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= A major goal of Object REXX is removing limitations of the
existing REXX language.

= Many of the limitations are seen in some of the most

frequently asked (and frequently unanswered) questions on
bulletin boards.
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W .Let's Practice

-‘.J. oy

= Question: How do | convert dates from on e RE
to another?

= Current Answer: Well, you don't..

= Object REXX Answer: Just spemfy the input date as the

second argument to the Date() function. A third option
argument tells Date() what input format you are using:

— Date('b’, '28 Feb 1995')

- Date(n', '02/28/1995', 'U) -
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W Passing Stems

= Question: How do | pass a
stem to a function or
subroutine

= Answer: Just specify the
stem in the argument list
and access the argument
with the USE ARG
instruction.

call StemSort stem., count

StemSort: procedure
use arg x., count

return
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VW Returning Multiple Values

= Question: How do | return
more than just a single

string value from a
function?

object

= Answer: Just return a
stem or other "composite”

lines. = ReadFile(filename)

ReadFile: procedure
parse arg filename

count=0 J—

do while lines(filenamey' <> 0
count = count +1
x.count = lingin(filename)

end

x.0 = count

return x.
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.v Expressions in Compound Tails

= Question: How do |
specify that A.i = A.i+17?

= Answer: Specify the
variable part of the tail
within square brackets

("[I")

lines. = ReadFile(filename)

ReadFile: procedure

parse arg filename

Xx.0=0 -

do while Iines(filenaq;@)@i 0
Xx0=x0+1
x.[x.0] = linejri(filename)

end

return Xx.
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W Traversing Stems

= Question: How do | Do tail over stem.
traverse all of the tails say stem.tail
currently assigned to a end
stem?

= Answer: Use the DO
OVER instruction

oy,
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W Packaging Multiple Functions

= Question: Now do |
distribute a "bunch"” of
external functions without
creating a file for each
function?

= Answer: Package the
routines in a "Requires" file

::routine function2 pbhc

.:requires sitefunc.cmd

::routine function1 public

e
y 4

:routine function3 public
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W Bonus Function

= Requires files can also /* load required functions */

perform needed global call rxfuncadd 'a', 'b', 'c
setup

::routine function1 public

y

:routine functioh2 public

i
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W Sharing Variables Between Programs

= Question: How can | share
"global variables" between
multiple programs?

= Answer: Access the

variables as a REXX
"environment" variable

.environment-setentry(,

'‘MY.PROGRAM',,
.directory new

.my.program name = "xyz"
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W The "Procedure Expose" Dilemma

= Question: How can | share :class data_manager
variables between related *'method X

subroutines without doing expose name time type
a PROCEDURE EXPOSE

for every variable through

all of the caller's levels?

Answer: Structure the :

related routines as an zmethody .
object and share the expose time type attributes
variables with the EXPOSE _ yd
Instruction |

expose attributes
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W . Computed CALL instructions

= Question: How do | make
a call to a routine whose
name is contained in a
variable?

= Answer: Use an indirect
CALL instruction, placing
the routine variable name
iIn parentheses

parse arg name, argument
call (hame) argument

e
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VW Replacing Common Idioms

= Some common REXX idioms can be made easier using
features of Object REXX or by replacing stems with other

DECVYV AlhiAaAta
REXAX ODjects.
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VW Stems vs. Arrays

= A REXX array may be the
more appropriate choice

— Variable size

- Automatically tracks the
size

- DO OVER traverses in
order

lines = ReadFile(filename)

ReadFile: procedure
parse arg filename

output = .queue~new

do while lines(filename) <> O
output-add( Ilnegg»m(flllename))
end |

return output-makearray
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W  Stems vs. Directories |

» Compound variables can
be "vulnerable" to other
variable usage in a
program

employee.name

Can fail if name is used as a
variable, but

employee = .directory-hew
employee-name = "Rick"

is always safe!
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VW  Stems vs. Directories

= Using compound variables
as both "collections" and
"structures" simultaneously
can be awkward

employees.i.name = "Rick"
employees.i.salary = "??7"

VS.

employees|i] = nextWorker()
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W Consider Building You Own Objects

= While many problems can be adequately solved by stems,
arrays, directory, etc., consider building your own objects:

— Hide the processing logic
- Can be placed in a REQUIRES file for better reuse.

;%7;@‘%}3
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v A Common Problem

= Customer wants to process a group of records contained in
a flat file, with the data fields organized in columns.

— Records must be easily accessed, updated, and written
out to a new file in the same format.

— Record formats are subject to change, so updates must
be easily performed.

~ Multiple programs will be written to perform updates
against the same files.
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W A Solution

::class employee

::method init

expose name id address salary manager

parse arg name 25 id 32 address 100 salary ,
106 manager 131

::method name attribute
::method id attribute
::method address attribute
::method salary attribute Py
::method manager attribute o

::method string
return left(name, 25) Il left(id, 7) Il left(address, 68) Il ,
right(salary, 6) Il left(manager, 25)
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W A Solution (continued)

[* Give everybody a raise! */
parse arg oldFile newFile

do while lines(oldFile) <> 0
employee = .employee-new(linein(oldFile))
employee-~salary = employee-~salary +,
employee-salary * .10
call lineout newFile, employee
end

::requires employ  /* include the employee records */

a
)
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VW  Building New Idioms

= Over the years, many common REXX idioms have been
developed
= These idioms are still valid, but...
— New Object REXX idioms may replace some existing
ones
—~ New Object REXX programming idioms will be added to
existing ones

P (g}y\\\:\ < ““‘,«v/z«f\’ il
g
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W For Your Consideration... -

= A new Object REXX programming idiom, the "caching
directory”

- Keep a cache of items read from a disk file
- Caching is done on first reference to an item
- Subsequent requests pull the item from the cache
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W The Caching Directory

/* Create an employee file caching directory */
cache = .directory-new /* get a directory */

[* add an unknown handler
cache setmethod('UNKNOWN', .methods['UNKNOWN'])
return cache [* set up is done! */

::method unknown -
expose dataFile s
parse arg employeeld

if \var(dataFile) then dataFile = .stream”™ emp rec')
record = dataFile"linein(Employeeld%10l
record = .employee new(record) |
selffemployeeld] = record

return record

y : Rexx
::requires employ bject



