
Rexx Arithmetic
- more than just numbers

Mike Cowlishaw
IBM Fellow
http://www2.hursley.ibm.com
mfc@uk.ibm.com 10

rexxsy01

Overview

Rexx arithmetic

Current status
 Databases
 Other languages
 Hardware
 Standards

Rationalizing decimal arithmetic

Questions?

Why is decimal arithmetic
important?

Decimal arithmetic represents numbers in base
ten, so uses the same number system that people
have used for thousands of years

Pervasive for financial and
other commercial applications;
often a legal requirement

55% of numeric data in
commercial databases are
decimal (and a further
43% are integers)

0.1 = 1/10 = 1 x 10 = 1E-1

= 0.0001100110011...

= 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 +
 1/8192 + ...

Decimal:

Binary:

-1

The trouble with binary

Repeated division by 10; what users expect:

Decimal
9
0.9
0.09
0.009
0.0009
0.00009
0.000009
9E-7
9E-8

Repeated division by 10; what they get:

Decimal float (binary)
9 9
0.9 0.9
0.09 0.089999996
0.009 0.0090
0.0009 9.0E-4
0.00009 9.0E-5
0.000009 9.0E-6
9E-7 9.0000003E-7
9E-8 9.0E-8

Another example

What does the following code segment display?

double a=1.00D, b=0.10D;

System.out.println(a);
System.out.println(b);
System.out.println(a/b); // divide
System.out.println(a%b); // remainder

1.0
0.1
?
?

Another example

What does the following code segment display?

double a=1.00D, b=0.10D;

System.out.println(a);
System.out.println(b);
System.out.println(a/b); // divide
System.out.println(a%b); // remainder

1.0
0.1
10.0
?

Another example

What does the following code segment display?

double a=1.00D, b=0.10D;

System.out.println(a);
System.out.println(b);
System.out.println(a/b); // divide
System.out.println(a%b); // remainder

1.0
0.1
10.0
0.09999999999999995 (almost 0.1!)

Binary floating point is currently essential only
where performance is the overriding concern

 for example, matrix inversions
 for these cases, use C or Java float and double
 types

In all other cases, use decimal arithmetic
 Rexx, Object Rexx, and NetRexx all do this for you by
 default

When to use decimals?

Rexx arithmetic, 1979-1999

Rexx 1.0 [May 1979]

'Minimal' arithmetic – minimum necessary to be
useful (loop counters, etc.)

Integers only

This was a 'holding' implementation, while other
parts of the interpreter were designed and
implemented

Rexx 1.10 [January 1980]

Plain decimal arithmetic (no exponents)

Up to 9 digits after the decimal point

Precision of result is determined by the more
precise of the two terms involved in an operation

Worked well, but results could often surprise

8/3 2 8/3.00 2.67

Rexx 2.50 – the 'new' arithmetic
[May-July 1981]

Developed primarily by e-mail

Initially controversial (because it changed the
behaviour of existing programs)

Widely discussed and researched (REX [sic] was
in use in 43 countries by then)

Essentially the same as the arithmetic in "The
Rexx Language" book (1985 & 1990)

The choice of arithmetic

The principle:

"REX arithmetic attempts to carry out the usual
operations in as 'natural' way as possible. What
this really means is the rules which are followed
are those which are conventionally taught in
schools and colleges."

(7 Oct. 1981)

Rexx arithmetic [1]

Full-function decimal floating point arithmetic

Preserves mantissa length, etc. For example,
1.20 x 2 gives 2.40 (not 2.4)

Exact representations, as expected (0.1)

Precision is user-selectable (numeric digits)

Exponents from E-999999999 through
E+999999999

Rexx arithmetic [2]

Robust: all ill-defined or out-of-range results raise
errors

Integers are a seamless subset of all numbers

Evolved over 18 years, based on user feedback
and requirements (including mathematicians,
experts in data processing, financial users, etc.)

Numerous public-domain and commercial
implementations exist

ANSI (X3-J18) refinements

Trigger to exponential notation after 0.000001
(not dependent on DIGITS setting for numbers
less than one)

LostDigits condition (raised if input data too
precise)

Input data rounded to DIGITS (not DIGITS+1)

Published as ANSI X3.274-1996 (see
www.rexxla.org), refined through 1999

NetRexx arithmetic

Exactly as ANSI (except that FUZZ setting is not
included)

Both numeric digits and numeric form

Implemented in the netrexx.lang.Rexx Java
class (therefore usable by all Java programs)

Decimal arithmetic everywhere?

... not a new idea ...

"Fingers or Fists?" (Werner Buchholz, 1959)

Unified Decimal Floating-Point (Fred Ris, 1976)

Base 10 floating-point, (Tom Hull, 1978)

Rexx decimal floating point (1979-1999)

Radix-Independent Floating-Point (IEEE 854,
1987)

Current Status (Databases)

IBM DB2: 31 digit packed decimal integers, with
implied scale

Microsoft/Sybase: 38 digit integers, held in binary

Oracle: 38 digit bunched decimal floating point

XML: Schema includes (broken) decimal data type

Current Status (Languages)

C/C++: 15-31 digit fixed decimal support
COBOL: 31 digit fixed decimal support; the new
standard in 2001 will require 32-digit floating point
Java: unlimited floating point decimal support (by
IBM)
JavaScript/JScript: floating point decimal planned
C#, VB, etc. (Microsoft .Net platform): 28 digit
floating point decimal
PL/I and VisualAgeGen: as C
Rexx family: unlimited floating point decimal support

Current Status (Hardware)

z-Series (IBM S/390): decimal integer instructions
(Store-to-Store) are built-in

Most non-RISC processors (Intel x86, Motorola
68xxx, etc.) have decimal adjust instructions to
aid decimal integer arithmetic (not accessible
from C)

In general, decimal arithmetic has to be carried
out in software; 100x to 1000x slower than
hardware (or worse)

Current Standards

ANSI X3.274-1996 (Programming Language
Rexx)

 floating point arbitrary precision decimals

IEEE 854-1987 (Radix-Independent Floating-
Point Arithmetic)

 generalization of IEEE 754, to allow for base-10
 fixed precision

Rationalizing decimal
arithmetic

Three specifications:

 Concrete representation, suitable for hardware or
 software implementation

 Base specification: core floating point and integer
 operations, based on ANSI X3-274

 Extended specification: extends the base to comply with
 IEEE 854

Open specifications; available on the web

Decimal representations
For example: 1234.50

Traditional fixed point: integer and scale

Floating point: mantissa and exponent

 many advantages in the mantissa being an integer

123450

-2

2

123450

Decimal digit representation

Bi-quinary (e.g., Abaci, IBM 650, 74390 TTL
Ripple Counter, some 'Nixie' tubes)

8.4.2.1 (Binary Coded Decimal) - 4 bits, 8-bit,
or 1 character per digit

Excess-3 (4 bits/digit, values biased by 3)

6.3.1.1, 2.4.2.1, 2-out-of-5, 1-out-of-10, Gray

Negadecimal (base -10), needs no sign

Multi-digit representations

Base 100 (0-99 in a byte)

Base 1000 (0-999 in 10 bits), Chen-Ho, and the
new Densely Packed Decimal encoding

Probably the optimal decimal-based representation

Base 1,000,000,000 (0-999999999 in 32 bits)

Big Integer (mantissa is a pure binary integer);
this needs fast algorithms for multiplying or
dividing by powers of 10

Concrete representations

64-bit (3 flags, 11 exponent, 50 integer), 3+15
digits

128-bit (3, 15, 110), 4+33 digits

Exponent is biased binary; integer is 3-in-10
Densely Packed Decimal

123450

-2 123450

-2

Object-oriented design concept

Arithmetic operations depend on:

numbers (many instances)

the context in which operations are carried out (usually
implied, and relatively global)

This is mirrored by objects:

a class that holds (decimal) numbers

a small context class, which provides information such as
precision and rounding mode

The IBM implementation for JavaTM

BCD (byte/digit). Function upwards-compatible
with the java.math.BigDecimal class

Fully documented; implementation is open source
and available from:

http://www2.hursley.ibm.com/decimalj

Working through Java Community Process to
integrate into the Java Core, using the
java.math (BigInteger + scale) representation

Example - Compound Interest

$100,000 at 6.5% for 20 years...

/* Java program to calculate compound interest */
import com.ibm.math.*;
public class compound{
 public static void main(String arg[]){
 MathContext def=MathContext.DEFAULT;
 BigDecimal start=new BigDecimal(100000);
 BigDecimal years=new BigDecimal(20);
 BigDecimal rate =new BigDecimal("1.065"); // (6.5%)
 BigDecimal total;

 total=rate.pow(years,def).multiply(start,def);
 System.out.println("Final value ="+
 total.toString());
 }
}

Other users of Rexx arithmetic

DB2 database

COBOL, PL/I, Language Environment

ECMA/Microsoft VB, C#, and .Net (subset)

JavaScript/JScript (ECMAScript)

Hardware proposal at IEEE Arith15 (June 2001)

(in progress)

Summary

Binary arithmetic will continue to be used

Decimal data and arithmetic predominate

Rexx decimal arithmetic is well understood,
standardized, and quite possibly could become
the standard arithmetic

Native decimal datatypes are already in many
languages (COBOL, PL/I, Rexx, C# ...); once
hardware support is available this will accelerate

Questions?

http://www2.hursley.ibm.com/decimal

