Getting Ready for Object RExx

Rick McGuire
IBM Endicott

Pages 194-218

Proceedings of the 6th International Rexx Symposium 194

194

Rick McGuire
Object REXX Development
IBM Endicott

Rexx

bj ect

2b(

v ANSwers 10 uesuons VVIIanUI
‘Answers

= A major goal of Object REXX is removing limitations of the
existing REXX language.

= Many of the limitations are seen in some of the most

frequently asked (and frequently unanswered) questions on
bulletin boards.

Rexx
b] ect

Yy

W .Let's Practice

-‘.J. oy

= Question: How do | convert dates from on e RE
to another?

= Current Answer: Well, you don't..

= Object REXX Answer: Just spemfy the input date as the

second argument to the Date() function. A third option
argument tells Date() what input format you are using:

— Date('b’, '28 Feb 1995')

- Date(n', '02/28/1995', 'U) -

Rexx

b} ect

26/

W Passing Stems

= Question: How do | pass a
stem to a function or
subroutine

= Answer: Just specify the
stem in the argument list
and access the argument
with the USE ARG
instruction.

call StemSort stem., count

StemSort: procedure
use arg x., count

return

Rexx

bj ect

VW Returning Multiple Values

= Question: How do | return
more than just a single

string value from a
function?

object

= Answer: Just return a
stem or other "composite”

lines. = ReadFile(filename)

ReadFile: procedure
parse arg filename

count=0 J—

do while lines(filenamey' <> 0
count = count +1
x.count = lingin(filename)

end

x.0 = count

return x.

‘ Rexx)
bj ect

o

.v Expressions in Compound Tails

= Question: How do |
specify that A.i = A.i+17?

= Answer: Specify the
variable part of the tail
within square brackets

("[I")

lines. = ReadFile(filename)

ReadFile: procedure

parse arg filename

Xx.0=0 -

do while Iines(filenaq;@)@i 0
Xx0=x0+1
x.[x.0] = linejri(filename)

end

return Xx.

Rexx
bj ect

W Traversing Stems

= Question: How do | Do tail over stem.
traverse all of the tails say stem.tail
currently assigned to a end
stem?

= Answer: Use the DO
OVER instruction

oy,

‘ Rexx)
bj ect

z0Z

W Packaging Multiple Functions

= Question: Now do |
distribute a "bunch"” of
external functions without
creating a file for each
function?

= Answer: Package the
routines in a "Requires" file

::routine function2 pbhc

.:requires sitefunc.cmd

::routine function1 public

e
y 4

:routine function3 public

‘ Rexx)
b} ect

R ~

W Bonus Function

= Requires files can also /* load required functions */

perform needed global call rxfuncadd 'a', 'b', 'c
setup

::routine function1 public

y

:routine functioh2 public

i

Rexx
b) ect

hov

W Sharing Variables Between Programs

= Question: How can | share
"global variables" between
multiple programs?

= Answer: Access the

variables as a REXX
"environment" variable

.environment-setentry(,

'‘MY.PROGRAM',,
.directory new

.my.program name = "xyz"

Rexx

bj ect

s9¢C

W The "Procedure Expose" Dilemma

= Question: How can | share :class data_manager
variables between related *'method X

subroutines without doing expose name time type
a PROCEDURE EXPOSE

for every variable through

all of the caller's levels?

Answer: Structure the :

related routines as an zmethody .
object and share the expose time type attributes
variables with the EXPOSE _ yd
Instruction |

expose attributes

‘ Rexx >
bjecf

Sl

W . Computed CALL instructions

= Question: How do | make
a call to a routine whose
name is contained in a
variable?

= Answer: Use an indirect
CALL instruction, placing
the routine variable name
iIn parentheses

parse arg name, argument
call (hame) argument

e

Rexx
bj ect

LT

VW Replacing Common Idioms

= Some common REXX idioms can be made easier using
features of Object REXX or by replacing stems with other

DECVYV AlhiAaAta
REXAX ODjects.

Rexx
bj ect

g9

VW Stems vs. Arrays

= A REXX array may be the
more appropriate choice

— Variable size

- Automatically tracks the
size

- DO OVER traverses in
order

lines = ReadFile(filename)

ReadFile: procedure
parse arg filename

output = .queue~new

do while lines(filename) <> O
output-add(Ilnegg»m(flllename))
end |

return output-makearray

Rexx
bj ect

ore

W Stems vs. Directories |

» Compound variables can
be "vulnerable" to other
variable usage in a
program

employee.name

Can fail if name is used as a
variable, but

employee = .directory-hew
employee-name = "Rick"

is always safe!

Rexx
bj ect

1z

VW Stems vs. Directories

= Using compound variables
as both "collections" and
"structures" simultaneously
can be awkward

employees.i.name = "Rick"
employees.i.salary = "??7"

VS.

employees|i] = nextWorker()

— S R
oS
L

zIT

W Consider Building You Own Objects

= While many problems can be adequately solved by stems,
arrays, directory, etc., consider building your own objects:

— Hide the processing logic
- Can be placed in a REQUIRES file for better reuse.

;%7;@‘%}3

Rexx
,bj ect

v A Common Problem

= Customer wants to process a group of records contained in
a flat file, with the data fields organized in columns.

— Records must be easily accessed, updated, and written
out to a new file in the same format.

— Record formats are subject to change, so updates must
be easily performed.

~ Multiple programs will be written to perform updates
against the same files.

Rexx
bj ect

hIT

W A Solution

::class employee

::method init

expose name id address salary manager

parse arg name 25 id 32 address 100 salary ,
106 manager 131

::method name attribute
::method id attribute
::method address attribute
::method salary attribute Py
::method manager attribute o

::method string
return left(name, 25) Il left(id, 7) Il left(address, 68) Il ,
right(salary, 6) Il left(manager, 25)

Rexx
bj ect

W A Solution (continued)

[* Give everybody a raise! */
parse arg oldFile newFile

do while lines(oldFile) <> 0
employee = .employee-new(linein(oldFile))
employee-~salary = employee-~salary +,
employee-salary * .10
call lineout newFile, employee
end

::requires employ /* include the employee records */

a
)

Rexx
b)' ect

YT

VW Building New Idioms

= Over the years, many common REXX idioms have been
developed
= These idioms are still valid, but...
— New Object REXX idioms may replace some existing
ones
—~ New Object REXX programming idioms will be added to
existing ones

P (g}y\\\:\ < ““‘,«v/z«f\’ il
g

bj ect

LT

W For Your Consideration... -

= A new Object REXX programming idiom, the "caching
directory”

- Keep a cache of items read from a disk file
- Caching is done on first reference to an item
- Subsequent requests pull the item from the cache

Rexx

bj ect

W The Caching Directory

/* Create an employee file caching directory */
cache = .directory-new /* get a directory */

[* add an unknown handler
cache setmethod('UNKNOWN', .methods['UNKNOWN'])
return cache [* set up is done! */

::method unknown -
expose dataFile s
parse arg employeeld

if \var(dataFile) then dataFile = .stream”™ emp rec')
record = dataFile"linein(Employeeld%10l
record = .employee new(record) |
selffemployeeld] = record

return record

y : Rexx
::requires employ bject

