
and other cool features

Florian Große-Coosmann & Mark Hessling

2004 Rexx Symposium
Böblingen-Sindelfingen, Germany

May 3, 2004

(Thanks to imc for background image)

Overview

● ANSI features

● OPTIONS

● Other interpreter features

● API additions

● Other platforms

M

ANSI features

● ADDRESS environments

● LOSTDIGITS

● .RS, .RC, .RESULT variables

● LINES(,'C'), CHARS(,'C')

M

ADDRESS environments

ADDRESS env command [IO redir]

env is one of

● SYSTEM or OS2ENVIRONMENT or ENVIRONENT
● PATH or CMD or COMMAND
● REGINA or REXX

F

ADDRESS REXX

ADDRESS REXX scriptname [args] [IOredir]

● SYSTEM INDEPENDENT
● INTERPRETER INDEPENDENT

nearly equivalent to

ADDRESS PATH "rexx" scriptname...

but the same execution program is used if
the path can be determined.

F

ADDRESS ...WITH

IOredir = WITH [INPUT in] [OUTPUT out] [ERROR out]

in = NORMAL | IO
out = NORMAL | [APPEND | REPLACE] IO
IO = STEM symbol

| STREAM symbol
| STREAM string /* ANSI extension */
| LIFO string_or_symbol /* ANSI extension */
| FIFO string_or_symbol /* ANSI extension */

""-strings are equivalent to standard IO or current queue.

External queues are supported.F

ADDRESS speed comparisons

118 files, 137836 lines, 4195774 chars (machine: 2*350MHz PentiumII)
-------------- executed all files at once ---------------------
cat >/dev/null = 0.067
cat | cat >/dev/null = 0.102
cat | ADDRESS STREAM | cat >/dev/null = 0.289
cat | ADDRESS STREAM w/IO | cat >/dev/null = 6.847
cat | ADDRESS STEM | cat >/dev/null = 57.684
cat | ADDRESS FIFO | cat >/dev/null = 1.651
---------- executed individually, summarised --------------
cat >/dev/null (using ADDRESS SYSTEM) = 4.766
cat >/dev/null (using ADDRESS PATH WITH) = 1.873
cat >/dev/null (using ADDRESS SYSTEM WITH) = 4.515
catb>/dev/null (using ADDRESS SYSTEM) = 4.530
catb>/dev/null (using ADDRESS PATH WITH) = 1.866
catb>/dev/null (using ADDRESS SYSTEM WITH) = 4.482
cat | cat >/dev/null = 5.171
cat | ADDRESS STREAM | cat >/dev/null = 9.386
cat | ADDRESS STREAM w/IO | cat >/dev/null = 16.128
cat | ADDRESS STEM | cat >/dev/null = 18.993
cat | ADDRESS FIFO | cat >/dev/null = 16.018F

ADDRESS quotation

● ADDRESS PATH and ADDRESS REXX
emulate ADDRESS SYSTEM's quotation
rules

● double quotes and single quotes group
words (default is whitespace)

● system depending escape character is
used
– "^" for OS/2 & Win32
– "\" otherwise

F

ADDRESS signals

● conditions except syntax errors are raised
only if enabled by SIGNAL

● FAILURE is raised if the desired program
could not be loaded

● ERROR is raised if the called program
terminates without success

● NOTREADY is not raised for streams
● NOVALUE is raised for stems
● SYNTAX is raised always for wrong valuesF

External call signals

F

● conditions are raised only if enabled by
SIGNAL

● FAILURE is raised if the desired script
could not be loaded

● ERROR is raised if the called script
terminates without success

LOSTDIGITS condition

F

● LOSTDIGITS are not raised by default
● LOSTDIGITS are raised when a math

op needs to truncate digits in the input
where math op is
– +
– -
– /
– *
– **
– //
– %
– loop iterations

.variables

F

● Regina supports a separate pool for .vars
● access by name always uses "pool 0"
● Current variables are

– .RC copy of RC
– .RESULT copy of RESULT
– .SIGL copy of SIGL
– .RS -1=FAILURE, 1=ERROR, 0=success

when using ADDRESS or ext. functions
– .MN x or x.x for syntax error numbers

● hierarchically structured

● one pool structure per thread

● pool 0 contains dot-variables

● BIF POOLID() returns current pool id

● BIF VALUE() accepts a valid pool id as

third parameter

F

Variable pools

LINES(,'C') and CHARS(,'C')

● LINES() and CHARS() take optionally 2
arguments
– Stream name (as usual)

– OPTION
● 'N' default – return 0, 1 or actual number
● 'C' count – returns actual number of lines/chars

remaining in stream

M

OPTIONS

● STRICT_ANSI

● QUEUES_301

● TRACE_HTML

● STDOUT_FOR_STDERR

● CALLS_AS_FUNCS

● Environment variable REGINA_OPTIONS

M

Other interpreter
features

● Error messages and Locale

● External queues

● PARSE LOWER and CASELESS

● TIME('T') and DATE('T')

● ARexx functions

● Regina invocation

M

Error Messages

– Support ANSI feature of ERRORTEXT BIF
● ERRORTEXT(num, 'S')

– Where num can be x.y

– Implemented with binary message files

– REGINA_LANG specifies language and

optionally locale

– REGINA_LANG_DIR specifies location

– Regina Translation Project:

http://www.bn.pl/~bk/serv/rrtp/index.rspM

Locale support

– Locale support for whitespace and character

translations like TRANSLATE(), UPPER() and

LOWER()

– Consistency with locale irrespective of

external influences

– Planning implementation for future

enhancements (DATE, TIME, FORMAT BIFs)

– Implications of enhancements

M

External Queues

– Used to communicate between processes on

any machine

– Queue name: name[@machine[:port]]

– Internal queues have no '@'

– Insecure – no access control

– Supported in RXQUEUE(), ADDRESS...WITH,

RXQUEUE executable

M

Parse Lower and Caseless

– PARSE LOWER similar semantics to PARSE

UPPER

– PARSE CASELESS allows strings in parse

template to be matched irrespective of case

– CASELESS can be used with UPPER or

LOWER

M

TIME(T) and DATE(T)

– 'T' option is for Unix time_t

– The number of seconds since 1 Jan 1970

– Advantage of date and time together

– NUMERIC DIGITS 10 minimum

M

ARexx Functions

– Introduced in 3.1

– Implemented by Staf Verhaegen

– Most BIFs implemented

– Requires OPTIONS AREXX_BIFS on

platforms other than AmigaDOS or AROS

M

Regina invocation

● Run as Subroutine (-a)

● Tokenising (-c, -e)

● Safe Rexx (-r)
– Can also be set in RexxStart() API with

RXRESTRICTED in CallType arg

● Pause at end (-p)

M

REGINA_SUFFIXES

● Known suffixes
– rexx

– rex

– cmd

– rx

● Environment variable REGINA_SUFFIXES

has form
– suffix_w/o_dot[,suffix_w/o_dot]...

– e.g. REGINA_SUFFIXES=ipret,reginaF

REGINA_SUFFIXES Algorithm

● if path given, look there
● if REGINA_MACROS given, look there
● if not "root" look in "."
● if PATH given, look there

● first found file wins always
● PATH-paths search without extensions
● known suffix forces other suffixes to ignore
● try REGINA_SUFFIXES
● try known suffixes

planned suffix "rxc" for precompiled scripts
F

Threading Model

● each thread has its own set of
– variables

– hooks

– files

– state

● ORexx (and Classic Rexx) and Regina

have a different approach

● Environment variables are shared
F

API Additions

● ReginaCleanup()
– Cleans up an interpreter instance

● RexxAllocateMemory()
– Allocate memory passed to interpreter

● RexxFreeMemory()
– Free memory allocated by interpreter

● RexxCallBack()
– Call back into the running Rexx programF

ReginaCleanup()

– Allows the API to reset the complete Rexx

interpreter on a per-thread basis

– Variable pools are reset

– External libraries will be unlinked

F

RexxAllocateMemory()

– Move interpreter or platform-specific code

into interpreter

RexxAllocateMemory() replaces code like:
#if defined(WIN32)
ret = (char *)GlobalLock(GlobalAlloc (GMEM_FIXED, len));
#elif defined(OS2)
if ((BOOL)DosAllocMem((void **)&ret, len, fPERM|PAG_COMMIT))
 ret = (char *)NULL;
#else
ret = (char *)malloc(len);
#endif

with:
ret = (char *)RexxAllocateMemory(len);

M

RexxFreeMemory()

– Move interpreter or platform-specific code

into interpreter

RexxFreeMemory() replaces code like:
#if defined(WIN32)
GlobalFree(shv.shvvalue.strptr);
#elif defined(OS2)
DosFreeMem(shv.shvvalue.strptr);
#else
free(shv.shvvalue.strptr);
#endif

with:
RexxFreeMemory(shv.shvvalue.strptr);

M

RexxCallBack()

– Allows the API to execute a Rexx procedure

inside the running program

– Necessary for event-driven libraries like GUI

interfaces

– Parameter passing with no interpretation

– Procedure executed within context of event

handler

M

RxFuncErrMsg()

– Returns the actual error that caused

RxFuncAdd() to fail

– More meaningful than a non-zero return

code from RxFuncAdd()

M

Other platforms

● Regina is the standard interpreter for:
– AROS

● http://www.aros.org

– OSFree
● http://www.osfree.org

M

Resources

● Regina home page:
– http://regina-rexx.sourceforge.net

● API programming examples:
– Available from SourceForge downloads page

in regina-documentation subproject

M

Questions

?

M

