAL ON" and “INTERPRET" ensure that control can pass from virtually any 
clause to virtually any label in a REXX program. 

Thus, the techniques used for most compilers and some interpreters, which allow them to bind 
the variable references in the source code to specific locations at compile- or parse-time do not 
work for REXX, and more elaborate systems, like the one described above, are called for. 

R 

32 


