
Adventures in Object-Oriented
Programming in REXX

Patrick J. Mueller
IBM

166

Adventures in
- Object Oriented -’

Programming
with

(REXX Object extensions)

Patrick J. Mueller
pmuellr@vnet.ibm.com
May 1994, for the 1994 REXX Symposium
Copyright IBM Corp. 1994. All rights reserved.

167

- .

l IBM is a trademark of International
Business Machines Corporation.

l OS/2 is a trademark of International
Business Machines Corporation. R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

168

l What ROX is:

0

0

0

A REXX function package for OS/2

Provides object oriented capabilities
for REXX

An experiment A

l What ROX isn’t:

0

0

0

An interface to existing 00
systems (C++, Smalltalk, SOM)

A new language

An IBM product

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

169

l Classes define:

0 Methods, implemented in REXX

0 Variables, accessible to methods

l Class inheritance
A

0 Classes obtain methods and
variables of inherited classes

0 Multiple inheritance

i Modelled on Smalltalk, but:

0 Classes not 1st class objects

0 No garbage collection

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

170

:* --------- animal class 1-11-111-1
:class animal
:vars name sound

:method init
name = arg(1); sound = arg(2)

:method name
return name

:method sound
return sound

.* . --------- dog class -1-1-11-11
:class dog
:inherits animal

:method init
name = arg(l)
rc = animal.init(self,name,"Bark")

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

171

I

/
*

/
*

rc

/ *

sample.cmd */

load the ROX file animal.rox */
= RoxLoad(wanimal.roxN)

create a dog named Jackson */
dog = RoxCreate(wdogw,wJacksonM)

/ * -> 'Jackson says Bark' */
say .name(dog) Vays" .sound(dog)

/* destroy dog */
rc = RoxDestroy(dog)

A

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

172

l C programming interface allowing
methods to be implemented in C

l Auto-loaded DLLs to allow complete
class definitions to be implemented
in C

l Multithreaded support

l Execution profiling

A

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

173

l Objects created with RoxCreate()

0 arg(1) is the class name

0 arg(2) . . . are initialization
parameters

0 The ‘init’ method of the class
invoked automatically, if present

0 Initialization parameters passed
to init method

l Objects destroyed with RoxDestroy()

0 The ‘deinit’ method of the class
invoked automatically, if present

.

R

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

174

0 RoxCreate() returns a string that is
a reference to an object

l Object reference passed as first parameter
to all methods, and RoxDestroy()

l Object references are plain old REXX
strings - can be kept in a blank delimited
string as in:

ob j s = I1 I1
do i = 1 to 10

objs = objs RoxCreate(ndogn)
end

l Special variables ‘self’ and ‘super’
available to methods which represent
the receiver of the method

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

175

l Message sends are just REXX function
invocations

l Object reference is always the first
parameter

l Function name is method name, prefixed
by

if ff .

l Object and method name used to resolve
the class that implements the method

The two move methods invoked below
are probably implemented in different
classes:
xx = .add(aNumber,lOO)
xx = .add(aList,aListItem)

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

176

I

l Objects have as their instance
variables all variables defined
by their class, and its inherited
classes.

l All instance variables apply only
to a particular object - they are
not shared between objects.

l All instance variables are ‘exposed’
when a method is invoked.

l Per-instance variables may be
created with RoxAddVar(). This
provides support for stemmed
variables.

A

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

177

l RoxLoad utility allows classes to
be packaged into their own files

l Multiple classes may be in one file

l Format is:

:include <a ROX file>

:class <class name>

:inherits <class name> . . .

:vars <variable name> aem

:method <method name>
<method code>

:method <method name>
<method code>

- .

R

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

178

I I

l RoxAddClass()
create a class

l RoxClassAddlnherit()
add an inherited class to a
class definition

l RoxClassAddMethod()
add a method to a class definition

l RoxClassAddMethodDll()
add a method (in a DLL) to a
class definition

l RoxClassAddVar()
add an instance variable to a
class definition

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

179

I

l RoxCreate()
creates a new object

l RoxDestroy()
destroys an object

l RoxSend()
send a message to an object

l RoxSendThread()
send a message to an object
on another thread

i RoxClass()
returns class of object

l RoxAddVar()
add a per-instance variable
to an object - used for stems

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

180

I

l RoxLoad.cmd

Calls the ‘builtin’ ROX functions
to load a ‘ROX’ format file

l Roxlnfo.cmd

Prints class information for
a given ROX file

l RoxProf .cmd

Collects and analyzes output
generated from RoxStats()
function to generate timing
information

A

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

181

l list.rox
l wordIist.rox

‘0 setrox
l collect.rox

various collection classes;
collect.rox is an abstract class

l sessionsrox
illustrates multiple inheritance

l spinner.rox
sample threaded class that displays
an in-process spinner for activity

l cmdline.rox
implements a function to read a line
from input with history, editing, etc

l socketrox
usability enhancements for the
rxSock function package

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

182

l Performance
0.05second overhead for
message sends on 25/50 Mz 486
machine.

That’s pretty good, but still
only 20 messages / second.

R

l File i/o
Each invocation of a method opens a
new file handle for a named file.
Unpredictable because of buffering.

Example: file ‘a.file’ opened twice

:method foo
rc = lineout("a.file~yx 11')

x = .foo(something)
x= .foo(something)

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

183

I

l Uses REXX external function interface
for message sends

l Internally, uses
0 RexxStart()
0 variable pool
0 init/term System exits

l Can be used by any REXX-macro-aware
program

l Possible conflicts with programs that
usurp REXX external function exit and
depend on period prefixed functions

.

- .

R

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

184

- .

‘0 Experimenting with 00 and REXX

l Whet your appetite for Object REXX

A

l A way to reuse large-ish chunks of
REXX code, with shared variables

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

185

- .

l Currently at version 1.8

l Available via:

0 anonymous ftp to ftp.cdrom.com
in /pub/os2/program/rexx as
rox.zip

0 Peter Norloff’s OS/2 BBS,

R

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

186

‘0 Currently at version 1.8

l Available via:

0 anonymous ftp to ftp.cdrom.com
in /pu b/os2/program/rexx as
rox.zip

0 Peter Norloff’s OS/2 BBS

A

.

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994

187

