
I

Writing CGI Scripts for WWW Using REXX

Les Cottrell
Bebo White

Stanford Linear Accelerator Center

Pages 68-99

Proceedings of the 6th International Rexx Symposium 68

Writing CGI Scripts For

Using

Les Cottrell and Bebo White, SLAC
6th International REXX Symposium
May 2,1995

start

I

Writing WWW CGI Scripts in REXX

This presentation may be found at:

http://www.slac.stanford.edu/-bebo/rexx/title.html

Next

.

70

I

What is WWW?

The largest service on the Internet
- .

l The Internet is like the road system
l WWW is like the parcel delivery service

l 27,000 current WWW sites
l Number now doubling every 53 days
l 5 million documents stored in WWW sites

Source:Quotd in BusinessWeek, February 27,1995

INextl

-.

Log (Byte Count) by Service

- .

StatEmcsprovidedb~MedtNICSrvkesmach&
Graph by Jamea E. Pit&w, pitkov@x~techxtlu

INextl

-..

72

charxter+wond Larg& --c
interactive

service P

1 OOODml
WWW traffic an
NSF backbone A novel

800000

1400ll00

1200000

600000

400000

200000

0 I I I

1993 1994

-.

“Over the past three years the traffic on the NSF backbone has increased from 1
TB per month to 18 TB, with a good portion attributable to WWW services.” -
Vinton Ce$

INextl

-73

Integration of earlier Internet systems

l Gopher, NEWS, Archie, WAIS, ftp, . . . are-all seamlessly
available

Clients

: iophar

3erver5

P NC+WS ‘TP

INextl

-..

Format independent

a HTML is not a format but a way of structuring documents
l Formatted documents are available through their native

applications
- .

Multiple Media

a Images
a Sound
l Movies
l Launching of sessions (video, telnet, conferencing, . . .

INextl

-..

75

Some Neglected Uses of WWW

By the provider:

. CWIS
l Search engines
l Data Base interfaces
l Collaborative work
0 Special formats

By the user:

l Home pages
0 Structuring of own local information
l Participation (delurking?)

INextl

-..

76

What is CGI?

The Common Gateway Interface, or CGI, is a standard for
external gateway programs to interface with information
servers such as HTTP servers.

Gateways are programs (called CGI scripts) that serve data
which is not directly readable by a client program, such as a
database of high energy physics preprints or personnel
information, and convert it to an acceptable form, such as an
HTML page, a PostScript file, some images, or a combination
of these.

Familiar examples of Web applications which use CGI scripts
are fill-out forms, interactive graphics (e.g., banners, maps,
and menubars, etc.) and search engines (e.g., Yahoo, Lycos).

INextl

77

How Do Gateways Operate?

Gateways can be run by themselves, but are designed to be
run by the HTTP server. The server sets up an environment
which is

l secure (to prevent willful damage by users)
l informative (to allow communication between httpd

server and gateway)
l contained - so all output is sent by the server back to the

client

An example of a database query

Another example of a database query

Communication between client, server, and CGI gateway

This is a searchable index. Enter search keywords:

SLAC SPIRES: HEP Preprint database search
Send corrections to: LIBRARY@SLAC.STANFORD.EDU . Use QSPIRES search language (see
examples below). Note that there is no possibility for iterative search (yet) in WWW. Therefore, when

- needed, combine several criteria in a single request. Need more help ?
Examples:

show indexes
find author perl, m and title tau and date before 1980
find title prefix supercollid and date 1994
find t so2n+l [finds title S0(2n+l)!]
find bulletin-bd hepex and date-added 9/94
find cn mark-iii and date after march 1991
browse coden physics letters
find c phlta, 70b, 487 [finds citations of a paper!]
find a abe and date 1988 (using wwwcite [shows citations!]
find author gross, david and journal phys rev
browse affiliation caltech
find af cal tech and date 1994 (result
browse topic higgs
find topic higgs boson or title higgs and date l-95 (using wwwbrief
browse last ppf
find ppf 9442 (seq rs

To learn more about authors, institutions, or acronyms, try WHOIS, WHEREIS, or WHATIS:

whois ginsparg
whereis tern
whatis sld

See also other SPIRES databases, or SPIRES News, or the SLAC home page.

19 April 1995

SLAC Phone Directory: Search Form
SLAC 13 Apr 1995
This fill-out form can be used to search the SLAC phone directory (previously called BINLIST). Fill in
the entries you know, leave others blank. Family name, First name and E-mail ID will support truncated
searches, using an asterisk (eg: john*).

-.
Familyname:

First name:

E-mail ID:

Work Extension:

HELP

The original of this form was created by Evelyn Aviles-Hernandez.

Diana Gregory

Communication Between Client, Server, and CGI Script

-4 http server

CGI environment

- .

Next

.

Design of a CGI Script

1. Design the CGI script interface:
o Use of the <ISINDEX> or <ISMAP> in an HTML page; _
o Design of a fill-out form using HTML;
o Specify the format of a CGI script-compliant URL which can

be used as a link in an HTML page.

2. Design and code a CGI script which performs the following:
o Argument decoding;
o Argument validation;
o Processing (including error handling);
o Output and cleanup;

INextl

CGI Scripts In REXX

0 Written entirely in REXX;
o Supports CGI scripting in REXX;
0 Information at

http://ualvm.ua.edu/-troth/software/cmshttpd.html

l Today’s discussion is limited to use with Unix-based servers;

INextl

63

Providing Input to a CGI Script

l The QUERY-STRING environmental variable

0

0

0

0

QUERY-STRING is defined as anything following the first “?” in
the script-invoking URL;

Generated automatically by the HTML tag <ISINDEX> or a
fill-out form (with method=GET);

Encoded to include URL information with spaces converted
to “+I’ and special characters according to their hex encoding;

Example of QUERY STRING use. -

INextl

.

Providing Input to a CGI Script

l The PATH INFO environmental variable

o CGI allows additional context-specific information to be
embedded in a URL;

o This additional information is contained in the PATH-INFO
environmental variable;

o The information in PATH-INFO is not encoded;

o Example of PATH INFO use. -

INextl

Providing Input to a CGI Script

l Standard Input (stdin)

o Used with fill-out forms using method=POST;

o The environmental variable CONTENT-LENGTH contains the
amount of data to be read from standard input;

o Example of CONTENT LENGTH use. -

INextl

,. . . _ : ,$$@.&. i
;$P &p&
it -y~ 2;
~&&Guide to Writing CGI Scripts in REXX or 5.. z???. .^. .:

Per1
9 Apr, 1995

[SLAC Brochure I SLAC Home I Net Search]

Contents
l Introduction
0 Getting Input to the Script
0 Decoding Forms Input
0 Sending Document Back to the Client
0 Reporting Errors
0 My First REXX CGI Script

Introduction
This Guide is aimed at people who wish to write their own WWW executable scripts using WWW’s
Common Gateway Interface (CGI). Since there are security and other risks associated with executing
user scripts in a WWW server, the reader may wish to first view a document providing information on a
SLAC Security Wrapper for users’ CGI scripts. Besides improving security, this wrapper also simplifies

_ the task of writing a CGI script for a beginner.

The CGI is an interface for running external programs, or gateways, under an information server.
Currently, the supported information servers are HTTP (the Transport Protocol used by WWW) servers.

Gateway programs are executable programs (e.g. UNIX scripts) which can be run by themselves (but
you wouldn’t want to except for debugging purposes). They have been made executable to allow them
to run under various (possibly very different) information servers interchangeably. Gateway programs
conforming to this specification can be written in any language, including REXX or Perl, which -. .
produces an executable file

Getting the Input to the Script
The input may be sent to the script in several ways depending on the client’s Uniform Resource Locator
(URL) or an HyperText Markup Language (HTML) Form:

0 QUERY STRING Environment Variable -

QUERY-STRING is defined as anything which follows the first ? in the URL used to access your
gateway. This information could be added by an HTML ISINDEX document, or by an HTML
Form (with the GET action). It could also be manually embedded in an HTML hypertext link, or
anchor, which references your gateway. This string will usually be an information query, e.g. what
the user wants to search for in databases, or perhaps the encoded results of your feedback Form. It
canbeaccessedinREXXbyusing S~~~~~=GETENV('QUERY-~?RING')
or in Per1 by using
$string=$ENV('QUERY-STRING');

- .

This string is encoded in the standard URL format which changes spaces to +, and encoding
special characters with %xx hexadecimal encoding. You will need to decode it in order to use it.
You can review the REXX or Per1 code fragments giving an example of how to decode the special
characters.

If your server is not decoding results from a Form, you will also get the query string decoded for
you onto the command line. This means that the query string will be available in REXX via the
PARSE ARG command, or in the Per1 SARGV [n I array.

Forexample,ifyouhaveaURLhttp://www.slac.stanford.edu/cg~-bin/foo?hello+world
and you use the REXX command PARSE ARG Argl Arg2 then Argl will contain "hello" and
Arg2 will contain "world" (i.e. the + sign is replaced with a space).
In Per1 SARGV [1 I contains "hello" and SARGV [2 I contains "world". If you choose to use the
command line to access the input, you need to do less processing on the data before using it.

l PATH INFO Environment Variable

Much of the time, you will want to send data to your gateways which the client shouldn’t muck
with. Such information could be the name of the Form which generated the results they are
sending.

CGI allows for extra information to be embedded in the URL for your gateway which can be used
to transmit extra context-specific information to the scripts. This information is usually made
available as “extra” information after the path of your gateway in the URL. This information is not
encoded by the server in any way. It can be accessed in REXX by using
String=GETENV('PATH - INFO’),orinPerlbyusing $string=$ENV('PATH INFO'); -

-. .

To illustrate this, let’s say I have a CGI script which is accessible to my server with the name foe.
When I access foo from a particular document, I want to tell foo that I’m currently in the English
language directory, not the Pig Latin directory. In this case, I could access my script in an HTML
document as:

foo

When the server executes foo, it will give me PATH.-INFO of /language=english, and my
program can decode this and act accordingly.

The PATH-INFO and the QUERY-STRING may be combined. For example, the URL:
http://www/cgi-bin/htimage/usr/www/img/map?404,451
will cause.the server to run the script called ht image. It would pass remaining path information

"/usr/www/img/map" to htimage in the PATH-INFO environment variable, and pass "405,451"
in the QUERY-STRING variable. In this case, htimage is a script for implementing active maps
supplied with the CERN HTTPD.

l Standard Input

If your Form has METHOD=“POST” in its FORM tag, your CGI program will receive the
- encoded Form input on standard input (s tdin in Unix). The server will NOT send you an EOF on

the end of the data, instead you should use the environment variable CONTENT-LENGTH to
determine how much data you should read from stdin. You can accomplish this in REXX by using
In=CHARIN(,l,GETENV('CONTENT LENGTH')),Or inPerlby Using
read(STDIN,$in,$ENV{'CONTENTILENGTH'});

You can review the REXX Code Fragment giving an example of how to read the various form of input
into your script.

Decoding Forms Input
When you write a Form, each of your input items has a NAME tag. When the user places data in these
items in the Form, that information is encoded into the Form data. The value each of the input items is
given by the user is called the value.

Form data is a stream of name=value pairs separated by the & character. Each name=value pair is URL
encoded, i.e. spaces are changed into plusses and some characters are encoded into hexadecimal.

You can review the REXX or the Per1 code fragment giving examples of decoding the Form input.

Sending Document Back to Client
- CGI programs can return a myriad of document types. They can send back an image to the client, an

HTML document, a plaintext document, a Postscript documents or perhaps even an audio clip of your
bodily functions. They can also return references to other documents (to save space we will ignore this
latter case here, more information may be found in NCSA’s CGI Primer). The client must know what
kind of document you’re sending it so it can present it accordingly. In order for the client to know this,
your CGI program must tell the server what type of document it is returning.

In order to tell the server what kind of document you are sending back, CGI requires you to place a short
- . header on your output. This header is ASCII text, consisting of lines separated by either linefeeds or

carriage returns followed by linefeeds. Your script must output at least two such lines before its data will
be sent directly back to the client. These lines are used to indicate the MIME type of the following
document

Some common MIME types relevant to WWW are:

0 A I’ text II Content-Type which is used to represent textual information in a number of character
sets and formatted text description languages in a standardised manner. The two most likely
subtypes are:

0 text/plain: text with no special formatting requirements.

s9

0 text /html: text with embedded HTML commands
0 An ffapplicationfF Content-Type, which is used to transmit application data or binary data. Two

frequently used subtypes are:
0 application/postscript: The data is in PostScript, and should be fed to a PostScript

interptreter.
0 application/binary: the data is in some unknown binary format, such as the results of a

file transfer.
0 An "image" Content-Type for transmitting still image (picture) data. There are many possible

subtypes, but the ones most often used on WWW are:
0 image/gif: an image in the GIF format.
0 image/xbm: an image in the X Bitmap format.
0 image/ jpeg: an image in the JPEG format.

- .

In order to tell the server your output’s content type, the first line of your output should read:
Content-type: type/subtype
where type/subtype is the MIME type and subtype for your output.

Next, you have to send the second line. With the current specification, THE SECOND LINE SHOULD
BE BLANK. This means that it should have nothing on it except a linefeed. Once the server retrieves
this line, it knows that you’re finished telling the server about your output and will now begin the actual
output. If you skip this line, the server will attempt to parse your output trying to find further
information about your request and you will become very unhappy.

You can review a REXX Code Fragment giving an example of handling the Content-type information.

After these two lines have been outputted, any output to stdout (e.g. a REXX SAY command) will be
included in the document sent to the client.

Diagnostics and Reporting Errors
Since stdout is included in the document sent to the, diagnostics diagnostics outputted with the SAY
command will appear in the document. This output will need to be consistent with the Content-type :
type/subtype mentioned above.

You can review a REXX Code Fragment giving an example of diagnostic reporting.

If errors are encountered (e.g. no input provided, invalid characters found, too many arguments
-.. specified, requested an invalid command to be executed, invalid syntax in the REXX exec) the script

should provide detailed information on what is wrong etc. It may be very useful to provide information
on the settings of various WWW Environment Variables that are set.

You can review a REXX Code Fragment giving an example of error reporting and Typical Output
Generated from such a code fragment.

My First REXX CGI Script
To get your Web server to execute a CGI script you must: .

0 Write the script and save it somewhere. For example let’s say we write a trivial REXX script
called cgil . rxx and save it in our home bin directory (e.g. in /u/sf/cottrell/bin/cgil . rxx).

0 Make the script executable by your Web server. On Unix this is done using the chmod command,
e.g.

0 chmod o+x /u/sf/cottrell/bin/cgil.rxx - .
0 Get your Web-Muster to add a rule to the Web server’s rules file to allow the Web server to

execute your script. You can look at SLAC WWW Rules to see how SLAC URLs currently map
to the UNIX file system.

-

The Web-Master will want to insure that Security Aspects of your script have been addressed before
adding your script to the Rules file.

Acknowledgements
Much of the text on the Common Gateway Interface and Forms comes from NCSA documents. Useful
information and text was also obtained from The World-Wide Web: How Servers Work, by Mark
Handley and John Crowcroft, published in ConneXions, February 1995.

Les Cottrell15 Jan 1995
[Top I Suggestion Box I Disclaimer]

-..

.

/* **~~~~~~**~~~~~~*~~~~~~~~~~~~~~~ */
/* Some browsers insert ASCII codes (preceded by a %) for some characters */
/* such as space or +. We replace them by the appropriate character
/* N.B. the encodings maybe in upper or lower case (e.g. %2F=/ or %2f=/ 1;
/* ***f*X********************************X*~~~~~~~~~~~~~~~~~~**~~~~~~~~~~ */
Hex='%2b=+&%20=+&%2f=/&%3f=+&'
/* %2b=+ %20= %2f=/ %3f=? */
Hex=Hexl ITRANSLATE(Hex) /*Allow for upper case*/
IF POS('%',Str)/=O THEN DO/*Any %s in input*/

DO UNTIL Hex="/*Check for hex codes*/
PARSE VAR Hex Code'='Char'&'Hex; Out="
PARSE VAR Str Pre (Code) Str
DO WHILE (Str /== "1

Out=OutllPrellChar
PARSE VAR Str Pre (Code) Str

END /*DO*/
Str=Outl IPre
END /*DO*/

END /*IF*/

-..

Reading HTML Forms Input in REXX

PARSEARGParms
StdinFile='/tmp/wrap-stdin' GETPID()/* Get unique name*/
Script=GETENV('SCRIPT-NAME'7
. . .
/* *** */

_ /* Read the input from the various possible sources */
/* Note that we preserve or save all
/* input in case we need to send it to another connnand.

*/
*/

/* If so we can restore the stdin for the called command */
/* by calling it using the REXX command: */
/* ADDRESS UNIX script '<' StdinFile */ /* *** */
IF GETENV('REQUEST METHOD')="POST" THEN DO

IF LINES()=O THEN,
CALL Exit 400, Script': null input from POST method!
'

Line.O=O
DO L=l BY 1 WHILE LINES()>O

Line.L=LINEIN(); Line.O=Line.O+l
IF L>l THEN Fail=LINEOUT(StdinFile,Line.L)
ELSE Fail=LINEOUT(StdinFile,Line.L,l)
IF Fail=0 THEN LEAVE L

END L
Fail=LINEOUT(StdinFile) /* Close the file*/

END
Path info=GETENV('PATH
IF P%th info/=" THEN,-

INFO')/*Insert path info in front*/

Cmd=!%JBSTR(Path info,2) Cmd/*Remove leading / from path*/
Temp=GETENV('QUERY-STRING')
IF Temp=" THEN Te&=Parms
IF Temp/=" THEN Cmd=Cmd Temp /* Insert query info at end*/

. IF Cmd=" THEN,
CALL Exit 402, Script': no input provided!
'

. . .

-..

Y3

I

Example of Decoding HTML Forms input in REXX

/* ************************************* */
/* Input from a form comes in the form: */
/* namel=valuelhname2=value2 */
/* Here we decode the input into an */

_ /* array of names and values. */
/* ************************************* */
DO I=1 BY 1 UNTIL Input="

PARSE VAR Input Name.I'='Value.I'&'Input
END I

-..

Handling Content-type Info in REXX

/* **+**7
/* Code fragment to set the Contentype subtype based */
/* on the file type (as determined by the characters*/
/* following the last period in the filename). */
/* ***************t*********************************** /

.html' _ FileName='/u/sf/cottrell/public-html/cgi
. . .
L=LASTPOS('.',Filename); Type="
IF L>O THEN DO

IF LENGTH(FileName)>L THEN
Type=TRANSLATE(SUBSTR(FileName,L+l) 1

END

SELECT
WHEN Type='HTM' I Type='HTML' THEN

SAY 'Content-type: type/htxnl'
WHEN Type='PS' THEN

SAY 'Content-type: application/postscript'
WHEN FIND('TXT RXX PL FOR C',Type)/=O 1 Type=" THEN

SAY 'Content-type: type/text*
. . .
OTHERWISE DO

SAY 'Content-type: type/html'; SAY "
CALL Exit 409, 'Unknown Content-type="'Type'".

END
END
SAY "
. . .

Reporting CGI Diagnostics in REXX

/* ************************************** */
/* Code fragment for reporting CGI Script */
/* diagnostic */
/* ************************************** */

- PARSE SOURCE $ArchName $Efn $Fn .
. . .
Debug=1
SAY "Content-type: text/html"; SAY
. . .
IF Debug>0 THEN SAY,

$Efn': PATH INFO="' GETENV('PATH-INFO')'".
'

-..

Reporting CGI Errors in REXX

/** */
/*Code Fragment for REXX CGI Error Reporting*/
/** */

ADDRESS 'COMMAND'; SIGNAL ON SYNTAX
PARSEArg Parms
. . .
IF QueryInput=" THEN,

CALL Exit 490,'No input given!
'
. . .

/***/
/*Rex will jump to this error exit if a */
/*syntax error occurs. It returns the user */
/*ito the line in the exec with the error. */
/***/
Syntax:

PARSE SOURCE Arch . $Fn .
CALL Exit 499, 'Syntax error on line',

SIGL 'of' $Fn'. Line="'SOURCELINE(SIGL)'"
. . .

Exit: PROCEDURE EXPOSE Debug Parms
/* **************************************
1 Exit - Assumes Content-type: text/html
I ************************************* */
PARSE ARG Code, Msg
SAY '<title>'GETENV('SCRIPT-NAME')' error' Code'</title>'
SAY '<h2>Error Code' Code 'reported by'
SAY GETENV('SCRIPT-NAME')'.</h2> The WWW utility on'
SAY '<tt>'GETENV('SERVER_NAME')
SAY ' :'GETENV('SERVER-PORT')'</tt>that you are using'
. . .

. SAY 'which reports the following error:'
_ IF Msg/=" THEN SAY '<hr><hl><code>'Msg'</code></hl>'

IF Debug>0 THEN DO
SAY '<hr>The complete environment follows:<p><pre>'
ADDRESS Unix "tcsh -c printenv"
SAY 'a3r>ATgument~="'Parms'~~.
SAY '</pre>'

END
SAY '<hr>['
SAY 'SLAC Home Page I'
SAY 'Suggestion Box 1'
SAY '<address>Zaphod</address>'

-. IF Code=0 THEN RETURN
EXIT /*Code*/

Y7

Error Code 490 reported by cgi-wrap

TheWWWutilityOnwwwl.slac.stanford.edu:8Othatyouareusingfromyour
WWW browser (Mozillafl .l bl (Xl 1; international; AIX 2 000003643500)) on
ATLAS. SLAC. Stanford. EDU called (using the GET method) a Common Gateway
Interface (revision CGI / 1. I) script command wrapper, which reports the following error: _ .

No input given!

[SLAC Home Page I Suggestion Box]
Les Cottrell

Sample Dangerous CGI Script in REXX

#!/usr/local/bin/rxx
;z %Tpg$ngerous CGI Script written in */

. */

_ SAY "Content-type: text/plain"; SAY

Query=TRANSLATE(GETENV('QUERY-STRING'),' ','t')

Valid=' abcdefghijklxnnopqrstuvwxyz'
Valid=ValidI I'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
Valid=ValidI 1'0123456789~-/.@'
V=VERIFY(Query,Valid)
IF V/=0 THEN DO

SAY 'Invalid Character('SUBSTR(Query,V,l),
')in:"'Query"'.'

EXIT 99
END

ADDRESS UNIX Query

EXIT RC

-..

