
The Object REXX Class Hierarchy

Simon Nash
IBM

211

The Object REXX Class Hierarchy
Simon C. Nash

IBM UK Laboratories Ltd, Ilurslcy Park,
Winchester, Hants SO21 2JN, England

Internet: nash@vnet.ibm.com _ - .

Abstract

Object REXX, an object-oriented extension of the popular REXX language, includes a class
hierarchy. The design of this hierarchy posed some interesting challenges in providing
mechanisms that would serve the needs of the base hierarchy together with probable user
extensions to it. This paper presents the chosen design in the form of a tutorial introduction
to the concepts and mechanisms involved, including abstract classes, mixins, and multiple
inheritance. It also gives examples of how the mechanisms provided by REXX might be used
by class users and implementers.

Objects and Classes

REXX objects are grouped into classes. For example, all character strings (whatever their
content) belong to the String class, all dircctorics belong to the Directory class, and so on.
The class of an object indicates what “kind” of object it is - that is, what methods it provides
to respond to messages sent to it. For example, string objects provide string-related methods
such as POS and SUBSTR, and directory objects provide methods for collections such as
ITEMS and SUPPLIER. You can look at the descriptions of the String and Directory classes
to find out what methods are available on string and directory objects.

In REXX, everything is an object, so classes arc ohjccts too. Class objects are used in a
number of ways, the most important of which is their role in creating other objects. They
support this by providing NEW and EN1 IANCEI> methods which crcatc objects of the kind
defined by the class. For cxamplc, the Directory class object returns a new directory object in
response to the message

-directory-new

Classes and Instances

The objects created by a class arc known as its instances. They arc given methods that match
the specification defined by the class for its instances. For example, a Rectangle class might
define methods AREA and PERIMI?TER using the directives

::class Rectangle
::method area
expose width height
return width*height
::method perimeter
expose width height
return (width+height)*2

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

212

Then, when rectangle objects (instances of the Rectangle class) are created by sending NEW
messages to the Rectangle class object, they will have methods AREA and PERIMETER with
the REXX code shown above.

Object and Instance Methods
___- -.

There’s an important difference between the AREA arid PERIMETER%rcthods of a rectangle
object and the AREA and PERIMETER method definitions in the Rectangle class. A
rectangle object can respond to AREA and PERIMETER messages by running the methods
shown above, and we say that it has these as objecf mefhods. The Rectangle class cannot
respond to AREA and PERIMETER messages itself, but its instances can, and we say that it
has AREA and PERIMETER as instance melhods. The Rectangle class responds to other
(class-related) messages, such as the NEW message that creates a rectangle object, so it has
object methods (like NEW) as well as its instance methods.

Since only classes have instance methods, them’s no need to distinguish between object
methods and instance methods when talking about other kinds of objects, such as strings or
rectangles. We usually just say plain “methods” when talking about the object methods of
these objects.

Subclasses, Superclasses, and Inheritance

Every class in the system could be dcfincd indcpcndcntly, with a complctc set of instance R

methods. However, many classes have a lot in common. An example of this may bc Student
and Graduate classes - a graduate object has the same information as a student object (name,
ID, course, etc.) and also some additional information (graduation details). We’d prefer not .
to repeat most of the instance methods of the Student class in the definition of the Graduate
class, and we can avoid this (and express the close relationship bctwccn thcsc two kinds of
objects) by making the Graduate class a subclass of the Student class. This gives the
Graduate class all the instance methods of the Student class, and the Graduate class can then
add or override any necessary instance methods.

If Graduate is a subclass of Student, we call Student a sup&class of Graduate. The
subclass-superclass relationship is also called inhcritancc, so WC say that Graduate inherits the
NAME method from Student.

The inheritance relationship can bc used to arrange the classes into a class hierarchy - a
diagram in which superclasses arc drawn above subclasses, with lines connecting them. The
class at the top of this hierarchy is the Object class. Its instance methods (COPY, “ = ‘0
STRING, etc.) are inhcritcd (directly or indirectly) by all other classes and so become object
methods of all objects. Most objects have additional object methods - for example, the
Supplier class is a subclass of the Object class and has instance methods AVAILABLE,
INDEX, ITEM, and NEXT, so all supplier objects have these object methods as well as
COPY, “= “, STRING, etc.

0 Copyright IBM Corporation 1994 The Object REXX Class Ilierarchy

213

_ _ I -

Y o u c a n c re a te a s u b c l a s s b y s p e c i fy i n g th e n a tn e o f th e s u p e rc l a s s o n th e S IJ B C L A S S o p ti o n
o f th e ::C L A S S d i re c ti v e (w h i c h i s e q u i v a l e n t to s e n d i n g a S U B C L A S S m e s s a g e to a c l a s s
o b j e c t). F o r e x a m p l e , to m a k e G ra d u a te a s u b c l a s s o f S tu d e n t, y o u w o u l d w ri te

::c l a s s G ra d u a te s u b c l a s s S tu d e n t

If S tu d e n t w e re i ts e l f a s u b c l a s s o f P e rs o n (i n h e ri ti n g s o m e P e rs o n m e th o d s), th i s m a k e s
G ra s u a te a s u b c l a s s o f P e rs o n to o (th ro u g h th e i n tc rm c d i a tc c l a s s S t~ u d e n t). W e s o m e ti m e s
u s e th e te rm s d i re c t a n d i n d i re c t s u p e rc l a s s e s (o r s u b c l a s s e s) td ‘d i s ti n g u i s h th e s e . If y o u d o n ’t
s p e c i fy th e S U B C L A S S o p ti o n , y o u r c l a s s b e c o m e s a s u b c l a s s o f th e O b j e c t c l a s s .

W h e n ta l k i n g a b o u t a c l a s s ’s i n s ta n c e m e th o d s , w h i c h o n e s d o w e m e a n - j u s t th e o n e s i t
d e fi n e s i ts e l f, o r th o s e a n d th e o n e s i t i n h e ri ts fro m i ts s u p e rc l a s s e s ? It’s u s u a l l y m o re
c o n v e n i e n t to ta k e th i s a s m e a n i n g th e m e th o d s d e l i n e d b y th e c l a s s i ts e l f, a n d w e w i l l fo l l o w
th i s c o n v e n ti o n fro m n o w o n . H o w e v e r, i t’s i m p o rta n t to re m e m b e r th a t w h e n th e c l a s s
c re a te s i n s ta n c e s , th e o b j e c t m e th o d s o f th e i n s ta n c e s i n c l u d e n o t o n l y th e i n s ta n c e m e th o d s o f
th e c l a s s i ts e l f, b u t a l s o th o s e o f a l l th e s u p e rc l a s s e s fro m w h i c h i t i n h e ri ts .

A b s tra c t C l a s s e s a n d O b j e c t C l a s s e s

S o m e c l a s s e s h a v e a c l o s e i n h e ri ta n c e re l a ti o n s h i p , l i k e G ra d u a te a n d S tu d e n t. O th e rs a re
re l a te d i n a s l i g h tl y m o re d i s ta n t w a y - m o re l i k e s i b l i n g s th a n p a re n ts a n d c h i l d re n . Y o u c a n
a p p re c i a te w h y th e tc rtn “i n h e ri ta n c e ” i s u s e d to d e s c ri b e th e c l a s s fa m i l y ! F o r e x a m p l e , a rra y
a n d l i s t o b j e c ts s h a re a n u m b e r o f m e th o d s : F IR S T , L A S T , N E X T , P R E V IO U S , S E C T IO N , R
a n d S U P P L IE R . E v e n s o , n e i th e r i s a s u b c l a s s o f th e o th e r - a rra y s h a v e a D IM E N S IO N
m e th o d , b u t l i s ts d o n ’t, a n d l i s ts h a v e a F IR S T IT E M m e th o d , b u t a rra y s d o n ’t. S o h o w c a n
w e e x p re s s th e c o m m o n n a tu re o f a rra y s a n d l i s ts ?

T h e a n s w e r i s a n a b s tra c t c l a s s . A b s tra c t c l a s s e s a rc s p e c i a l c l a s s e s th a t d o n ’t c re a te i n s ta n c e s
(u n l i k e “n o rm a l ” c l a s s e s , l i k e S tu d e n t a n d G ra d u a te). In s te a d , th e y p ro v i d e a s e t o f i n s ta n c e
m e th o d d e fi n i ti o n s th a t c a n b c s h a re d b y a n u m b e r o f o th e r c l a s s e s . It’s h e l p fu l i f a b s tra c t
c l a s s e s d e fi n e m e a n i n g fu l p ro p e rti c s , w i th a c o l l e c ti o n o f m e th o d s th a t re l a te to th a t p ro p e rty .
F o r e x a m p l e , th e p ro p e rty s h a re d b e tw e e n a rra y s a n d l i s ts i s th a t o f h a v i n g s o m e i n te rn a l
s e q u e n c e w h i c h c a n b e u s e d to s te p th ro u g h th e i te m s o f th e a rra y o r l i s t - th e i d e a o f a
“fi rs t” i te m , “n e x t” i te m a n d s o o n . T h i s l c a d s n a tu ra l l y to th e i d e a o f a S c q u c n c e d c l a s s -
b u t i t’s n o t a “n o rm a l ” c l a s s , s i n c e i t i s n ’t m e a n i n g fu l to th i n k a b o u t m a k i n g i n s ta n c e s o f th e
S e q u e n c e d c l a s s . T h a t’s b e c a u s e th e S e q u e n c e d c l a s s d o e s n ’t p ro v i d e e n o u g h c a p a b i l i ty fo r a
fu n c ti o n a l s ta n d a l o n e “s e q u e n c e d ” o b j e c t. A rra y a n d L i s t i n h e ri t fro m S c q u c n c e d a n d a d d th e
m i s s i n g p i e c e s th a t S e q u c n c c d d o e s n ’t h a v e .

W e n e e d a n a m e fo r “n o rm a l ” c l a s s e s (th a t c a n c rc a tc i n s ta n c e s) to d i s ti n g u i s h th e m fro m
a b s tra c t c l a s s e s . W e c a l l th e m o b j e c t c l a s s e s b e c a u s e th c s c a rc th e c l a s s e s w h o s e m e m b e rs
(i n s ta n c e s) a re re a l l i v e o b j e c ts . T h e i r n a m e s a rc u s u a l l y n o u n s , s u c h a s A rra y , L i s t, a n d
R e c ta n g l e . In c o n tra s t, a b s tra c t c l a s s e s d c fm c p ro p e rti c s (o r a b s tra c ti o n s) th a t d e s c ri b e
o b j e c ts - th e y h a v e n o i n s ta n c e s , a n d th e i r n a m e s a rc u s u a l l y a d j e c ti v e s l i k e S e q u e n c e d .

B e c a u s e o f th e w a y a b s tra c t c l a s s e s fa c to r o u t th e c o m m o n m e th o d s fro m th e i r s u b c l a s s e s ,
y o u ’d e x p e c t th e m to a l w a y s h a v e m o re th a n o n e s u b c l a s s . T h i s i s tru e fo r a l l th e a b s tra c t
c l a s s e s th a t R E X X p ro v i d e s e x c e p t th e C o n d i ti o n a n d S u p p l i e r c l a s s e s . T h e s e a re n ’t o b j e c t

0 C o p y ri g h t IB M C o rp o ra ti o n 1 9 9 4 T h e O b j e c t R E X X C l a s s H i e ra rc h y

2 1 4

classes because they don’t provide NEW or ENIIANCEI) methods for creating instances -
REXX provides other ways to crcatc condition objects and supplier objects. They’re a very
special case (since no user-created classes would bc able to work like this), and it’s convenient
to use abstract classes for them.

To create an abstract class, use the ABSTRACT option on a ::CLASS directive. For example, ---
to create an abstract class Visual which is a subclass of the Object class,you would write

::class Visual abstract

Multiple Inheritance

As well as sharing some methods with arrays, lists also share some methods with queues:
MAKEARMY, PEEK, PULL, PUS11 and QUEUE. Again, it makes sense to create an
abstract class for these. We call it Qucuclike, since its instance methods apply to all objects
that function as queues. So we need the List class to inherit from both the Sequenced and
Queuelike abstract classes. This is called multiple inheritance, and although it may look quite
simple (at least in this case), it is very powerful. It also raises some rather complicated issues
- see More on Multiple Inheritance below.

- ,

You can use multiple inhcritancc by specifying the IN1 1131~11’ option on a ::CLASS directive
(which is equivalent to sending one or mom INIII3RI’I’ messages to a class object). For
example, to create a class Window which is a subclass of Visual and also inherits from
Movable and Sizeablc, you would write A

::class Window subclass Visual inherit Movable Sizeable

There’s no limit to the number of classes you can inherit from in this way.

Class Methods

We’ve seen that class objects have both instance methods and object methods. Ilow arc their
object methods (like NEW) dcfincd? The CLASS option on a ::METI IOD directive indicates
that the method being dcfmcd is a class ntefho~, not an instance method. For an object class,
this means that the class will have that method as one of its object methods. For example, the
Array class delines OF as a class method, and this allows OF mcssagcs to be sent to the Array
class object to create array objects whose contents arc spccifrcd by the arguments to OF.

What about abstract classes - can they have class methods too? They can, but their class
methods work slightly difTerently than those of object classes. They arc defined in the same
way, with the CLASS option on a ::METI IOD directive, but they don’t bccomc object
methods of the abstract class itself. Instead, they bccomc object methods of any object classes
that inherit (directly or indirectly) from the abstract class in which they arc defined. For
example, the Sequenced class also has an OF class method, but OF mcssagcs can’t be sent to
the Sequenced class to create “sequenced” objects (bccausc the Sequenced class is abstract and
so can’t create objects). Instead, OF becomes an object method of any object classes that
inherit from the Sequenced class, such as the List class. The List class doesn’t have to do
anything (except inherit from the Sequenced class) to make this happen.

Q Copyright IBM Corporation 1994 The Object REXX Class Ilierarchy

215

I
So what object methods do abstract classes have ? They all have the same ones: DEFINE,
DELETE, ID, INHERIT, INITA, METIIOD, METIIODS, SUBCLASS, SUBCLASSES,
SUPERCLASSES, and UNINI-IERIT. Or course, like all objects, their object methods include
the instance methods of the Object class: COPY, “ = “, STRING, etc. Object classes have two
additional object methods: NEW and ENHANCED, the methods that create objects.

--
Class methods are inherited in exactly the same way as instance methods. For example, the
List class inherits the OF class method from the Sequenced class, just as it inherits the FIRST,
LAST, MAKEARRAY, NEXT, PREVIOIJS, SECTION, and SUPPLIER instance methods.

The Class Hierarchy

We’ve mentioned a number of REXX classes and the inheritance relationships between them.
Let’s take a look at the complete hierarchy for the classes provided and used by REXX.

Obiect

Sequenced Closs

Array Class

That looks a bit daunting, but the REXX user doesn’t have to be concerned with many of
these classes. A number of them (Collection, Indexed, IndexOnly, ManyItem, Qucuelike,
Sequenced, and Setlike) are abstract classes used only for internal factoring out of common
methods. In addition, the metaclass section of the hierarchy (Class, Mixin, Object Mixin,
Object Class, Sequenced Class, and Array Class) is shown for complctencss but isn’t for
general use (see the section on Metaclasscs below). That leaves us with the classes that
represent other objects: Alarm, Array, Bag, Condition, Directory, List, Message, Method,
Object, Queue, Relation, Set, Stream, String, Supplier, and Table.

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

More on Multiple Inheritance

We used the List class to introduce multiple inheritance. The List class inherits from the
Sequenced and Queuelike abstract classes, which means that lists have both the Sequenced
and Queuelike properties (collections of methods). Another way of saying this is that a list

__I- -. can be used whenever either a qucuclikc or sequenced object is expected, and it will work
correctly. _ - . .

Multiple inheritance can be very useful if used properly, but it can cause a lot of problems
when it’s used incorrectly. This has made it quite controversial in object-oriented circles! A
common mistake is to think of it as a “magic” way to combine two different objects into one
- such as a hybrid of the Rectangle and List classes. That probably sounds rather ridiculous,
but other examples can seem more plausible. For example, if I have classes Directory (which
keeps names and some information for each name) and Phone (which dials a number passed
to it), can’t I create a Phone Directory class (which keeps names and phone numbers, and
dials the number when given a name) simply by inheriting from Directory and Phone?

Unfortunately, it’s not usually that simple. The reason is that Directory and Phone were each
designed to do a specific job, with a set of methods appropriate to that job, but neither was
designed (probably) to “mix in” with the other. For example, the DIAL method of Phone was
designed to bc given a number to dial, and multiple inhcritancc won’t make it smart enough to
change its behaviour to take a name instead and look it up in the directory. (By the way, the
right way to do this is called aggregation, which means creating a new object that contains R
Directory and Phone and provides the right connections between them.)

So when is multiple inheritance useful? Actually, the answer’s in the paragraph above. It’s
useful for classes that have been specially designed to “mix in” with other classes - like the
Sequenced and Qucuelike classes, which were specially designed to mix in with each other.
However, these classes were not designed to mix more gcncrally with other classes. You can
try mixing them with other classes (REXX won’t stop you), but it’s unlikely that anything
useful will result. For more gcncral “mix in” classes, we’ll have to look elsewhere in the
hierarchy.

Mixins

A class that is designed to bc mixed in with other classes in a gcncral fashion is called a mixin.
For example, the ManyItcm mixin can be inhcritcd by any sctlike class to allow multiple items
to have the same index, and is used by the Bag and Relation classes.

It’s important to understand the diflerencc between mixins and abstract classes. Both can be
used with multiple inheritance, but their purposes arc very difhcrent. Abstract classes are for
the convenience of a class hierarchy implcmcntcr, to prevent the same methods being
duplicated among more than one object class. They are oflittlc use in thcmsclves, but enable
the construction of object classes below them in the hierarchy. They are not part of the public
interface of the class hierarchy for inheritance.

A mixin, in the other hand, allows some class (and all the classes below it in the hierarchy) to
be enhanced in some way. For example, if Pcrsistcnt is a mixin to the Object class, all classes

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

in the hierarchy may exist in persistent and non-pcrsistcnt versions. The persistent versions
inherit the Persistent mixin, but the non-persistent versions don’t. For example, to make a
persistent directory class, you would write

: : class PersistentDirectory subclass Directory inherit Persistent

___- which tells REXX that the PersistentJIircctory classinherits from the Persistent mixin as well
as the Directory class. Any number of mixins may bc inhcritcd, and-a combination of

-. inherited mixins and other inherited classes may be spcciJicd.

Since Persistent is a mixin to the Object class, it applies to all subclasses of the Object class -
that is, all classes. Some mixins are more spccializcd - for example, the Manyltcm mixin is a
subclass of the Setlike class and so only applies to classes that inherit from the Sctlike class.
No other class (for example, a subclass of the Stream class) is allowed to inherit the
Manyltem mixin. This is because the Manyltem mixin has been designed specifically to
enhance the Setlike class (it’s “tailor made” to Jit this class only) and won’t Jit any other class.
The Setlike class is called the base class of the Manyltcm mixin, and we say that Manyltem is
a mixin to the Sctlike class.

So mixins, like object classes but unlike abstract classes, are intcndcd for users of the class
hierarchy and are part of its public interface for inheritance. They provide enhancing options
for the object classes in the hierarchy, to bc included or cxcludcd at the user’s discretion.

Some mixins provide a complete set of methods for some property, so that a class can acquire
that property just by inheriting from the mixin. Other mixins dcJine a property, and provide
some of the methods required, but depend on subclasses to provide other necessary methods.
For example, a Persistent mixin may provide methods that take care of saving object data to
stable storage and restoring it when needed, but not the methods that actually extract the
object’s essential data (when saving) and rccrcate its state from saved data (when restoring).
Those methods may be IcJI as placeholders in the Pcrsistcnt mixin, needing to be frllcd in by
classes that inherit the persistent property from it, since only they know the intimate details of
how they are constructed.

To create a mixin, use the MJXJN option on a ::ClASS directive. For example, to create a
mixin OrderedSet which has a base class of Set, you would write

::class OrderedSet mixin subclass Set

The Class Search Order for Methods

In a single-inheritance hierarchy, classes inherit methods from their ancestors in the hierarchy.
Since every class has exactly one superclass (cxccpt the root class Object, which has none),
there is a simple line of inheritance from each class up to the root class Object, through any
intermediate ancestor classes. This line of inheritance defmcs a search order for methods (the
class search order). The order is important because more than one ancestor class may have an
instance method with the same name - like PRINT. When a PRINT message arrives at an
instance of the class, it’s important to know which l’J~lNT method will be run, The starch
order starts with the lowest class in the hierarchy (the class to which the instance that received
the PRINT message belongs) and proceeds upwards to its superclass, then its superclass’s

A

0 Copyright IBM Corporation 1994 The Object REXX Class Jlierarchy

218

superclass, and so on up to the root class Object. The first PRINT method found is the one
that gets run.

With multiple inheritance, the situation is quite a bit more complicated. Classes may have
many superclasses (direct and indirect), and there may not be an obvious “right” order of

___- -- searching them for a method. The rules REXX USC* arc:

1. A subclass is always searched before its superclass&s. - - --.

2. Mixins are searched immediately before their base class.

3. Where multiple classes appear on the lNllERlT option of the ::CLASS directive, the
classes are searched in the order they appear (leftmost first).

If there is no search order that satisfies all thcsc rules, or if a mixin is inherited without its
base class already in the search order, the inheritance is in error.

What about multiple inheritance from object classes? It’s this sort of thing that gave multiple
inheritance a bad name. There arc very few cases (if any) when it would be appropriate, but
REXX doesn’t prevent it - it doesn’t seem right to limit the powers of object classes
(compared with abstract classes) by making a special restriction here. Beware, though! Before
doing this, you should see if your hierarchy can be restructured to make one of the
superclasses an abstract class or a mixin, or consider whether aggregation (combining two
objects into a composite object, as in the Phone Directory example) isn’t a more appropriate
way to accomplish what you want. It usually will be.

R

Metaclasses

For most users of Object REXX, the concepts and mechanisms presented so far will be all
they need to create instances, subclasses, abstract classes, and mixins - making full USC of the
facilities that REXX provides for using and extending the class hierarchy. This section and
the next one complete the picture for those who arc curious to know more about how all this
works, or need to understand or reprogram the underlying mechanisms of the class hierarchy.

Are class objects instances of some class? For completeness and consistency, it would be nice
if they were. We call these special classes mctaclasscs. l‘hcir instances arc classes, like the
Supplier class and the Sequenced class. llow many mctaclasses arc thcrc? Thcrc could be one
for each class (as in Smalltalk), but it’s not ncccssary to go this far. llowcver, we do need a
mctaclass for each class that has a dircrent collection of class methods. To see why this is,
let’s look more closely at how class methods work.

The class methods of the Object class are NEW and ENJIANCCD. This means that they will
be object methods of the Object class and every other object class that inherits from the
Object class (that is, all object classes). A mctaclass is needed to create these classes, and this
metaclass needs NEW and ENJIANCED instance methods so that its instances (the object
classes) will have NEW and ENHANCED object methods. Let’s call this class the Object
Class metaclass.

Suppose we create a subclass of the Object class with another class method - for example, a
Database class with a RESTORE class method to restore the previously saved state of an

0 Copyright IBM Corporation 1994 The Object REXX Class llierarchy

219

object. There will have to be a new metaclass to create this class, since the Object Class
metaclass doesn’t have our RESTORE method. Let’s call this new metaclass (with a
RESTORE instance method) the Database Class metaclass. The Database class is an instance
of the Database Class metaclass, and the RESTORE instance method of the Database Class
metaclass becomes the RESTORE object method of the Database class.

~- -.
How do these metaclasscs fit into the hierarchy ? As well as their specialized instance methods
that correspond to the class methods of their instance classes, they have instance methods for
all the standard object methods of classes: DEFINE, DELETE, ID, JNJ-JERJT, INJTA,
METHOD, METHODS, SUBCLASS, SUBCLASSES, SUPERCLASSES, and UNJNHERJT.
We need a class with these as its instance methods (they need to be instance methods
somewhere) and we call this class the Class class. It’s natural to make the Object Class
metaclass and Database Class metaclass subclasses of the Class class, since they can then
inherit all its instance methods listed above.

Which class is the metaclass for abstract classes? Their object methods are the ones that are
shared by all classes: DEFINE, DELETE, etc. Since these are the instance methods of the
Class class, the Class class is the metaclass for all abstract classes.

What about metaclasses for mixins? Mixins are very similar to classes, only difhering in their
inheritance rules, so we make the Mixin class (the class whose instance methods arc object
methods of all mixins) a subclass of the Class class. Is the Mixin class the mctaclass for all
mixins? It isn’t, for the same reason that the Class class isn’t the mctaclass for all classes - R
just as different classes have different object methods, mixins do too.

Let’s take an example to see why different mixins have diffcrcnt object methods. If we create
a Relational mixin to our Database class, with instance methods but no class methods, what
object methods does the Relational mixin have ? ‘l‘hcy include all the standard mixin object
methods (the instance methods of the Mixin class) as well as the inherited class methods:
NEW, ENHANCED, and RESTORE. We want these as object methods bccausc we want the
Relational mixin (as a mixin to an object class, or an oOjcct nrixin) to be able to create
instances in its own right. If it couldn’t, we’d have to create another object class (inheriting
from Database and Relational) which could create these instances - adding an unnecessary
class to the hierarchy.

It looks as though we might need a Relational Mixin mctaclass to create the Relational mixin.
In theory, we do; in practice, we don’t. By making metaclasscs mixins (with a base class of
the Class class), they can also be inherited by subclasses of the Mixin class (since Mixin is a
subclass of Class). So the Database Class metaclass becomes the Database Class mixin, and
REXX can construct the Relational Mixin mctaclass simply by inheriting from the Mixin class
and the Database Class mixin. That’s what mixins are all about!

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

220

Classes and Metaclasses

The earlier hierarchy diagram showed the superclass-subclass relationship of the REXX
classes. It didn’t show the class-instance relationships. Of course, these connections will be
quite different, so it could be confusing to try to show both on the same diagram. We’ll use a

~- .-separate diagram here to show the class-instance relationships of these classes. _ -

Object ,.....,.,."'
,)_,,,.............,_ _._,,,,,

-',h ..,_,,,,,_
..,.

Alarm

‘.A:..,,, \ ,. .’
. ..’

,.:
. . :,, ..’

‘.... \ Table’ . ..” Array Class ’
“$..,,, ; IndexOnly

‘(. . .
ManyItem,,/ ,!A List 9 ..’

y ,:’
‘.. ,_.’

Directory “z..
. . . ,_ -::$ _?” / ., ,.... . ..’ ,..’

.

‘i, ‘:,,Set Bog Relotid~,..~~.’
.,‘Array ,,. ,,_,,._,.,,,... .,,-“.“_”

l., ‘.., “.. ‘L, “. ..,. ,, ,, ..,.. ::..’ Tf’..
. . . . ‘..., I.., “‘. ,,,,,... ..,.... ,T”

. _.,.... g. ., ..3

The classes are shown in the same positions as bcforc, but the inheritance connections have
been replaced by arrows which point from each class to its ,metaclass (from instance to class).
There’s an interesting circularity between the Object Class mixin and the Object Mixin class -
each class is an instance of the other. This is a bit of a mindbender, and reminds me of the
chicken and the egg question - how did these classes get crcatcd? Let’s just say that someone
had to do a little bit of cheating here.

Last Words

Don’t worry if multiple inheritance, abstract classes, or mixins seem diflicult or unnecessary.
The simplest classes are the object classes. They create objects that do a particular job which
is well-defined by their class definition. They are the place to start in familiarizing yourself
with object-oriented programming, and in creating your own classes. Start by subclassing
object classes, with single inheritance. Override a few methods and get a feel for how
subclasses can be different from, yet similar to their superclasses. Then try multiple
inheritance with a mixin, getting a feel for how that works. When you have developed a few
object classes, you may start to notice relationships between them that don’t match the

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

221

hierarchy - similar or identical methods cropping up in different places. That’s the time to
think about making use of abstract classes - to bring the relationships between your object
classes into clearer focus.

This ongoing refinement of the class hierarchy is a hallmark of good object-oriented
___- -. programming - seeing new relationships between your classes, and finding better ways to

structure the hierarchy to express those relationships. Don’t try to start-out by designing a set
of 20 abstract classes, 50 object classes, 15 mixins and all the relationships between them.
You won’t get it right at the first attempt! Far better to develop your hierarchy gradually,
refming it as you acquire a feel through hands-on experience of how the classes relate to each
other.

Summary

We have seen how object methods, instance methods, and class methods are used in Object
REXX. The need for object classes, abstract classes, and mixins has been explained, together
with guidelines for when they should be used and how they relate to single and multiple
inheritance. The use of all the above facilities of the RJ3XX language has been illustrated with
examples from the class hierarchy provided by REXX. Finally, the role of mctaclasses in
completing the picture has been shown.

Acknowledgements
R

The main structure of the REXX class hierarchy was dcvelopcd in a meeting of the REXX
Architecture Review Board, with contributions from Jim Babka, Mike Cowlishaw, Brian
Marks, Rick McGuire, and the other board members. The details took shape over several
design iterations, with vital contributions and encouragcmcnt to continue from Jim Babka,
Brian Marks, and Dave Renshaw.

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

