
How REXX Helped Me Hit the Ground Running in
UNIX

Lois White
Stanford Linear Accelerator Center

- .

Pages 360-362
.

Proceedings of the 6th International Rexx Symposium 360

How REXX Helped Me Hit the Ground Running in UNIX

or

How I Stopped Worrying & Learned to Love -ping in Significant Mixed Case

Lois White
- .

SLAC Computing Services
Stanford Linear Accelerator Center, Stanford, California

6th International REXX Symposium
Stanford Linear Accelerator Center, Stanford, California

May 3,1995

Since the early 80’s, REXX has been my language of choice in VMKMS for a system of execs
and SAS programs which manipulate and store data and produce daily, month-to-date, and
month-end reports on resource utilization and performance. Actually, I created and still maintain
three VM service machines which keep track of utilization and some performance statistics for
VMKMS, a VAX cluster, and SLAC’s telephone system.

About three years ago, it was announced that UNIX would be the future direction for physics
computing at SLAC. In order to prepare for the coming of UNIX, I took an introductory course
and was appalled...shell script.07no REXX??? I looked at bourne, kom, and c shell scripting
and said to myself “I thought we had progressed beyond EXEC and EXEC2”. Then someone
mentioned that per1 was the scripting language to use in UNIX When I looked at per1 I found it
to be powerful and concise, but nearly impossible to decipher without comments on each line! I
was looking at a steep learning curve here!

-. .

As the new RS6000 machines began arriving, it quickly became evident that I would need to start
accounting for resource utilization on them and get an idea of how much they were being used
and by whom. The accounting software included with the RS6fKKl Base Operating System was
minimal, but it produced most of the information we needed. However, it didn’t store data in a
form that is readily used for reporting purposes. It also didn’t clean up after itself very well,
allowing directories to grow indefinitely. A great deal of manual intervention was required in
order to save data and produce reports on a regular basis and to keep directories from filling up. It
was clear that I needed to have more than just crontab entries and SAS software and I needed it
soon!

Writing per1 or shell scripts would have accomplished the task but I estimated that it would take
_ some time, perhaps months, to become proficient enough to do what was needed in a lot less time.

In early 1993, I learned that The Workstation Group’s uni-REXX had arrived at SLAC and I felt
as if I’d been saved. All subsequent references to REXX in UNIX in this paper refer specifically
to the use of The Workstation Group’s uni-REXX.

In the VM/CMS world I had already developed techniques for data storage, data manipulation,

and report production which I could now use in the UNIX world with the arrival of REXX.
Close to ten years of experience using VMKMS REXX meant that I wouldn’t have to spend three
to six months achieving the skills I needed before I could start managing data and producing
reports for the rapidly multiplying UNTX machines. Furthermore, the uni-REXX manuals were
written for users making the transition from VM/CMS to UNIX. With all this encouragement, I
jumped in and wrote my first REXX script in UNIX which copies AIX disk accounting data from
the file where it gets replaced each time disk accounting runs to another directory where it is
saved and used later to analyze disk usage on a long term basis.

_ .

Since then I have developed a system of crontab entries and REXX and SAS programs which
store and manipulate UNIX accounting and performance data and produce daily, month-to-date,
and monthly UNIX resource utilization and performance reports. On each of the (now) sixty-
four RS6000s where we collect accounting data, a REXX program executes daily which copies
the locally stored data to a generally accessible directory where accounting data for all sixty-four
machines is stored. After that, another crontab entry on one machine executes a REXX program
which initiates the daily data processing and subsequent analysis reports by executing SAS and
additional REXX programs. This daily program’s decisions on which processes to start are based
on the current date, day of the week, and other criteria. There are several other cron-initiated
REXX programs which take care of data copying, directory cleanup, and daily checking of all
automatic processes. In addition, there are several REXX programs which are executed manu-
ally to rerun processes which failed and to perform tasks such as large scale data backup.

@#side of the accounting and performance area, I have used the same techniques to develop a
system of crontab entries and REXX and SAS programs to produce regular reports and graphs
analyzing network performance data for our UNIX systems.

In conclusion, REXX enabled me to “hit the ground running in UNIX” because it has:

Familiarity:
I had many years of experience writing REXX code.

Portability:

-. .

I was able to transfer several large pieces of REXX code from VMKMS to UNIX and use them,
often without modifications. These included useful algorithms for cleaning up old files, finding
dates, creating file names, etc. to use as parameters for execs and SAS programs.

Communication with UNIX:
It is possible to issue UNIX commands from REXX programs. By using the POPEN instruction
or function, it is possible to read output from UNIX commands and to test return codes. Some-
times I’ve found that using a UNIX command is more efficient than doing the same task with

- REXX code, e.g. file editing using the sed utility instead of REXX’s linein/linout functions.

Readability:
REXX code is relatively easy to understand and usually doesn’t require adding comments on
every line in prder to remember “Why did I do that?!”

3 6 ‘2

