
1Application Initiation

Application Initiation

2Application Initiation

� Definition
� Benefits
� Liabilities
� Competition
� Example

Application Initiation
Topics

3Application Initiation

Application Initiation
What is it?

An in-house script that is executed before the
actual application ensuring that the correct
environment is in place before relinquishing
control to the application.

4Application Initiation

� High Level
� Fault Tolerant
� Simplifies Desktop Settings
� Single Point of Control
� Provides Hooks for In-House Enhancements

� Rexx vs Other Languages
� Easier to learn and more robust that *.bat
� Windows executable
� SAA extensions access controls usually limited to

C++

Application Initiation
Benefits

5Benefits

� Fault Tolerant
� Regains control of the desktop. Can search for

application or dependencies when user has
moved them from the expected location.

� Can detect and react to failures, unlike MS utilities
such as “regedit /s”.

� Does not rely on static settings (autoexec.bat, *.ini
files, or Registry) that are accessible to the user.
The initiator can dynamically adjust all settings,
including the PATH environment variable.

Benefits
High Level

6Benefits

� Simplifies Desktop Settings
� No start-up directory needed in shortcut.
� Eliminates need for special scripts using WINSET

(or other utilities that alter the environment) as a
separate command prior to executing the
application.

� Server URL’s can be removed from PATH.
– A performance side benefit is noticed when network

server directories are not searched for commands.

Benefits
High Level

7Benefits

� Single Point of Control
	 Rexx interpreter, scripts, and static control files

stored in a server directory enables one change to
affect all desktops.

	 Server directory can be locked down to prevent
user meddling.

Benefits
High Level

8Benefits

 Provides Hooks for In-House Enhancements
� “Self Healing”, or self updating features for the

application can be provided by the initiator.
� Network can be tested, and the user given the

option to bail if speed or other resources are not
available.

Benefits
High Level

9Benefits

� Easier to learn and more robust than *.bat
 Self-evident
 DOS executable

– Different types of shortcut’s are loaded on an NT, than
9x. NT requires a *.PIF for DOS, and a *.lnk for Win32
executables. 9x uses *.lnk for both.

– Requires environment size to be defined for scripts that
use the SET a lot. If left unset, in the auto state, it will
cause the script to fail.

Benefits
Rexx vs Other Languages

10Benefits

� Windows Executable
� One icon does all

– DOS executable
– Windows 9x uses a *.lnk file
– Windows NT requires a *.pif

� Will not exhaust environment space (DOS
concept)

� Can execute without user awareness. A window
or console is not required, unless interaction with
the user is necessary.

Benefits
Rexx vs Other Languages

11Benefits

� SAA extensions access controls usually
limited to C++

� Access to Registry
� Database Queries
� Executable’s Properties

Benefits
Rexx vs Other Languages

12Application Initiation

� Interpreted Language
� Single Point of Failure

Application Initiation
Liabilities

13Liabilities

� Slow
� Tradition holds that Interpreted languages are

slower than compiled ones, due to the fact that
each line must be “re-compiled” each time it is
executed. With the speed of today’s PC
processors this difference is only detectable at the
hardware level.

� Resource intensive
� Again tradition is trashed. Regina 0.08h (text

interpreter) vs WinWord 8.0 (graphics app) is
300KB (total) vs 5MB (executable without *.dll’s.)

Liabilities
Interpreted Language

14Liabilities

� If the files server with the Application Initiator
cannot be reached (crashed, network down,
etc.), then none of the apps that it starts can
be used.

� All of the development teams that have used this
approach have stated that if the environment
cannot be set exactly as specified, this is the
desired behavior.

� An alternative method for initiating apps locally
has been developed, but not requested.

Liabilities
Single Point of Failure

15Application Initiation

� Microsoft Scripting Languages
� TNSNAMES Server
� Windows 2000

Application Initiation
Competition

16Competition

� *.bat
� Discussed in slide 10.

� Windows Scripting Language
� Based on Jscript (MS’s version of JavaScript) and

touted as the directionof the future, however, it is
not extensible like Rexx is.

� Visual Basic
� If IBM were to persue this aggressively with

Object Rexx, VB could be wiped off the face of
Marketing Sheets everywhere.

Competition
Microsoft Scripting Languages

17Competition

� TNSNAMES Server is a product provided by
ORACLE to resolve database names into
server names, IP addresses, and IP ports.
This moves those parameters from the
desktop to a server for single point of control.

� The IT department does not control the desktop.
If the user re-installs ORACLE client, then the
SQL.ORA file (by default) no longer points at the
Names Server, but points to an unitialized
TNSNAMES.ORA file, instead.

Competition
TNSNAMES Server

18Competition

� The latest release of Windows from
Microsoft. It attempts to eliminate the need
for Application Initiators by providing utilities
such as: self-healing systems, Intellimirror,
and ASD.

� It requires both user and server run Windows
2000.

� It does not log “self-healing” events, failures, or
any other activity.

� Only reacts to file changes, it does not understand
non-file objects. It will not enforce GUID
consistency across the enterprise.

Competition
Windows 2000

19Application Initiation

� General Initiation
� ORACLE Setup

� Specific Application Setup
� PeopleSoft 6.0 is the sample application

Application Initiation
Example

This example is divided into two parts. The
first part is general and can be used by
many applications. The second part sets
the environment specific to the application
being launched.

20Application Initiation

Application Initiation
Example

The command syntax is:

Init_Ora_App [product name]

In the example this is:

Init_Ora_App PeopleSoft

21Application Initiation

Application Initiation
Example

The following files are used:
Init_Ora_App.exe

Ora.setup
Product.setup
Domain-help.tbl

PeopleSoft.setup
Product-domain.tbl
PeopleSoft.psreg
PeopleSoft.psalwaysreg
PeopleSoft.environment
PeopleSoft.PATH

Initiator
Main script
Substitution variables
Telephone numbers

Main product script
Substitution variables
Registry settings
Substitutable Registry
Substitutable env vars
Substitutable PATH vars

22Example

 Find the ORACLE executables
 Find the Admin directory
 Update the TNSNAMES.ORA file
 Update the PATH
 Make the ORACLE executable directory the
current directory.

 Call the script specific for the application.

Example
General Initiation

23Example

! Create the correct Registry entries
! Setup the environment variables
! Add the necessary directories to the PATH
! Launch the application

Example
Specific Application Setup

24General Initiation

" Examine the data in the Value pointed to by
the Registry Key - Attribute named
“HKEY_LocalMachine\SOFTWARE\ORACL
E\ORACLE_HOME”

" Append “\bin” to that Value.

General Initiation
Find the ORACLE executables

25General Initiation

Get the version to the file OCIW32.DLL, the
ODBC driver.

$ X is version 7 of the ORACLE client; Y is version
8 of the client.

Find the correct NETxx Attribute in the
ORACLE Registry Key.

$ NET20 for version 7
$ NET80 for version 8

The Value of the NETxx Attribute, plus
“\Admin”, is the path.

General Initiation
Find the Admin directory

26General Initiation

% If the SQLNET.ORA file points to
TNSNAMES, not the Names Server, then:

& Look for an old entry (listed by database name) in
the TNSNAMES.ORA

& Remove it, if it exists.
& Add an entry using the information in the

product.setup file.

General Initiation
Update the TNSNAMES.ORA file

27Specific Application Setup

' Read the Registry entries from the
PeopleSoft.psalwaysreg file.

(Perform any necessary variable substitution
' Issue an error message if one of the
variables cannot be set.

(Give the user the option to continue or abort the
installation.

Specific Application Setup
Create the correct Registry entries

28Specific Application Setup

) Read the variables and values from
PeopleSoft.environment file.

* Perform any necessary variable substitution
) Set them using the built-in Rexx function.

They will only persist as long as this process,
or its children, exists.

* Prevents filling the environment space for
applications other than PeopleSoft.

Specific Application Setup
Setup the environment variables

29Specific Application Setup

+ Extract the list of path’s to append from the
PeopleSoft.PATH file.

+ Convert all path’s in the PATH variable from
short names to long names

+ Append the new paths to the PATH
+ Remove duplicates

Specific Application Setup
Add the necessary directories to the PATH

