
REXX/imc
A REXX Interpreter for UNIX

Ian Collier
Oxford University

33

1 Work in progress 1

REXX/irr&

A Rexx interpreter
for Unix

Ian Collier

available from rexx .uuaterloo. ca

in /pub/freerexx/imc

1 REXXjimc Rexx Symposium 1994

History

l May 1989: Work begins!

l Jan 1991: Interpreter has most language constructs
except the stack, but no I/O functions.

l May 1992: REXX/imc is not ready in time for the
Symposium.

l Aug 1992: REXX/imc release 1.2 released.

l Sep 1992: Release 1.3

l May 1993: Release 1.4 announced at the Symposium.

l Jun 1993: Release 1.5, the first level 4.00 release of
REXX/imc.

l Sep 1993: Release l.Sa, with some bug fixes.

l May 1994: Release 1.6 is presented at the Boston
Symposium.

. 1994- : ?

3 REXX/imc Rexx Symposium 1994

Abstract
Since 1989 I have been working on a Rexx interpreter
for Unix in my spare time (what little I get). It was
first released to the public in August 1992 and has had
many improvements since then. In my presentation I
will demonstrate the most recent enhancements and some
of the language extensions that I have added to the
interpreter, a few of which are connected with the work
of the X3.Jl8 standardisation committee. I hope to
show some of the ways in which REXX/imc can interface
with its environment; this will include the use of Unix-
specific built-in functions, the writing of external function
libraries, and the application interface with programs
such as THE (an editor based on KEDIT written by Mark
Hessling). If time allows, I will take a brief look at the
internals of the interpreter, showing the basic blocks of
which it is built, and giving a short explanation of how
it performs a task such as evaluating a Rexx expression.

Unfortunately, since my ‘real’ job is to write a D. Phil.
thesis, I have not been able to enhance REXX/imc as
much as I would have liked for this presentation. How-
ever, work is still in progress to turn REXX/imc into an
efficient and fully integrated programming language on
Unix.

Notes REXX/imc 2

Because REXX/imc is a spare-time project, work on it
has been characterised by bursts of activity and long pe-
riods of slow development. Even though the interpreter
was functional in 1991, it was not released until Au-
gust 1992. In fact it is interesting to note that REXX/imc
was already capable of running a program to calculate R
to many decimal places by October 1989, although it had
no functions.
The period between the 1992 Symposium and the initial
release of REXX/imc was spent in implementing the file
I/O functions and in documenting the source-even the
few comments that are dotted around now were almost
entirely absent before this period!
Many of the changes between versions of REXX/imc
have been bug fixes-thanks to Anders Christensen who
spent time running his trip tests on REXX/imc, and to
everyone who reported a bug.
The main changes in release 1.5 were the addition of
language level 4.00 features (SIGNAL ON with the NAME
keyword, CALL ON, CONDITION(j, STREAM0 and so on),
the command line flags, and the OPTIONS options.
The main changes in release 1.6 are the addition of an
API and the improvement of function handling.
Things planned for the future include, but are not limited
to, the following (not in any particular order): imple-
menting speedups (in at least three areas: improving the
variable table, improving the arithmetic and implement-
ing a pre-parsing process), improving tracing, adding a
Unix system call library, adding OPTIONS to control the
language extensions and to move towards the language
standard, adding extensions as proposed by the Rexx Ex-
tensions committee, adding a ‘stems’ library, completing
the API, adding an API which can be called by other
processes even after Rexx has started, and anything else
which people suggest. . .
Notes REXXfimc 4

34

Files The file librexx. so. 1.6 is the main library file which
contains all the routines necessary for an application to

librexx.so.l.6 204800 use the SAA API of REXX/imc. On the SunOS system,
rexx 5712 this is a dynamically loaded shared library, which means
rxmathfn.exec 6743 that an application which uses the library does not need
rxmathfn.rxfn 57344 to include a copy of the library within its object code,
rxmathfn.rxlib 57 thus saving disk space. This can be seen from the fact
rxque 8016 that the program rexx, which is the interpreter itself,
rxstack 6600 is only a 6K file! This program is merely an interface

between the command line and the API library, and is
const .h 16140 compiled from the source file main. c.
functi0ns.h 16423 The programs rxque and rxstack are for the Rexx stack,
globals . h 6165 which will be discussed later.
rexxsaa. h 5678 The file rxmathfn.rxlib is a function dictionary for the
talc. c 49157
globals . c 8683

REXX/imc mathematical functions, which are imple-

interface.c 37875
mented in Rexx as rxmathfn.exec and in C as the object
file rxmathfn.rxfn.

main. c 4896
rexx. c 97258 As shown opposite, REXX/imc comes with about 430K

rxfn.c 77118 of source. 1

rwathfn.c 8061 The four major documentation files shown opposite are
rxque. c 8610 rexx. info, which is my attempt at a tutorial for Rexx,
rxstack. c 6051 rexx. ref, which is a complete reference on the language
shell. c 8228 features of REXX/imc, rexx.summary, which is a ‘ref-
uti1.c 80214 erence card’ on REXX/imc, and rexx. tech, which gives

details to the application programmer or any programmer
rexx.info 33568 who is interested in the internals of REXX/imc. There
rexx.ref 155257 are also several minor documentation files, not shown
rexx.summary 12627 here, which give details about the current release, the
rexx.tech 33320 change history, the installation instructions, etc.

5 REXX/imc Rexx Symposium 1994 Notes REXX/imc 6

l The OPTIONS instruction’s most useful option for us-
ing on the command line is the tracef ile=f option,

Invocation
which redirects tracing output to a file.

l The -t option can be followed by any Rexx trace
setting, which allows you to trace a program without

rexx [options1 Cprograml [arguments] altering it.

where options are: l The -v option can be used alone (in which case the

-<opt ion>
interpreter does nothing except print its version) or

- any option from ‘OPTIONS’; with other options (in which case it prints its version
-” - print version; and then runs a program).

-s <string> - execute the string as a program; l The -x option is usually used for programs which

-t <trace> - turn tracing on; invoke themselves on Unix by having a ‘6 ! ’ or a shell

-i
instruction on the first line. REXX/imc will treat the

- enter interactive trace mode; first line of the program as a comment, and will not
-x - run a Unix-executable Rexx program. append anything to the program name.

l If no program name is given, or if the program name is
I-‘, then the program will be read from the standard
input.

7 REXX/imc Rexx Symposium 1994 Notes REXX/imc I3

35

Added Features

0 stem.(expression)

0 stem. ‘string’

l SELECT expression

WHEN value THEN instruction

END [SELECT]
. PROCEDURE HIDE
. PARSE VALUE x,y,z WITH pl,p2,p3

s Any non-zero number is true

l OPTIONS 'SETRC' for setting RC after I/O operations

s * , * trace prefix for continued lines

l Extra tracing for SIGNAL ON x when x is an undefined
label

l Features from CMS

- PARSE NUMERIC
- JUSTIFY 0

- LINESIZEO

9 FlEXX/imc Rexx Symposium 1994

Of these enhancements, one, namely the *, * trace prefix,
is as a result of a decision of the X3.Jl8 standardisation
committee, and one other, namely the compound variable
with an expression as part of its tail, has been provision-
ally accepted by the extensions committee. More sub-
stantial enhancements based on meetings of these com-
mittees (such as date/time conversion functions) were
planned but have been delayed.
The PROCEDURE HIDE instruction really means ‘procedure
expose everything-except-the-following’, and its use is not
strongly reccommended at present.
The OPTIONS ‘SETRC’ instruction makes all I/O (includ-
ing SAY and PARSE PULL set the variable RC to indicate the
success or otherwise of the operation, in order to allow
this to be checked without calling STREAM. It also causes
a SIGNAL ON ERROR if that is appropriate. This option
was added in order to preserve backward compatibility
with a previous version of REXX/imc which had neither
STREAM nor SIGNAL ON NOTREADY.
The ‘extra tracing’ extension prints out a traceback in-
cluding the SIGNAL ON instruction and the cause of the
error whenever the target label for the trap is not found.
For example, the program:

signal on novalue
call test
exit
test: say xyz

produces this traceback:
+++ No-value error on XYZ

1 +++ signal on novalue
4 +++ say xyz
2 +++ call test

Error 16 running test.exec, line 1: Label
not found

Notes REXXfimc 10

Features for Unix

l The TRL I/O functions

l Pre-defined streams: stdin stdout stderr

l The STREAM commands: close fdopen fileno flush
ftell open pclose popen

a Functions: CHDIR CETCWD SYSTEM USERID

l Access to the Unix environment via the VALUE built-in
function

s Access to Unix error messages via the ERRORTEXT
built-in function

l Subcommand environments UNIX and COMMAND

l The stack daemon

l The function interface

11 REXX jimc Rexx Symposium 1994

l REXX/imc offers a variety of file access functions via
the function call STREAM(stream, ‘C’,command) The
open command allows any file to be attached to a
stream in either read or read/write mode. The popen
command starts a Unix command and attaches it to
the named stream for reading or writing. The fdopen
command allows Rexx to access any Unix file number
as a stream. The file number of any Rexx stream is
given by the fileno command. The ftell command
gives the file pointer which was set by the last access
on the named stream.

s The SYSTEM function runs a shell command and re-
turns its output as a string.

l Environment variables may be examined and/or set
using the VALUE function with a third argument of
-ENVIRONMENT'. Note, however, that changes made
to the environment will be lost when the Rexx inter-
preter finishes.

l The function call ERRORTEXT(n+lOO) gives the nth
Unix error message, such as ‘No such file or directory’,
which is message number 2.

l The subcommand environment UNIX passes each com-
mand to a Bourne shell. The COMMAND environment
passes each command to a small built-in shell which
tokenises and executes the command directly, which
is usually much faster than invoking a shell for each
command.

Notes REXX/imc 12

, I, I

36

The REXX/imc Stack

l rxque is the stack daemon

- it runs as a separate process

- it is created and destroyed automatically by the
interpreter

- it may be run as a server for a whole session

l rxstack is a stack client

- rxstack C-f if o l-lif o] copies standard input to
the stack

- rxstack -string x stacks one entry

- rxstack -print copies stack contents to standard
output

- rxstack -pop copies one entry to standard output
- rxstack -num prints the number of stacked entries

l REXX/imc is also a stack client

- queue x stacks an entry in FIFO order

- push x stacks an entry in LIFO order

- queued0 tells the number of stacked lines

- On SunOS, REXX/imc can transfer stack con-
tents to the keyboard buffer.

13 REXX/imc Rexx Symposium 1994

Application Programming
Interface
The following SAA API functions are implemented:

l RexxStart

l RexxVariablePool (except requests RXSHV-EXIT
and RXSHVPRIV)

l RexxRegisterSubcomExe

s RexxDeregisterSubcom

s RexxQuerySubcom

s RexxRegsiterExitExe

with exits: RXCMDHST RXSIODTR RXSIOSAY
RXSIOTRC RXSIOTRD RXINIEXT RXTEREXT

l RexxDeregisterExit

l RexxQueryExit

l RexxRegisterFunctionExe

l RexxDeregisterFunction

l RexxQueryFunction

More will be added later.

15 REXX/imc Rexx Symposium 1994

The program rxque forks off a stack daemon and prints
out its process number and socket name in the form of
two environment variables. The format of the output is
as either a Bourne shell command or (with the flag -csh)
a c-shell command. rxque may be given the name of
a socket to create, in which case the output is just the
process number.

The stack daemon is usually started by REXX/imc and
killed with signal 15 when the Rexx program finishes.
REXX/imc checks for the presence of a stack daemon by
looking for environment variable RXSTACK. If a stack
exists, then it uses that instead of creating one. Queued
entries may then persist between programs:

X eval ‘rxque -csh’
% 1s -al 1 rxstack
X rexx -s “say queued () ”
45
% rexx -s “pull .; parse pull a; say a”
drvx------ 5 imc 1024 May 2 16:OO .
Y. kill SRXSTACKPROC

On some systems, REXX/imc can be compiled with the
preprocessor symbol STUFF-STACK defined. REXX/imc
can then pretend to cause persistent changes to the en-
vironment:

X rexx -s “queue ‘cd /tmp’”
cd /tmp
% % pvd

/tmp

Notes REXX/imc 14

Release 1.6 of REXX/imc is the first to have an API. The
functions have been modelled on those of OS/2. It should
be possible to compile a Rexx-aware application-such as
Mark Hessling’s editor ‘THE’-with REXX/imc without
altering it (as long as it uses only the functions which are
currently supported).

In order to use the API, an application includes the
C header file rexxsaa.h supplied with REXX/imc, which
will declare the functions opposite and the associated
constants and datatypes. When the application is com-
piled, it is linked with the library file which is created
when REXX/imc is compiled. This file will be either
librexx.a, in which case the code from REXX/imc will
be included in the application’s object file (static link-
age), or librexx . so. 1.6, in which case only a reference
to the library file will be included in the application’s
object file (dynamic linkage).

If linkage is dynamic, it will be possible to upgrade to
a later release of REXX/imc without recompiling the
application, just by copying the new library into the same
directory as the old one.

Notes REXX/imc 16

I

37

Writing an external function in Rexx or with the SAA
API is the same as for any other interpreter.
A function may be compiled and linked as a dynamically
loaded object called *.rxfn with the * replaced by the
function’s name (by which it will be called by a Rexx
program). When REXX/imc searches for external func-
tions, it searches for such a file first. If the file is found, it
is linked in and called as if it were built-in. The function
must retrieve its arguments from the RBXX/imc calcu-
lator stack and place the result (if any) there.

External Functions
External functions or libraries for REXX/imc can be
written

l in Rexx

l using the SAA API

l using REXX/imc hooks

l as a Unix program

A *. rxfn file may contain several functions, all of which
will be registered when the file is first loaded.
A function library using the SAA API may be compiled
as a * .rxfn file in order to make a library which is
portable but which can be called by an already-running
program. To do this, the library is augmented by an
initialisation function which takes no parameters and
returns no result, but which uses the SAA API to register
all the other functions in the library. Before calling any
of the functions, the Rexx programmer must call the
initialisation function.
If a function cannot be found, then a Unix program
having the same name as the function is searched for.
The program can be in any language supported by Unix,
such as C, per1 or shell script. It will be ‘exec’ed with the
arguments in argvC1 and the function name in argvCO1,
and it should print out the result (if any) on its standard
output followed by a newline character.

17

Many functions can be aliased to one function library
by supplying a text file called *.rxlib (where * is the
basename of the function library) which lists the names
of all the functions in the library. The library can be a
* .rxfn file, a Rexx file or a Unix program. If it is Rexx,
then it can find out which function is being called using
parse source.

REXX/imc Rexx Symposium 1994 Notes REXX/imc 18

Tokenising a program means (in the case of REXX/imc):

Interpreting a program

1. Read command line parameters (main())

2. Load program from disk (load())

3. Tokenise program (tokeniseo)

4. Enter main loop (interpreter())

l rejecting invalid characters and unmatched quotes

l removing comments, null clauses and excess blanks

l Concatenating lines which are continued with a ‘,’

l translating unquoted text to upper case

l recognising keywords (like NOP, SAY, IF and so on)

l organising the program as a list of clauses (each end-
of-line, ‘;‘, or THEN starts a new clause. In addition,
labels, THEN, ELSE and OTHERWISE are clauses by them-
selves)

l making a label table

(a) Fetch the next token.

(b) If NOP then do nothing

(c) If SAY then print an expression

(d) If RETURN then return an expression

(e) If IF then read and test an expression

. . .

(f) If program has ended then return, else go to (a).

5. Clean up and finish.

Keywords are recognised based on what has appeared
since the start of the current clause. For example, THEN
is only allowed when the current clause started with IF.
Keywords are stored as negative- character codes (defined
in const .h). This makes them easy to recognise: during
the main loop, instead of asking, “Are the next three
characters ‘say’?” we can ask, “Is the next character
equal to the constant SAY (which is -128)?” It also makes
it clearer for the expression evaluator when to stop; the
code WHILE (-88) is obviously not part of an expression,
whereas the word while could be a variable name.

The tokenised list of clauses is stored in an array prog [] ,
which also gives other information such as the line num-
ber and address of the clause within the source.

19 REXX/imc Rexx Symposium 1994

The main loop is relatively trivial; it is executing the
individual instructions such as DO and evaluating the
expressions which is the difficult part..
Notes REXX/imc 20

I

38

Internal data structures

l the source (source)

l the tokenised program (prog)

l the label table (labelptr)

s the calculator stack (cstackptr)

s the program stack (pstackptr)

l the signal stack (sgstack)

l the variable table (vartab) and pointer list (varstk)

l the work space (vorkptr)

21 REXX/imc Rexx Symposium 1994

Example: DO

1. Store the current clause number on the stack.

2. Fetch next token. If clause has ended then finish.

3. Flag the stack entry as ‘repetitive’.

4. If the token is FOREVER, skip past it.

5. Otherwise, try and fetch a symbol and ‘=‘. If found
then:

(a) Store the symbol name on the stack.

(b) Fetch an expression and assign it to the symbol.

(c) Search for TO, BY and FOR expressions and store
them on the stack.

(d) If the limit is already passed then LEAVE.

6. If that failed, try to evaluate an expression and store
it on the stack.

i’. Store the pointer to any WHILE or UNTIL on the stack.

8. If WHILE is found and the following expression is false
then LEAVE.

.

23 REXXfimc Rexx Symposium 1994

s The source and tokenised program are each kept in a
linear stretch of memory, pointers to which are held
in the arrays source and prog respectively. The label
table is stored in a linear stretch of memory which is
organised as a kind of linked list.

s The calculator stack is a space to store a list of
intermediate values during calculations.

l The program stack records information about the
control structures that are currently open (such as
DO groups and function calls). It stores the variable
name, step and limit and/or the FOR counter of a DO
instruction, and it stores all the saved state which
must be restored on return from a function call.

l The signal stack holds information about which con-
ditions are currently trapped or delayed, and it also
holds the data for the CONDITION function. It has one
entry for each INTERPRET or function call currently
active.

l The variable table is a linear stretch of memory which
is divided into sections by varstk. Each section con-
tains the variables for an active PROCEDURE or external
function call (apart from the workspace, this is the
only one of the above structures which persists across
external function calls). Within each section the vari-
ables are stored in a tree structure. Exposed variables
contain a pointer to another section where the ‘real’
copy of the variable is to be found.

s The work space is a temporary area for all sorts
of calculations. It is cleared after interpreting each
instruction.

Notes REXX jimc 22

DO and END have been chosen to illustrate how the pro-
gram stack works.

Most of the work of DO is to find out what sort of DO
clause this is and to set up an entry in the program stack
which describes the DO clause. The information needed
is:

l where to come back to

l whether there is a symbol and if so, what are its name,
and its step and limit values

s whether there is a counter or FOR value, and if so, how
many iterations are left

l where the WHILE or UNTIL can be found, if any

DO also has to check to make sure the loop is to be
executed at least once.

Notes REXX/imc 24

39

Example: END

1. Fetch the top stack entry. If none exists, complain.

2. If the entry is not from DO or SELECT, complain.

3. If the entry is not flagged ‘repetitive’ then

(a) Delete the top stack entry

(b) finish.

4. Fetch the pointer to any WHILE or UNTIL. If UNTIL
is found and the expression following it is true, go
to 3(a).

5. If a symbol name is stored, add the step to it and
compare with the limit. If the limit is passed, go
to 3(a).

Even though the END instruction contains no informa-
tion (although it might contain a symbol name, details
of which have been skipped here), it can be interpreted
because the information is all on the program stack. In-
terpreting the stacked data is relatively straightforward.

6. Decrement any FOR counter. If it is zero, go to 3(a).

7. Fetch the pointer to any WHILE or UNTIL. If WHILE
is found and the expression following it is false, go
to 3(a).

8. Fetch the stored clause number and jump to the
following clause.

25 REXX/imc Rexx Symposium 1994 Notes REXX/imc 26

Example: expressions
There is a stack of values and a stack of operations.

1. Stack an ‘end marker’ operation with priority 0.

2. Search for a value:

- If the next token is a unary operation, stack it
and repeat 2.

- If it is ‘(’ then evaluate the expression inside,
check for ‘)’ and go to 3.

- If it is a quote, collect a string.

- Collect a symbol name.

- If the token after the string or symbol is ‘(’ then
call a function, otherwise stack its value.

3. Search for the ‘current’ operator:

- If the next token is a keyword, ‘I’, ‘,’ or the end
of the clause then the operator is an end marker.

- Otherwise, if it is not a binary operator then the
operator is an implicit concatenation.

4. Perform operations:

- If the top stacked operator and the current oper-
ator are both end markers, then finish.

- If not, and the top stacked operator has a priority
no less than that of the current operator, perform
the stackfd operator and go to 4.

- Otherwise stack the current operator and go to 2.

The function which performs the above algorithm is called
scanning.

This is a variant of a well-known algorithm to turn an
expression in infix notation into one in reverse polish
notation (sometimes described by analogy with a railway
track with a siding, the siding being the operation stack).
FI.EXX/imc evaluates the reverse polish expression as it
is created. The calculator stack is the stack which reverse
polish notation requires.

The unary operations each operate on the top value on
the calculator stack, replacing it with the result. The
binary operations each operate on the top two values,
replacing them with the result. It is clear that at step 4
of the above algorithm it is always true that the number
of values on the calculator stack is one more than the
number of stacked binary operations. Since each stacked
binary operation reduces the size of the calculator stack
by one item, this means that when the stacked operations
have all been performed there is precisely one element left
on the calculator stack. This is the result.

Arguments to functions and expressions within parenthe-
ses are evaluated by calling scanning recursively.

27 REXX/imc Rexx Symposium 1994 Notes REXX/imc 26

40

