SAA Interface

Windows Toolkit

BY
JAMES G. HASSLACHER, JR.

SAA Interface

SAA Interface

Microsoft guts as viewed by Win32

Microsoft provides access to its features only
to a GUI, and the tool set that was used to
build the GUI. To allow Rexx the ability to
manipulate and examine these features, it was
necessary to contruct a utility with that
functionality. The utility is hooked into Rexx
through the SAA Interface for robustness that
a command line interface cannot provide.

SAA Interface

SAA Interface

Features
The most important are:

= Access to the Windows’ Registry
» GET, SET, DELete, and FIND

m Extended access to the file system
» File attributes
» Win32 executable properties

= Manipulation of the PATH environment
variable

= Execution of system commands
» By-pass “browser lockout” of USER32.dlI

SAA Interface

SAA Interface

Invocation

The WinFuncs.dll must be in a directory
named by the PATH, and compiled for the
Rexx interpreter that will be executing. Before

using any of its function, the following lines
must be in the Rexx program:

*/

call RxFunciAdd "InitWinFuncs”, "WinFuncs", "EfnWinRegFuncs™

call InitWinFuncs

SAA Interface

Windows Toolkit

Registry Tutorial

The Registry is a hierarchial tree comprised of
four (4) distinct elements:

= Hive

m Key

= Value*

= Not named, but most often refered to as Data

* The name Value is very confusing. It is not the value of the
key, but does contain the value. The best way to think of it is as
the last subkey name with looser naming conventions.

Windows Toolkit

Windows Toolkit

Registry Tutorial

HIVE
HK_LM
Key Key
SOFTWARE Key?2
Key Key Key Key Key Value
Microsoft ORACLE IBM Key2-1 (Or subkey)
Key Value Value Data
Printer Printer\ (Actual value)
Value Data Data
“Keditw32" Lptl:
Data
Lpt3:

Windows Toolkit

Windows Toolkit

Registry ambiguity

What does the Value named by
\HK _LM\Key2\Key2-1\Printer\
Contain: Iptl:, or [pt3?

Windows Toolkit

Windows Toolkit

Registry Function Syntax

Initial syntax:

0 RegGet(fully qualified Value name)

o0 RegSet(full Value name, data [, suggested data type])
0 RegDel(full Value/Key name)

0 RegFind(string [, search object type [, starting
position]])

Syntax in reaction to the ambiguity:
0 RegAPI(action, Hive name, Key Name [,Value Name

[,data [,suggested data type])

Windows Toolkit

Windows Toolkit

Ambiguity resolution

= There are two ways to deal with this:
» Name it in one string, lettting the ambiguity
remain:
— Data = RegGet("\HK_LM\Key2\Key2-1\Printer\”)
» Force the user to parse it for you:
— Data = RegAPI("Get”,"HK_LM”","Key2\Key2-1","Printer\")
— Or

Windows Toolkit

Windows Toolkit

Registry Demo

= Test.cmd
= Test RegSet.cmd
= Notepad removal demo.CMD

Windows Toolkit

10

Windows Toolkit

File System Routines

m Extended File Attributes

Windows, through the FindFirstFile API, will return these attributes:

"A" "Archive" "O" "Offline"

"C" "Compressed" "R" "ReadOnly"

"d" "Directory" "P" "Reparse Point"
"E" "Encrypted" "$" "Sparse"

"H" "Hidden" "S" "System"

"N" "Normal" "T" "Temporary"

All of the attributes that follow must be have logic other than the

Windows FindFirstFile API to determine their true/falseness.
" "Regular"
"r" "Readable” Hold over from Unix. Always true, if exists.

JEEecuableRle. RroRe e S mission

For executables compiled into the Windows PE format that include a
resource, the strings of that resource are extracted. Currently, it does NOT
do FE format (OS/2 executables, and *.vim’s.).

Windows Toolkit

11

Windows Toolkit
File Attributes
Code Sample Part 1

f*
* Initialize the library, show the attributes for warious
* +then show boolean tests for the same files.
*/

c¢all RxFuncAdd "InitWinFuncs”, "WinFuncs", "fnWinRegFuncs"

c¢all InitWinFuncs

EKnown flat ascii text file.
FileAttribs ("WinFuncs.c™)
"The attributes for WinFuncs.c are *TAT*T

KEnown flat ascii text file, with 0 bytes.
FileAttribs {"Hew Text Document.txt™)
"The attributes for "Hew Text Document.txt’™ are *"AT*"

Check out a directory.
FileAttribs ("Releasea™)
"The attributes for Release are *TA"*T

Check out a file that doesn't exist.
FileAttribs ("FooBar™)
"The attributes for FooBar are *TA"®T

Check out some system files ({(if wou have HT)

Windows Toolkit

files,

12

Windows Toolkit
File Attributes

Code Sample, Part 2

P Check out some system files ({(if wou hawve HT)
Say "The attributes for “IO.sys are *"FileAttribs{"\io.sys")"*"
Say "The attributes for “wntldr are *"FileAttribs {"\ntldr™)"*"

/* Boolean wvalue check. *f

i Check out the flat ascii f£file. First for one attribute, second forxr
all of the attributes returned by FilelAttribs (), £inally, ensure that
the attribute check string is not order dependant. * 5

Sav "TestFile {("WinFuncs.c","aA") " TestFile{"WinFuncs.c™,6 "A™)

Sav "TestFile {("WinFuncs.c", "Tafrsw™) ' TestFile ("WinFuncs.c","Afrsw™)

Sav "TestFile {("WinFuncs.c", "Tarfsw™) ' TestFile ("WinFuncs.c","Arfsw™)

P Hopefully, the empty f£ile does not have length greater than 0 bytes
Sav "TestFile ("Hew Text Document.txt™,"s") " TestFile{"Hew Text Docume

F* Is the directory a directory? Is it readakle?
Say "TestFile ("Release™ ,"d™) T TestFile ("Release™,L"d™}
Say "TestFile ("Release™ ,"r™") T TestFile ("Release™,6 "xr™)}

F* Is the non-existant file a directory? Is it readakle?
Say "TestFile ("FooBar™ ,"d") " TestFile {("FooBar™, "d"™)
Say "TestFile ("FooBar™ ,"x") " TestFile {("FooBar™, "x™)

F* TWhat happens when a nonexisting attribute is checked?
Say "TestFile ("FooBar™ ,"z") " TestFile {("FooBar™,"=z")

Windows Toolkit 13

Windows Toolkit

File Attributes
Results of execution

C:\work\winTuncs\Test Scripts»regina "Test File Attributes.cmd
attributes for winFuncs.c are *Afrsw*
attributes for 'New Text Document.txt' are *Afrw*®
attributes for Release are *drw*
attributes for FooBar are *%*
attributes for \IO.sys are “AHRSfrs+
attributes for \ntldr are **
TestFile("winFuncs.c","A") 1
TestFile("winFuncs.c","Afrsw'") 1
TestFile("winFuncs.c","Arfsw') 1
TestFile("New Text Document.txt","s") 0
TestFile("Release","d") 1
TestFile("Release","r") 1
TestFile("FooBar","d") 0
TestFile("FooBar","r") 0
ERROR: Invalid Call to *.d11 function.
Invalid File Attribute(s), "z", starting with "z". valid attributes are "ACAEHN(
RPSSTTrsw".
50 +++ Say 'TestFile("FooBar","z") ' TestFile("FooBar","z")
Error 40 running "C:\Work\Winfuncs\Test Scripts\Test File Attributes.cmd", line
50: Incorrect call to routine

Windows Toolkit 14

Windows Toolkit

File Properties

m The Version section
of the Resource file

= The same
iInformation that is
obtained by right-
clicking the file, and
choosing
“Properties” from
the list

Windows Toolkit

WinFuncs_dll Properties EHE |

General Yerzion I

Filz werzion: S

Dezcrption: Windows Functions DLL for Regina Resxs:

Copyright: Copyright € 1933 - 1333

— Other verzion information

[tern narme: Y alue:

m James . Hasslacher, Jr. ﬂ

Cormments —

Compary Mame
Internial M ame
Language

Leqgal Trademarks
Licenze

Original Filenarme
Private Build Descripi™

Product Mame
Product Yersion ﬂ j

15

Windows Toolkit

File Properties

= FileVers(filename)
» Extracts only the version of the executable

= FileProp(filename)

» Extracts all of the properties into two stems.

» FileStem contains the names of the property strings.

— The first index to this stem is 0. That contains the number of
number string names.

» FileVal contains all of the values for the property strings.

— The index to this stem is the property name; ie, the values in
FileStem

= FileDumpProp(filename)

» Used for debugging. Prints the properties section in a hex
dump format.

Windows Toolkit 16

Windows Toolkit
File Properties Code 1 of 3

/* (Call this script, passing in the name of an executable to che
* Ex:
* regina "Test File VerProp.cmd” "c¢:\Windows\Explorer.exe"

*/

c¢all RxFuncidd "InitWinFuncs™, "WinFuncs™, "EnWinRegFuncs™
c¢all InitWinFuncs
arg = Arg(l)

SBay "File Version of "arg"™ is "FileVers (arg)

/* This was written while the function was still being tested.
is an error, then call an undocumented function to dump the £il
to the terminal in a hex disply format.

If FileStem.!'RC = -51 then Do
Say "filestem.!'FailPoint "filestem.!FailPoint
Say "filestem. !'WinRC "filestem. 'WinRC
Say "filestem.!'WinMsg "filestem. 'WinMsg
Call FileDumpFProp arg
Return
End

Windows Toolkit 17

f*

of the feedback (!RC,
properties returned, the name of the first property,
first property.
1.
2.
Finally,
Bullwinkle when I do this.

Windows Toolkit

File Properties Code 2 of 3

Call the function, pr
Then print out the nu
and the wa
Hote that it is two steps to get the walue:
Assign the property name to a temporary wvariable.

Use the temporary as the index wariable to the value stem.
try a short cut (single step) to address the wvalue. I
Ho matter how many times that I try

How test the file properties function.
'FailPoint, etc.).

trick never works.

Say
Say
Say
Say
Say
Say
Say

Say

but since the look-up is symbolic,
filewval.,

Say

"File Properties "FileProp (arg)

"filestem.
"filestem.
"filestem.
"filestem.

IRC
'FailPoint
IWHinRC

"filestem.
"filestem.
"filestem.

IRC
'FailPoint
I'HinRC

"Filestem. 'WinMsg
"filestem.0
"filestem.l

IWinMesg
"filestem.D
"filestem.l

= filestem.1l
"fileval.l
"fileval.l

This doesn't work either.

"fileval.foo

"fileval.filestem.1l

filestem.l resolwves to the name (m
Rexx uppercases that before
g0 it comes up with nothing. *f

"fileval.l "value("fileval."filestem.1l)

Windows Toolkit 18

Windows Toolkit

File Properties Code 3 of 3

/* Before leaving, show all of the properties associated with th
Do i =1 to FileStem.0
foo = filestem.i

Say "filestem."i"™ "gsubstr (filestem.i,1,30)" "fileval.foo
End

Note that this Is a two stage process. Extract the
stem index from FileStem., use that to look up the
actual value in FileVval..

Windows Toolkit 19

Windows Toolkit
File Properties Results

C:\Work\wWinfuncs\Test Scripts»regina "test file verprop.cmd” \rexx\regina\winfu
cs.d11 >\temp\foo

File Version of \rexx\regina\winfuncs.dll is Alpha
File Properties

filestem. IRC 0

filestem. 'FailPoint

filestem. !'WinRC

filestem. 'WinMsg

filestem.0 17

filestem.1l Author

fileval.l James &G. Hasslacher, Jr.
fileval.l FILEVAL .FILESTEM.1
fileval.l FILEVAL . AUTHOR

filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.
filestem.

Windows Toolkit

1
2
3
4
3
&
7
8
9

Author
Comments
CompanyHame
FileDescription
FileVersion
InternalHame
LegalCopyright
LegalTrademarks
License
OriginalFilename
PrivateBuild
ProductHame
ProductVersion
SpecialBuild
Language
Designed for
File type

James &G. Hasslacher, Jr.
Currently, only the Registry functions e

Windows Functions DLL for Regina Rexx
Alpha

WinFuncs

Copyright © 1999 - 1988

GNU Library General Public License. See
WINFUNCS .DLL

Windows Functions
Alpha

English {(United States)
Unknown API on an Unkown Operating Syst
DLL

20

Windows Toolkit

PATH manipulation

One function, ExpandPath(argument), performs
all of the necessary manipulation.

= The argument can be any valid PATH syntax
» One, or more, path’s separated by semi-colon’s(;).

» Paths may be:
— absolute
— relative
— UNC

= The return string is the argument with all of the
short path names expanded to long names, and
any duplicates removed.

= [f a path does not exist, then it and its associated
semicolon are removed from the return string.

Windows Toolkit 21

Windows Toolkit

PATH manipulation Code 1 of 2

/* This function is extremely difficult to write one test script that will
actually test the wvarious conditions on different machines. The paths
from the development machine were left, along with enough comments that
the user might be able to reproduce the subroutines logic.

You will have to modify the UNC test cases to include a valid name.
If this is not being tested, or run, on network connect machine, then this
point is moot.
The development machine was running HT 4.0 SP4. It alsc had IBM's
Object Rexx installed. *f
call RxFuncAdd "InitWinFuncs"”, "WinFuncs™,K "fnWinRegFuncs™
c¢all InitWinFuncs

f* Try a single path.
a = ExpandPath ("¢:\OBJECT~1\0O0ODIALOG™)
Say A

f* Try a multiple path. Hot the leading blank.
a = ExpandPath (" C:\progra~1\ORANT\bin;c:\OBJECT~1\0O0DIALOG")
Say A

/* Try a UNC path. Note the trailing blanks.
a = ExpandPath("\\server\devicehZdir~1 ™y
Say A

Windows Toolkit 22

Windows Toolkit
PATH manipulation Code 2 of 2

f* Try a more of a real life test. Retrieve the PATH environment wvariable.
Expand it. 8ee if the path that we want is in the PATH. If not, prepend it. */
P = ExpandPath{Value ("PATH", , "ENHVIRONMENT"))
D = "c:\program Files\Kedit® "
If Pos{"; 'Translatei(D) ' ';",'; "Translate{P)' ;")
D = "o:\winnt"
If Pos{"; 'Translatei(D) ' ;" ,'; 'Translate{P) ;")
= Value ("PATH" ,F, "ENVIRONMENT ")
R = Value ("PATH", , "ENVIRONMENT")
Say "The new path is *"R"*"

/* How for all of the wierdo cases.
/* 8See what the root returns.

Say "Root " ExpandPath({"c:\")

Say "Drive only " ExpandPath("c:™)

/* See what a file returns.
a = ExpandPath{"c:\Autoexec.bat™)
Say "Expand a file name *"AT*"

/* What about a directory that doesn't exist?
a = ExpandPath{"C:\progra~2\ORANT\bin™)
Say "*C:\progra~2\ORANT\bin* doesn't exist. Should be a ZL& #*"A"*"

/* Try a UNC root. +try with and without ending \.
Say "UNHC Root ™ ExpandPath ("\\Serveri\device\™)
Say "UNC Root ™ ExpandPath ("\\Server\device™)

Windows Toolkit 23

Windows Toolkit

PATH manipulation Results

C:\Worlki\winfuncs\Test Scriptsrregina "test ExpandPath.cmd"

he new path is *c:\winnt;c:\program Files\Keditw;C:\REXX\REGINA; C:\OBIREXX;C:\0
B IREXX\OODIALOG; C: \WINDOWS ; C: \WINDOWS ; C: \WINDOWS Y\ COMMAND ; C:\DOS*

Root

Drive only

Expand a file name **

#C:\progra~2\ORANT\bin* doesn't exist. Should be a ZLS **

UNC Root

UNC RooOT

Windows Toolkit 24

