
GCI
The Generic Call Interface

Florian Große-Coosmann

2004 Rexx Symposium
Böblingen-Sindelfingen, Germany

May 5, 2004

● GCI is an extension of the RxFunc...
function package.

● It allows a REXX-only solution for calling

external function packages without a

wrapper library.
● Its home is:

http://rexx-gci.sourceforge.net

Generic Call Interface

F

● easy to use wrapper tool for packages
● reduction of error response time
● support for rapid prototyping
● flexible programmer's interface
● nearly system independent syntax
● usage completely in REXX
● reduction of the distance to state-of-the-

art script languages

Goals

F

● GCI is a package like many others
● GCI runs on several operating systems

– Win32, OS/2, unix

– supports 64 bit systems
● GCI can be compiled for various interpreters

– Regina, Object Rexx, Classic Rexx, RexxTrans, ...
● GCI is able to be compiled into the core of an interpreter

– e.g. Regina
● GCI is open source and easy to configure or adapt
● GCI is extensible

Overview

F

wrapping
phase

using
compiler & linker

wrapping
code

OS shared
library (DLL)

usage
phase

registered function
call

REXX function
pool

foreign
library

linking
phase

RxFuncAdd REXX function
pool

+

OS or foreign library

Former Standard

F

declaration
phase

RxFuncDefine GCI element
pool

REXX function
pool

++

usage
phase

GCI function call REXX function
pool

GCI element
pool

OS or foreign library

Design

F

aStem.calltype = cdecl with parameters as function
aStem.0 = 1 /* # args */
aStem.1.type = float96 /* arg type */
aStem.return.type = float96
call RxFuncDefine sin, "libm.so.6", "sinl", aStem
/* do some error checking */
do i = 0 to 6
 say "sin(" || i || ") =" sin(i)
 end
/* --> sin(0) = 0.000000000000000000000E+00
 * sin(1) = 8.414709848078965066646E-01
 *... */

Short example

F

● Always use strings: CDECL may not be "CDECL"

● Stem names should be quoted, too

● Although not forced, names are highly

recommended

● "AS FUNCTION" doesn't work for complex types

● "WITH PARAMETERS" doesn't work for complex types

● not all types are consistent between OSs, e.g.

FLOAT96

Caveats, Pitfalls, Traps

F

aStem.calltype = "cdecl with parameters as function"
aStem.0 = 1 /* # args */
aStem.1.type = "float96" /* arg type */
aStem.1.name = "radians" /* convenient name */
aStem.return.type = "float96"
aStem.return.name = "sin of the radians"
call RxFuncDefine "SIN", "libm.so.6", "sinl", aStem
/* do some error checking */

do i = 0 to 6
 say "sin(" || i || ") =" sin(i)
 end

Short example 2

F

● The declaration phase is done by RxFuncDefine.
● The fourth parameter is the only difference from

RxFuncAdd.

● The fourth parameter's content is a stem or a branch,

valid values are:

– aStem
– aStem.
– aStem.branch
– aStem.branch.

● The value should be passed as a string e,g, "aStem."

Declaration

F

[RC =] RxFuncDefine(iName, Lib, lName, branch)

branch elements:
● .CALLTYPE
● .0 = <count arguments>
● .1 /* e.g. .1.TYPE = CHAR8 */
● .2
● ...
● .<count arguments>
● .RETURN

RxFuncDefine's syntax

F

Each argument and return consists of

● .TYPE = [INDIRECT] <type>

● [.NAME = <convenient name>]

● [.0 = <array or container element count>]

● [.1 = <first container or array element>]

● [.n = <last container element>]

Arguments

F

The calltype leaf describes the nature of the function

syntax: type [AS FUNCTION] [WITH PARAMETERS]

type: CDECL | PASCAL | STDCALL | <other known types>

● Wrong types may lead to program/system crashes.
● AS FUNCTION is convenient, but doesn't allow complex

return codes and interferes with error codes
● WITH PARAMETERS is convenient, but doesn't allow complex

arguments

A parameter passing stem is normally used.

Calltype

F

● Integer types are defined by the keyword

"INTEGER" immediately followed by or blank

separated by a bit count. Another type is a plain

integer using the default integral type.

– INTEGER 8
– INTEGER16 /* may be equivalent to integer */
– INTEGER 32 /* may be equivalent to integer */
– INTEGER64 /* may be equivalent to integer */

Integer Types

F

aStem.calltype = "cdecl as function with parameters"
aStem.0 = 1
aStem.1.type = "integer"
aStem.1.name = "character"
aStem.return.type = "integer"
aStem.return.name = "uppercased character"
call RxFuncDefine "TOUPPER", "libc.so.6",,
 "toupper", aStem
/* do some error checking */

say "toupper(ü) =" d2c(toupper(c2d('ü')))

Integer Example

F

● Unsigned types are defined by the keyword

"UNSIGNED" immediately followed by or blank

separated by a bit count. Another type is a plain
unsigned using the default unsigned integral

type.

– UNSIGNED 8
– UNSIGNED16 /* may be equivalent to unsigned */
– UNSIGNED 32/* may be equivalent to unsigned */
– UNSIGNED64 /* may be equivalent to unsigned */

Unsigned types

F

aStem.calltype = "cdecl as function with parameters"
aStem.0 = 1
aStem.1.type = "unsigned"
aStem.1.name = "size"
aStem.return.type = "unsigned"
aStem.return.name = "mem block casted to unsigned"
call RxFuncDefine "MALLOC", "libc.so.6", "malloc",,
 aStem
/* do some error checking */

say "5 byte allocated at" malloc(5)

Unsigned example

F

● FLOAT types are defined by the keyword

"FLOAT" immediately followed by or blank

separated by a bit count.

– FLOAT32
– FLOAT64
– FLOAT80 /* sometimes */
– FLOAT96 /* sometimes */
– FLOAT128 /* sometimes */

Float Types

F

aStem.calltype = "cdecl as function with parameters"
aStem.0 = 2
aStem.1.type = "float64"
aStem.1.name = "X"
aStem.2.type = "float64"
aStem.2.name = "Y"
aStem.return.type = "float64"
aStem.return.name = "polar angle of (X,Y)"
call RxFuncDefine "ATAN2", "libm.so.6", "atan2",,
 aStem
/* do some error checking */

numeric digits 16; say "pi =" 2*atan2(1,0)

Float Example

F

● Character types are either "CHAR" or

"CHAR8" or defined by the keyword "STRING"

immediately followed by or blank separated

by a byte count.

– char 8 /* = char = char8 */
– string 20 /* occupies 21 byte because a
 * hidden ASCIIZ-terminator is
 * appended. Use arrays of CHAR8
 * for true character buffers.
 */

Char Types

F

aStem.calltype = "cdecl as function with parameters"
aStem.0 = 1
aStem.1.type = "integer"
aStem.1.name = "errno code"
aStem.return.type = "indirect string 100"
aStem.return.name = "errno literal description"
call RxFuncDefine "STRERROR", "libc.so.6",,
 "strerror", aStem
/* do some error checking */

say "errno(13) means" strerror(13) /*double buffer*/
say "do you know errortext(100+13)?"

Char Example

F

● Containers are defined by the keyword

"CONTAINER" and have additional fields equivalent

to arguments for grouping.

– c.TYPE = "CONTAINER"
– c.NAME = <convenient name>
– c.0 = <element count>
– c.1 /* e.g. c.1.type = char8 */
– ...
– c.<element count>

Container

F

RxString.type = "container"
RxString.0 = 2
RxString.1.type = "unsigned32"
RxString.1.name = "strlength"
RxString.2.type = "indirect string 256"
RxString.2.name = "strptr"

/* Direct siblings are not aligned specially.
 * Be careful when using small subtypes.
 */

Container Example

F

● Arrays are defined by the keyword "ARRAY" and

have additional fields equivalent to "CONTAINER".

– c.TYPE = "ARRAY"
– c.NAME = <convenient name>

– c.0 = <element count>

– c.1 /* e.g. c.1.type = char8 */

/* Just elements .0 and .1 */

Array

F

anArray.type = "array"
anArray.name = "a construct"
anArray.0 = 10
anArray.1.type = "indirect string 256"
anArray.1.name = "some string"
/* no anArray.2.type required */

/* The array contains space for 10 pointers. Each
 * pointer points to a hidden allocated buffer of
 * 257 bytes. Each buffer is aligned to a processor
 * friendly address.
 */

Array Example

F

● A Container's content can be taken from another

container by using the "LIKE" keyword.

● Set the type field to
– CONTAINER LIKE <name of a stem or branch>

Container Like

F

aStem.calltype = "pascal as function" /* can't use
"with parameters" because of complex arguments */
aStem.0 = 5
aStem.1.type = "indirect string 256" /* used name */
aStem.2.type = "unsigned32" /* arg count */
aStem.3.type = "indirect array" /* arguments */
aStem.3.0 = 10
aStem.3.1.type = "container like RxString"
aStem.4.type = "indirect string 256" /* queuename */
aStem.5.type = "indirect container like RxString"
aStem.return.type = "unsigned32"

call RxFuncDefine "RxFuncDefine", "libgci.so",,
"RxFuncDefine", aStem

Container Like Example

F

Signals are thrown when

● wrong stem values are used when calling

RxFuncDefine
● a buffer overrun occurs on input for strings

● a value overrun/underrun occurs on input of values

● ±INF or NaN occurs on output of values

GCI_RC is usually set. RxFuncErrMsg() returns GCI_RC
within Regina.

Thrown Signals

F

● Callback support

● Increase number of supported systems

● Better math unit support while passing

parameters

Outlook

F

