CenterPiece and Object Oriented RExx

Sandy Syx
Mantissa Corporation

Pages 150-173

Proceedings of the 6th International Rexx Symposium 150

150

‘V“ Mantissa Corporg?lQp

CenterPiece and Object
Oriented REXX .

Sandy Syx - ssyx@mantissa.com
205-945-8930

M) Introduction

» Mantissa Corporation

» Data Center Automation software products
since 1981. f

» RMS “The Report Management Sysieni”
» OPS “Operatwns Productivity System” .

» FYI “Wmdows/LAN-based Document/Image
Management and more”

15/

A“ Agenda

» CenterPiece Architectural Overview

» CenterPiece Built-in Classes -

» CenterPiece Object-Oriented REXX

» REXX Improvements for Complex Problems
» Developing CenterPiece Classes ‘

CenterPiece
Architectural
Overview

i52

u\ What is CenterPlece"

» CenterPiece is a Dzstnbuted Multt-platform,
Object-Oriented, Interpretive, Development
and Runtime Environment.

» Two main Executables:

® The Engine - a multi-threaded interpreter that

serves objects to multiple simultaneous chents in
psuedo realtime.

@ The User Interface - A graphical application that
allows one to view and manipulate objects that
exist in an “engine”.

a4\ CenterPiece Architecture

Persistent objects are stored here.

bjects are viewed and
manipulated here.

Objects exist here.
ALL program interpretation occurs here.

i53

AA‘ CenterPiece is Multi-platform

Object files are
platform independent.

Multi-platform, supporting
multiple look-and-feels.

Engine supports multiple concurrent connections to user mterfaces
Engine can run on multiple platforms. -

A“ The Engine Is...

» The heart of the systeni
» An object server.

» A multi-threaded object oriented REXX
executor.

» Basically event driven. ,
> Responsible for reading and wrltmg object

files.
» Not visual.

A“ The User Intgrface;. "

» Graphical User Interfuce

» Runs on multiple platforms and wmdow
systems (X-Motif, OS/2 Presentation
Manager, MsWindows)

» Supports multiple look-and-feels (Motzf,
CUA, Windows)

» Very interactive allowing direct

manipulation (object menus and drag-and-

drop).

CenterPiece Bullt--ln
Classes

is5

10

AA‘ Fundamental Built-in Classes

» Workspace
212 Dimensional Vtsual Container
of WorkspaceObjects.

» WorkspaceObject
Gives objects the ability to be on
a workspace. (Name,X,Y,Layer,
Icon,Workspace, etc...)

» Class T
Allows one to create new classes.

11

\j - ,
AA‘ Programmer’s Helper Classes

» Program |
Allow interpretation and executton '
of REXX logic. ‘

» Thread
Instance of executing program.

» List - Ordered collection of items.

» Dictionary - Unordered collectton of
key/data pairs.

» Semaphore - Resource Arb‘itof _
> Queue - Object version of REXX queues

12

/56

M Simple Visual Objects

» Text

Floating text. O’ont color, angle)

» Line o
Line segments. (X2,Y2, wzdth color)

» Rectangle
Hollow or filled rectangles (width,
height fillcolor) ‘

» Image
2D color images. Can be large and deep

A“ Dialog Objects

> Button - Action button that runs a
“Click” method when pressed.

» Checkbox - State selector runs a “Clzck”
method when pressed.

» TextEntry - Text entry field, allows ?’? -

multi-line, scrollbars, etc.. Runs a

“Changed” method when the textis

entered.

)57

14

. ‘ P
u‘ More Dialog Objects
» ListBox - Combination of a List and a o
ListView. Visual list, allows images and
text. Items can be dragged from the list.

» Slider - Allows a value to be selected within

some range. Runs a “Slide” method when
the slider is sltd

» RadioGroup - Mutually exclusive group.
Runs a “Click” method when the selection
changes.

» Spinner - Allows spmmng or typing in a
number from a specified range of values. 15

y e e
“‘ Communication Classes

» MTAServer
Message Transport Agent - allows one
to create a “server” that will listen for
connections from “clients” at any number
of access points (tranport,port). Allows
telneting mto the server lf tcp is used.

» MTAClient -

Allows one to connect 10 a server to
exchange messages.

16

)\ Object Storage to Disk

» ObjectFile :
Saves all owned ob]ects toa dtsk f Ie

7

2\ Application Delivery

» UserProfile - This class allows one to secure
access to a CenterPiece engine by defining
exactly who can connect, and how they
connect. Users can be “Developers”,
“EndUsers” or both. An “EndUser” has a
“Connect” method that can be ovemdden
to show the approprmte appltcatton
dialogs for the user on c 'nnectzon to
engine. HEEE

18

159

CenterPiece

Object-Oriented
Extensions to REXX

A“ Objects

» Objects are instances’; bf some Class -
» Objects have any number of attributes.
» Objects are globally visible. s

» Every object has a universally unique

immutable identifier.
> Any object can be made persistent.

/60

19

20

5\ Object Ownership

» Objects can own any number of other
objects.

» An object can have at most one owher

» When an object is destroyed, all of a‘s owned
objects are also destroyed L

» When an object is saved, all bf its owned ,;
objects are saved. - o

-

A\ Attributes

» Attributes act much like REXX variables.
» They can be simple or compound.

» Object attributes must be defined in some
superior class.

> Attributes names are case and space :
preserving, but case and space msenszttm

16/

IA‘ Referencmg Ob i ects

> Objects have global visibility.

> Each object is unique not because of its
name, class, nor attribute values, but .
because of its universally unique tmmutable
identifier (UUID). These are normally just
called object tdentztzer or object-ids.

> Objects are referenced by REXX variables
that have an object-id as their value.

23

A“ Attribute Access .

Object Attributes are selected with a double-dot (..)

object. attnbute -
object identifier or, <———+—-> attribute speclﬁcatmn
classname v

The symbol to the left of the double-dot is translated
into a value. The translated value must be an object-ld ora
class name. :

The symbol to the righf (up to thé next double-dot)
is treated exactly like a variable symbol and must
reference an object or class member.

24

/64

A“ Attribute Ac‘cess Examples

Simple Attribute Access
Assume b is an object of the Button class.

b..Name = “Press Me”
b..BackgroundColor = “maroon”

Multiple Indirections »
Assume that b is a-Button, and assume that the button

has an attribute “Workspace” that references an object
of the Workspace class that the button is on. The name
of the workspace could be accessed by

b..Workspace. .Name
the button |
L the button’s workspace

28

a\ Object Creation/Destruction
Accomplished with two new REXX built-in functions:
object_id = ObjectCreate(%cléssname>) ‘
rc = ObjectDestroy(<object_id>)

For Example,
aLine = ObjectCreate(“Line”)
alLine.. = 100 o
aLine..y =
aLine..x2 = 200
alLine..y2 = 200

call ObjectDestroy aLine

26

/63

» Classes define attrtbutes that each mstance
of the class will have. -

» CenterPiece allows multiple mherttance “

» Classes are objects and are instances of the
“Class” class.

» Classes are typtcally used by thelr name.

2y

AA‘ Inheritance Model

> Attributes are mherzted dynamlcally

> A class can be modified “on the ﬂy” wlth
existing instances. |

» Attribute lookup precedence:
1. Local Object Override
2. Object’s Class
3. Primary Superclass--->Root Class .
4.Secondary Superclass—-->Root Class
In other words: “A Depth first, breadth next

search up the class hierarchy”.
28

164

A“ Dropping.&AttributeS

The REXX - DROP instruction:can be used to cause an
attribute to revert to its class default.

For example, assume that a class “Author” exists which
has an attribute named “Name” that has a class default
value of “anonymous”.

anAuthor = ObjectCreate(”Author")
anAuthor..Name = “Fred Braoks"

say anAuthor..Name ==> woul(i prmt “Fred Brooks”
drop anAuthor. .Name
say anAuthor..Name ==> would prmt “anonymo‘us?’.‘ .

29

Object Related
Built-in Functions

» ObjectCreate > ObjectOpen
» ObjectDestroy » ObjectOpenAsDialog
» ObjectClone » ObjectClose.
» ObjectFindOfClass » ObjectGoto
: » ObjectGetOwner
» IsObject i » ObjectSetOwner
> IsObjectOfClass .
» ClassOfObject > Objeth ileOpen
> ClassIsSubclassOf > ObjectFileSave

» ClassIsDirectSubclassOf > ObjectFileClose

/&5

i\ Iterating Q .ver Ob;ei:ts
DO ekt - N
l-repetltorJ l-condltwnal-I I!mstructlonll ;: f:gme

repetitor (extensions):

FOR EVERY class loopvariable —— —
—E FOR EVERY class loopvariable ON workspace %‘
FOR EVERY class loopvariable OWNED BY ob]ect

31

i\ Object Iteration Example

Iterating Over All Oblects of a Given Class

num_employees = 0

DO FOR EVERY Employee e
SAY e..Name .
num_employees = num_employeesy} 1 _

END

32

sz

M| Object Member Iteration

DO ;- END -
[epetitor) Leonditonst) Wongracgonll Lnome!
repetitor- L conditional instruction o

repetitor (extensions):

FOR EVERY MEMBER membervary OF object
[SIMPLE — ‘»PR_EF]XED BY preﬁx--l
COMPOUNDJ :

o

A\ Composite Objects

» “An object by itself is intensely
uninteresting”. - Grady Booch

» Object Identifiers behave much like pomters
to structures in ‘C’ or ‘C++’, \

» Any object attribute can contain an ob]ect
identifier of another object.

» Composite objects can be made in wluch
one object references and owns any number
of other objects.

134

le?

I\ Embedded Objects

» It is possible to embed objects wrthm other
objects. o

» This must be done by adding a class member
that references an object of a specified. class

» The embedded object will be cloned for each
instance of the class.

» The embedded object may not be destroyed
independently of its owner.

35

A'A‘ Methods

» Methods are simply objects of the Prog;ram
class that are referenced by some attrzbute of
an object. |

» Method invocation is no different thlm 4
calling any other REXX Junction or. =
subroutine. T he method is addressed)]uSt
like any other object attribute, except that zt
is used where a function or subroutme name
would normally be used. "

36

/68

A\ Self Reference In Methods

The double-dot with no prefix is an object self reference
inside an object method.

For example, imagine a user interface Button method that
runs when the button is clicked.

/* begin Button,i:Click */
. .Name = “Hello”
return 0

In this example the double-dot w1th no prefix means .
“this” button. -

37

REXX Extensionsﬁttfor;
Complex Problems

38

169

M| Multl-Threaded REXX

» An additional buzlt-m flmctton, Starz‘
provided to allow one thread to start anm‘her.

urd Avennestnro NnssngIe

X Kownke #leses ~ re (
’Lu'y’l "’l Ui CACLUICD LUnLurL c’lllyc

» Threads are re-dispatched, baswally, afte
each source instruction. .

39

Unwinding the stack on a
Raised Condition

Normal REXX, strangely, doesn’t unwind ,
the call stack when a condition (exception) is raised

We extended the CALL ON and SIGNAL ON
instruction to allow them to be prefixed with
the keyword UNWIND

For example,

UNWIND CALL ON syntax NAME mysyntnxtrap

mysymaxtrap
say “Tarfu”
refurn

40

/170

Developing CenterBiece
Classes

41

2\ Modularity

» Instances do not have 1o be savedin the :
same ObjectFile as their classes.

» Classes do not have to be saved in the same
ObjectFile as their superclasses.

4?2

A“ Constructors/Destructors

» Any class can have a “Create” method.
Simply add an attribute named Create and

class.

> The method will automatically be run-ygheng
an instance of the class is created.

» Ditto for “Destroy” and ‘ﬁLoad” which wzll

Jfrom an object file, respecttvely

43

A\ User Even‘ft’sj :

» Many classes have methods that are run in
response to user actions.

» These methods are optional, and if not
provided, a default built-in action occurs in
response to the user event.

> Some examples are:
WaorkspaceObject..Drop ar DroppedUpon
Button..Click
TextEntry..Changed

;;‘;;i;;a .

44

/1 Tz

‘“ User Events Co

» The first argument to a user event method is
always a Dictionary object that contams &
entries that indicate what happened.

» The attributes present in the context
dictionary depend on the event. ;
For example, a Drop event would have the
new X and Y locations of the object dropped.

45

173

