Compact Rexx - 1999

A recapitulation of CRX 1998

At last year's symposium | described how | wasfortunate position of deciding for myself what |
wanted to program, and that for nostalgic reasavesl coding an implementation in Assembler
Language for the DOS operating system. My presentthen can be found on the REXXLA website,
but I will summarize now what is needed as intrdiucto new material.

There is a well-established benchmark programedd@EXXCPS, for assessing the execution speed of
implementations.

{Display of REXXCPS program. Note independencerfraperating system performance.}

Last year | said that my ambition to run REXXCP& atillion clauses per second was going to have to
wait for new hardware because my 200MHz machinensagietting much more than half that speed.
Well, this laptop is a 300MHz machine:

{Display of execution at 1Meg+ clauses per second.}

I will show this compared with commercial produdiscause you will want to know, but bear in mind
that REXXCPS is a test of a narrow aspect of aytydhere are weighty issues of reliability, tiés,
documentation, debug environment, and so on tfettefommercial products.

{Display of execution on Warp with Classic Rexx}
{Display of execution with Personal Rexx 3.0}

Here is a bullet list from last year of the featutieat make this speed practical, with some comiment
each:

* Names compactly numbered so that variable valiemain array with eight byte elements. These
numbers are established, based on the differené:anthe program, before execution of the
program begins. In execution it is not necessanse the spelling of the variable's name in oraler
access its value.

» Pseudo-code implying a stack, with many tests cladmiut. The 127 different values that are the
odd numbers that go in a single byte provide aomssle domain for the different operators needed
when executing a Rexx program. Two-byte fieldsdperands allow for several thousand different
variable names and constants in a program. Sowahasprogram can be represented by these one
and two byte fields. The order in which they areiispersed determines which operators apply to
which operands, so that costs nothing. (Some dtherats are needed as well, for instance IF
statements give rise to jumps, which have two byresses giving the target of the jump.)

» Data representations that dynamically adopt orsewéral eight byte representations. Eight bytes is
a good size for a Rexx value - it can hold all neamstfor most programs and the majority of strings.
Longer values can be pointed to from the eightdyte

» Garbage collection with defragmentation and a neverlay assignment policy. This means that
an assignment like A=B never moves a lot of bygéesn when B is long, because it is the eight byte
pointer to B which gets assigned to A.

» Alternative interpreter loops working on the sameymlo-code. The TRACE facility, for example,
slows execution, and there are other speed inhibitdsing different parts of the implementation at

different times, according to what actually happ@nsxecution, ensures that the costs to speed are
only incurred while the costly features are beiagdi

» Data type analysis leading to different pseudo-dodéifferent cases, for example uses of the built
in functions with or without checks on the argunsetietthem.

Most of that list is about good design of the maitgof an interpreter, rather than about language
compiler features. The last few percentage painspeed come from analysing any individual
program before execution to discover decisionsd¢hatbe made before execution starts, rather than
during execution. The program analysis that | dbed last year concentrated on the built-in fumcsi
In a case like SUBSTR(X,6,1) it is clear that chiegkhe arguments isn't necessary - Rexx does not
place constraints on the first argument and therstare obviously numeric and in the right range.
SUBSTR(X,J,K) would be a different story.

Since then, | have implemented another piece df/sisa types of comparison. As you know, a
comparison A>B can be a numeric comparison or c@raomparison; the former only if both A and
B are numbers. It follows that A>"q" cannot beusmeric comparison because "q" is not a number.
Making this decision before execution avoids makingpeatedly during execution.

There are more of these little local analysis densthat can be made early but in general Rexs doe
not allow a more global analysis. For examplea@able ABC might seem to have numeric values
throughout a program, because all the values assignit are numeric constants or the results of
numeric operations. However, if there is an INTIREH instruction in the program, that might put
some non-numeric value into ABC in a way that isdiscernible before execution of the program.

Global analysis is only possible if we restrict wtiee programmer can write - and we know that when
the MVS Rexx compiler did not allow the INTERPRE&tement that was an unpopular feature.

So, if there is not a lot more that can be dong; ood is a megaclause per second with REXXCPS on
a 300MHz engine? We have seen that it is goodring of Rexx expectations but that does not tell us
if it is good in terms of what the hardware is dalpaof.

We are fortunate to have REXXCPS as a benchmark isubnly one program and because it heavily
uses PARSE and the "typeless" nature of Rexx, itidvbe difficult to translate it into a program in
"C". If we want to compare with "C", and lackiag accepted performance measurement suite of
programs, we must settle for measuring just a fasidoperations; for example a loop of a billion
times doing nothing, or making a ten thousand byriag by concatenating a byte at a time. Evesehe
primitive timing comparisons are subject to a nundfanfluences, for example:

« Even a simple loop in "C" requires a control valéabthere is no equivalent to the "DO
expression” repetitor of Rexx. Therefore, "C" lmdo a bit more work in the loop.

e The popular "C" compiler that | use does a lotptirnizations, including unsafe ones, but has no
option to say "produce 16 bit code that exploitdhBZeatures of the 486 engine".

* Operations on strings in the "C" language are suthre calls. This leads to uneven results -
string operations are faster in Rexx (CRX) thatGh, even though arithmetic operations on
small values are twelve times faster in "C".

{ Demo of simple performance measurements, witkxRend "C" versions. }

Based on such measurements, my views are:

< An achievable target for the computational pamExecution (as opposed to time spent in
commands issued from Rexx) is around four timewesldhan execution of the natural "C"
equivalent. This compares with 10 - 50 times slotlvat we sometimes get nowadays.

e Afully optimizing compiler could not close the gapm "C" much further. The difference

between a mild program analysis (as done by Conipaxt) and the fullest possible analysis
would not translate into a big execution speeckdifice.

« If enough people were willing to pay enough moraya copy of a PC optimizing compiler of
Rexx then it would be good to have one developledyst irrespective of its effectiveness.
However, the technical justification for a genuamimizing compiler making machine code is
thin.

Using pseudo-code as part of the Implementation

Changing the topic to how small a Rexx interpreser be, | described last year how message texts and
the tables that parse the source program can be smaall. There was also this remark:

"CRX uses two interpreter loops, essentially tdrietsthe overheads of tracing to the times when
tracing is enabled. There is a case for a thitermeter loop, used when executing Built-in fuoit.

The REXX Standard contains large amounts of comtifREXX, used to define the meanings of Built-
in functions and of the ADDRESS instruction et@ &plausible way of implementing such features in
a REXX processor would be to take the code fronSta@dard, compile it to pseudo-code, and
incorporate the pseudo-code in the REXX proces®dnen the user’'s program called for a Built-in
function to be executed the REXX processor woukteaste that pseudo-code."

The first new material here is about how that ideaked out.
{Display of the relevant code from the ANSI staraiar

The idea of having part of an implementation asigdeecode, i.e. some code that is not the machine
code of any hardware but is the output of someiapeampiler or utility program, has a long history
If somebody tells you they have a "portable" impdeation of COBOL it may be that they have
something written in "C" that can be recompiled ibalso may be that the implementation is lardely
pseudo-code and the actual bytes don't change pdréed across hardwares.

This diagram shows on the left the usual Rexx prtger picture with source being translated to
pseudo-code and that pseudo-code executed. gHiteofithe picture shows an activity that happened
earlier when the interpreter was being construetamlirce from the ANSI standard was processed to
pseudo-code that became part of the interpreter.

s o o o I o e o o o o I s +++++++
+ + o+ + o+ +
+ User's Program +---->+ + + ANSI Rexx +
+ + + Interpreter+ + doc ument +
+H+++ A+ + +++++++
+ + |
+H+++ A+ + +++++++
+ + o+ + + Uti lity +
+ Pseudo-code +<--->+ ++++++++++ H+H++H+ +++++++
+ + + o+ + |
++++++++++++++++++ + + P-Code +<------mm---
| + + +
+++++

User's Results

There is a choice about how much of the ANSI cadese in this way - for something frequent and
simple like SUBSTR it will be better to implemerteattly in Assembler. However, in general there is
not a big speed loss from the embedded pseudoaggateach. The algorithms come down to
executing basic operations like comparing and agsjgRexx values - things that would be subroutine
calls even if implemented in Assembler. Making ¢haéls from an interpreter loop rather than from
plain code does not add much overhead. TherevgeVer, a caveat. The algorithms in the ANSI
standard were written to be understood rather thigerform. The code for the WORDS built-in is:

$9.3.29: /* WORDS */
call CheckArgs 'TANY'

do Count=0by 1
if subword(#Bif _Arg.1, Count + 1) == " then return Count
end Count

This will repeatedly scan the subject string. §peed, it needs to be re-written; the experieneekR
programmer would probably use PARSE to split tHgext repeatedly into a first word and a new
subject.

Fortunately, the algorithms in the Standard arelygvoor for speed in this way.

At first glance, the idea using the Rexx code ftbmANSI standard as part of a compact interpreter
will fail because of the size of the pseudo-cotdibere are some 4000 lines of Rexx in the ANSI
standard.

How much pseudo-code does a line of Rexx produdeére may be some indication from the Warp
Rexx products because they retain the pseudo-dteteesaecution, making it quicker to load the
program next time.

{Display of DIR showing Rexx programs with extendsttibutes.}

Typically, the extended attribute size is aroun@ hgtes per Rexx line of source. My knowledge of
Warp Rexx internals is insufficient to explain tfigure, although because Warp has paging of memory
the size of pseudo-code is not likely to mattetheouser except where it exceeds the 64K limit for
extended attributes.

| described the Compact Rexx pseudo-code formbyéss; one-byte operators, two-byte operand
references, reverse Polish ordering. Data onphHirsg of the symbols in the original source isaal
needed. Together this yields about ten bytes p&k Rne.

If we take it that about half of the Rexx from thE S| standard is to be made into pseudo-code, with
the other half representing function better impleted directly in Assembler, then we are talkingwtbo
2000 times 10 bytes of pseudo-code. This 20kilisadot, if we are addressing the "really small
interpreter" challenge where all of syntax checkiag been done in 4K.

So can the pseudo-code be made smaller?
Rexx with local variables

Here is a little program that | used last yealltsirate the difficulties in analysing the scoge o
variables:

signal on syntax
say X

call MySub

exit
MySub:procedure
ééy X

return

syntax: say X

The programmer here has deliberately used a proee¢densure that the variables called X are
different variables. But if control reaches thiedb'syntax’, which of them will X then refer torhe
answer is that we cannot decide until execution.

In the case of the code from the Standard, we oamlt of re-writing if necessary to avoid thetteas
(SIGNAL and INTERPRET) which give rise to scopdfidiflties. So the utility that turns the code in
pseudo-code can analyse which variables are la@c&hles, for example the Count variable in the
algorithm for WORDS.

This allows for the top of the Rexx runtime stagkave this content when a routine executes:

. Arguments . Local variables . Intermediate result s. Top here

A number with a small range, sufficient to coves thtal number of arguments, locals, and
intermediates, will suffice to identify individuaperands when the routine is running. In practice,
although the ANSI code as a whole involves sevauatred different variables, the worst-case
individual routine needs a range of about thirty.

What this means is that we do not need two bytesfazence an operand. The 256 values that aesing|
byte can have are sufficient to cover operand eafazs (for both "assign to" and "load from™) ,
operators, calls to other routines, and a few dleaaables. | will call this style of pseudo-cotwyte-
code" to distinguish it. The operands that repredestinations for branching can also almostall b
single bytes. (All the branching in a Rexx progria forward, except that SIGNAL, calls , and DO
loops can be backward, and a relative branch cd@@tes of byte-code is a branch over dozens of
Rexx statements.)

There are a few complications in byte-code integtien which | have resolved by making minor
restrictions on the way in which the ANSI code rstten but | will spare you the details - having th
ANSI code as byte-code in the Compact Rexx intéeprdoes work.

In fact, there are a few of the 256 values not uisékis part of the scheme, so we must find a gosel
for those.

Fragments - subroutines created by the compiler

The idea that memory space can be saved by maing sommon parts of the user program into
subroutines, even though the program was not writtéhat way, has a long history. | wrote someghi
in 1978 that made PL/I executables half the sizh@$e made by more normal compiling; there is a
Technical Report available if anyone is interested.

Recognition of subroutines can save space eveshfot sequences. The gain with Intel hardware
sequences starts when two sequences of eightdrgesplaced by two calls to one subroutine. When
byte-code is being compressed two sequences bi/gs will show a gain. (The difference is because
hardware routine calls are three bytes long). mbée the point that these routines can be small| |

call them fragments of code.

Recognising sequences suitable for fragments te goimplicated, for example because branches into
or out of the sequence (as opposed to within thaesee) will make the sequence unsuitable.
Exploiting all the potential for changing the saaito make extra sequences that match, for exangple b
re-ordering some statements and re-numbering therants and re-numbering the variables, and using
fragments with their own parameters, is fiendistdynplicated.

In the recognition of sequences in the byte-codmfthe ANSI source, | implemented only a couple of
the potential re-organizations. The first onéhat if in the original source an argument to aireuis
used only as the initial value of some variablentthis argument and the variable it is assignesito
occupy the same place on the stack, making thgramsint unnecessary.

. Arguments . Local variables . Intermediate result s. Top here

The second trick is to notice that in the arrang#rabove the local variables are in no particutaea
So two sequences that have the same operatioriedpplotally different variables (of different
routines) can be done with a fragment subroutiogiged the order in which local variables are
mapped is such that the offsets of the relevanabkes from the top-of-stack are the same.

Experiments would not be experiments if they alwegmme out as you hoped. Fragment recognition
was a bit of a disappointment, reducing the byiedotal size by only about 10%.

An example - The ABBREV built-in function.

To make all this more real, | am going to work tigh the byte-code implementation of ABBREV.

I am not suggesting you follow closely since yoe aever going to need to work with this internahfo
but the idea is that by noting how often | say saperation is done in one byte you will get a feel
how close the code is to the ultimate in smallness.

Here is the code as written by the ANSI committee:
$9.3.1: /* ABBREV */
call CheckArgs 'TANY rANY oWHOLE>=0'

Subject = #Bif_Arg.1
Subj = #Bif_Arg.2
if #Bif_ArgExists.3 then Length = #Bif_Arg.3
else Length = length(Subj)
Cond1 = length(Subject) >= length(Subj)
Cond2 = length(Subj) >= Length
Cond3 = substr(Subject, 1, length(Subj)) == Sub j
return Condl & Cond2 & Cond3

Here is what is fed to the utility that makes bytele:
/* $9.3.1: */ BifABBREV:

Subject = arg(1)
Subj =arg(2)
if arg(3,'E") then Length_ = arg(3)
else Length_ = length(Subj)
Cond1 = length(Subject) >= length(Subj)
Cond2 = length(Subj) >= Length_
Cond3 = substr(Subject, 1, length(Subj)) == Sub j
return Condl & Cond2 & Cond3

Here is the byte-code that gets assembled intmtagreter:

:$9.3.1

db $WholeGE

ParmsRec <2,1,1101b>

BifABBREV:

db 6*8+3,Frag34,SUBJ-1, Length, Ge,00h,COND1-Tgt,S UBJ, Length

db LENGTH_-1, Ge,00h,COND2-Tgt,SUBJECT,One,SUBJ-2, _Length,_Bifq
db 0f8h,SUBJ-1, Seq,00h,COND3-Tgt,COND1,COND2-1, A nd,COND3-1

db _And, RetB

This is assembler syntax. The semicolon precedesnanent and the colon follows a label. The other
elements, preceded bgh", comma, andParmsRec" each occupy a byte.

The first two bytes correspond to the origi@dleckArgs and tell us that ABBREV has two
mandatory parameters and one optional parametéhwhould be a whole number greater or equal to
zero. The next byte gives the amount of space teberved on the stack when ABBREYV is entered.
TheFrag34 is a call to a fragment, that being shared codauree the built-in LASTPOS starts in a
similar way. Frag34 does the work up untiength(Subject) is on the stack. The next bytes
putSubj on the stack and change that value to its lengitite_Ge compares the top stack items and
the00h says to put the result as a Boolean value ont#od.sThe reference ©OND1is adjusted by

Tgt to show it is to be assigned to. The rest islaingixcept for Bifg which invokes a built-in; the
following byte says the built-in is SUBSTR with éler arguments.

So is this an implementation of ABBREV in 31 byptgs 6 for the name "ABBREV" in some table of
names? We can say that the marginal cost of ABBREAbout forty bytes but full accounting would
make ABBREYV carry a share @heckArgs which is used by all seventy built-in functionsjftof
Frag34 , and some share of the interpreter. An easiestiureis "How big is the byte-code in total?"
The answer to that is 6357 bytes for the 1895 lirfes/e chosen to take from the Standard - thatis
bytes of byte-code per line of Rexx source.

In summary:

» Embedding pseudo-code generated from Rexx of th8l/Atandard has the advantages of
portability and reliability.

« If that Rexx is slightly rewritten to meet a fewnstraints, the variables can be held on the runtime
stack, allowing a tighter form of the pseudo-codiwnly a few bytes occupied per line of
embedded Rexx.

» This pseudo-code compaction prevents the embedsrdip-code from being a disproportionate
part of the size of the interpreter, although thatot of great practical importance. (It would
matter if you were transmitting programs with ipteter attached (in case the recipient didn't have
Rexx installed) but that assumes you know the recils system and that recipients trust you
enough to run the program. NetRexx might fill tieed better.)

There is a different area where pseudo-code siteeraathe area of external routines. For example,
the Rexx in the ANSI Standard describes Rexx Arghioy starting from the base that only arithmetic
on integers is given. Using this code we canartile of examples of arithmetic on particular vegu
and check the results.

{Demo, running on Warp.}

The reason this is comparatively slow is that teex®rom the Standard is run as an external routine
and its pseudo-code representation is too large teeld as an "extended attribute”. This meartdttha
being regenerated from the Rexx source every tmaedutine is called.

The committee that the ANSI committee evolved imis suggested a language solution. If the source
started with an OPTIONS NORELOAD statement it womlgan that the pseudo-code from the initial
generation of pseudo-code was to be held over mangto be reused on subsequent external calls.

With pseudo-code at ten bytes per Rexx line, ConRagx with the NORELOAD option ought to be
practical even in the restricted memory of the DX8em. Regrettably, | cannot demonstrate this ye
which brings us to the topic of completeness anmdarmance.

Completeness and conformance.

Compact Rexx has a complete design, and a fultlsasicture implemented, but there are many gaps
in the implementation. When you are coding for, ftmmpleteness can represent a chore and
sometimes worse than a chore. Here are a cougbeanfiples that | shall dislike implementing.

What do you think this does?

abc = copies("0123456789",200)
def = 1000
say substr(abc,def+2,2)
The answer would normally be "12", but it would betif the code was preceded by
numeric digits 3

The problem is not with substr, which can alwaygecwith argument values large enough to access the
longest of strings, but with thaief+2 addition which will decide that 1000+2 is 1E3.

Nobody has ever shown me a program that benedits ésing numeric digits less than the default of
nine, but the feature has to be supported.

Is this valid Rexx?

b="bb"
doab=1to 10

if a.b>4 then b="cc"
end a.b

The answer is that it will run but has a dependeancthe initial content of stem A. What we haveai
DO loop that changes to a different control vaegart way through the loop! It is hard to imagine
anything less sensible but it has to be supporfdet ANSI committee could not disallow stemmed
variables as control variables because they mighised in a sensible way. The nonsensical uses are
hard to detect.

If and when completeness of an implementation liseaed, what do we know about conformance to
the ANSI standard? The ANSI policy is that impéarters will "self-certify”, that is they will rurests

to allow them to claim conformance. The tests dbcome from ANSI. Some languages may be
supported by commercial implementation of a tegesuror Rexx, the best prospectis RexxLA. We
have some available sources of test data, sudteaxamples in the Rexx book and the tests used by
Regina. There is willingness to organise these anguite on the RexxLA web site.

| hope we can make it happen.

Discussion Topics

Finally, a couple of things where your judgement discussion contributions may be helpful.

What are numeric digits greater than nine used fbin@re are examples like DATE calculations in
microseconds from an historic date, or nationat dakculations in cents, which can use a few more
digits but is there real usage of long numbersiestial calculations, cryptography, or elsewhere?

The Intel hardware will allow decimal numbers tohstd as characters with one digit per character, o
with two decimal digits per byte, or as binary cersions with or without help from the floating pbin
engine. The Compact Rexx design for long numbpesaies on one digit per character but | have a
suspicion that binary is the best for performan€ach hardware operation would then be dealing with
nine decimal digits as opposed to one. This priybaltweighs the fact that shifting numbers to frin
their decimal points into alignment is much fastethe character-per-digit format.

Changing topic, here is a contribution which istlve RexxLA forum:
Mace Moneta <mmoneta@att.com> wrote:

| really enjoyed the REXXwishes article by 8cphof. | agree with

the need for a standard version of REXX, liptopose two standard
versions. A full ANSI REXX, and a "tiny REXXbr use in environments
where the full implementation is not approt&ia
(on-CPU/microcontroller ROMs instead of tingdic or Forth, embedded
applications, Palm Pilots, etc.). This duaisioning has worked well

for other languages, making them usable advassd product lines.

How significant is the interest in Rexx for orgaerig? Is it an automatic reaction, that any new
environment should have Rexx, or is there a speeieti? | have looked at the Psion range of preduct
because my first laptop was a Psion, bought beddusaw Mike Cowlishaw had one. Psion make a
range of organizers and the expensive models atemsically similar to PC's; they have many
megabytes of memory and are programmed in C++welder, the inexpensive Psion 3 is still
marketed with 1 megabyte and an 8086 compatibleerigrty times slower than my laptop, so it has a
nostalgic feel.

| have the book "Programming Psion Computers” aigldlear that the manufacturer has a big
advantage when it comes to supplying programmipgaxi - they can put the support in the Read-
Only-Memory. A Rexx interpreter would run as arysegram, and be restricted to 64K of code and
64K of data. However, the pertinent questionsnatesuch much about making a Rexx interpreter but
about how it would be used. What would usersaligtwant to do? Could those things be done by
Rexx alone, without extra packages for managingscmterfacing with the docking system, and so
on?

I hope that discussions will make this clearehesgitat this Symposium or on the RexxLA site.

