
NetRexx Tutorial

© Thomas Schneider, IT-Consultant

www.db-123.com
www.Rexx2Nrx.com

Rexx LA meeting

IBM Laboratories, Boeblingen
May 2004

Purpose of this Tutorial

• Intended for Classic Rexx and/or IBM
Object Rexx users

• With a working REXX knowledge

• And the Need/Desire to quickly learn
NetRexx basics

• Based on the language differences

From classic Rexx to NetRexx

• Same/Similar language constructs

• But with subtile differences

• Both in Semantics

• … and Syntax (Notation)

• We Focus on the differences now

Notation of String Literals

• Backslash(\) used as an ESCAPE-character

• Rexx Literal „C:\tutor\Tutorial.PTT“

• Must be denoted as
„C:\\tutor\\Tutorial.PPT“

• Attention: special escape sequences!!

Escape Sequences in String
Literals

• \t Tabulation (tab)
• \n new-line (line-feed)
• \r return (carriage

return)
• \f formfeed
• \“ double quote
• \‘ single quote

• \0 null character
• \xhh hexadecimal

character defined by
hex digits (hh)

• \uhhhh unicode
character defined by
hex digits (hhhh)

• \\ represents single
backslash !

Notation of Hexadecimal and Binary
Literals

• ‚0123456789ABCDEF‘x in Rexx

• Is: 16x‘0123456789ABCDEF‘ in NetRexx

• ‚01000100‘b in Rexx

• Is: 8b‘01000100‘ in NetRexx

• Both upper/lowercase x/b allowed

• Length 0 may be used (literal length counts)

Notation of Variable Names

• As usual in Programming languages, but
– NO exclamation points (!) allowed in Variable

names

– NO question marks (?) allowed in variable
names

– In general: NO special characters (except ‚$‘
and underline „_“)

– So why we did allow them in the first place ?

Notation of Stems

• Rexx notation isabc.def

• Object Rexx notation isabc.def

• OR abc[def]

• NetRexx notation isONLY abc[def]

• And Stem must be defined as a Rexx
Variable before first usage, i.e.

abc = Rexx <default value>

Notation of Stems (2)

• With multiple Indices:

• Rexx notation is abc.x.y.z

• Object Rexx notation is abc.x.y.z

• OR abc[x,y,z]

• NetRexx notation is ONLY abc[x,y,z]

• And each Stem must bedefined as a Rexx
Variable before first usage, i.e.

• abc = Rexx <default value>

Notation of Stems (3)

• Stems are now called ‚Indexed Strings‘ in
NetRexx

• Wrong, wrong, Mike
• Better we would be able to define a Stem as

– X = RexxStem ‚‘
– Or Y=Stem ‚‘ etc

• in NetRexx, you never know from the ‚first
Declaration‘ whether a Variable (Property) is a
(Rexx) Stem or a (Rexx) String !! (it‘s a pity)

Attention (NetRexx specifics)

• X = Rexx ‚‘
• May be

– a simple ‚Rexx‘ ‚String‘ (to be able to use the NetRexx
String functions (like length, index, pos, lastpos, etc,
etc)

– A Word-List (to be able to use words(), wordpos(), etc)
– A ‚classic Rexx‘ Stem
– A ‚Rexx‘ Decimal Number
– or each/any of that.

• But you cannot see from the NOTATION which
variation is used.!

Using Functions vs. Methods (in
Object Oriented Languages)

• It‘s a PITY !
• When I do have a simple (Java) String, I can NOT

use the ‚Rexx‘ WORDS or WORDPOS functions,
for instance, directly, on this String.

• I will have to declare/convert it to a REXX String
before – anyway, you may use Rexx(String)!

• Correct ??
• So why cannot we use Functions here (which

will be applicable to all cases) ? Sorry, but why?

Attention

• Same notation for INDEXED ARRAYS and
INDEXED Strings (formerly called ‚Stems‘) in
NetRexx, i.e.

• abc[x,y,z]

• may be
– A NetRexx Indexed String (Stem) reference OR

– A NetRexx/Java Array reference !

– depending on initial ‚TYPE‘ Definition

Attention (2)

• Object REXX Array Indices start with 1

• but NetRexx/Java Indices start with 0
– hence abc[1] is the FIRST element in Object

Rexx

– But abc[1] is the SECOND Element in
NetRexx or Java

– This difference applies ONLY to ARRAYS,
NOT to Stems !!

CONTINUATION character

• CONTINUATION character
– is a trailing COMMA (,) in classic Rexx and Object Rexx
– But is a trailing HYPHEN (-) in NetRexx

• Advantage / pitfall ??
• Why do we need it at all (except for ‚abut‘) ???
• Rey Rule (1): If a lineends with an OPERATOR, the next

line is a continuation.
• Rey Rule (2): If a linestarts with an OPERATOR (like +,-

,*,/,&,|,\, etc,etc) itMUST BE a continuation!
• Or what ?

NOTES (inline comments)

• Concept of NOTES was always missing in Rexx!
• A ‚Note‘ is a COMMENT at the end of the line

– Must be written as /* my note */ in classic Rexx
– Object Rexx and NetRexx use the double hyphen (--) to

introduce a NOTE (as in SQL)
– Note that Java uses ‚//‘ to introduce a Note (and ‚--‘ as

the decrement operator (which means REMAINDER in
REXX !!))

– A NOTE is always finished on the same line !

• … By the rivers of BABYLON !!

Operators

• Same set of operators in NetRexx than in classic
Rexx!

• But COMPARISON of Text strings is CASE-
BLIND by default !!
– Hence ‚abc‘ = ‚ABC‘ in NetRexx !!

– Must use ‚strict comparison‘ in NetRexx when needing
CASE-sensitive Comparison.

– Probably more natural than original REXX definition !

– Good choice for a change, Mike!

Concept of TYPES

• ‚classic REXX‘ and OBJECT REXX are
essentially TYPE-LESS languages!

• NetRexx (and Java) use/need STRICT TYPING
• NetRexx uses type ‚Rexx‘ as default (and type

Rexx is essentially TYPE-LESS again in
NetRexx!)

• But NetRexx Type ‚Rexx‘ is overloaded with too
many different semantical meanings (Rexx String,
Rexx Indexed String (Stem), Rexx WordList,
Rexx (Decimal) Number, etc, etc)

Standard (Primitive) TYPES

• Boolean (0/1)
• Byte (0,1,2,3,4,5,6,7)
• Short (half word SIGNED integer)
• Int (full word SIGNED integer)
• Long (double word SIGNED integer)
• Float (full word SIGNED Real Number)
• Double (double word SIGNED Real Number)
• Char (is a UNICODE Character in

NetRexx/Java)
• Primitive Types identical to Java!

Dimensioned TYPES

• Any Variable may be DIMENSIONED
• Use square BRACKETS (‚[‚ and ‚]‘) to

define dimensions
• X = int[3,5]
• Y = char[17]
• But NOTE that first ELEMENT has Index 0

and NOT 1 !!! (ill designed by Java!!)
• Difficult to distinguish Stems and Arrays!

Dimensioned TYPES

• Any Variable may be DIMENSIONED

• Use square BRACKETS (‚[‚ and ‚]‘) to
define dimensions

• X = int[3,5]

• Y = char[17]

• But NOTE that first ELEMENT has Index 0
and NOT 1 !!! (ill designed by Java!!)

Dimensioned TYPES (2)

• Empty Index bounds are acceptible

• Similar to the concept of ‚adjustable‘ arrays
in other languages

• Hence the following declarations are OK
– X = int[,,]

– Y = char[]

– Z = Rexx[]

Initial (default) Values

• NetRexx uses the EQUAL Sign for TYPE
definitions

• Hence syntax is
– name = <type> [<dimensions>] <default

value>

• Probably using the colon instead of the
equal sign would have been a BETTER
decision !!!

… WHY ?

• With the current NetRexx notation you
NEVER know whether a clause is an
assignment or a type definition!

• Would also correspond more naturally to
languages as Pascal or UML (Unified
modelling language)

• item_no = Rexx 0 /*Stem!*/
• What do you think ?

Example 1: The QTSMALL program

• The (ONLY) example of Mike Cowlishaws
books ‚the REXX language‘ and ‚the
NetRexx language‘.

• So what‘s different ?

•

• <BREAK>

So what‘s different: Labels and
Procedures vs Methods

• Rexx and Object Rexx have the concept of
Labels

• Denoted by a colon following the label
name

• And there is a GO TO statement (named
SIGNAL) in Rexx !

So what‘s different: SIGNAL vs
RAISE vs SIGNAL

• Simple SIGNAL in REXX is a GO TO

• Object Rexx also has RAISE for ‚Raising
an Exception‘

• Which is THROW in Java and SIGNAL in
NetRexx!

• … by the rivers of BABYLON!

Jumping FORWARD and
BACKWARDS

/* example3: simple loops */
F=‚abc.def‘ /* a simple sample file */
N=0
Loop1:

x = linein(F)
if length(x) = 0 then signal end_of_file
n = n + 1
say x
signal loop1

End_of_file:
say n ‚lines read‘
exit

Jumping FORWARD and
BACKWARDS (classic Rexx)

/* example3: simple loops */
F=‚abc.def‘ /* a simple sample file */
N=0
Loop1:

x = linein(F)
if length(x) = 0 then signal end_of_file
n = n + 1
say x
signal loop1

End_of_file:
say n ‚lines read‘
exit

import Rexx2Nrx.Rexx2RT.RexxFile
class example3 uses RexxFile
properties public static

FD_F = RexxFile Null
F = Rexx 'abc.def'
n = int 0
xx = Rexx ''

method main(args=String[]) static
arg=Rexx(args) -- program arguments as single string
arg=arg -- avoid NetRexx warning

F = 'abc.def'
FD_F = RexxFile.FD(F).access('READ')
n = 0
Loop1()
exit

method Loop1() static public ;

/* ... Attention: label: Loop1 is jumped back! */

loop label Loop1_again forever

xx = FD_F.linein()

if xx.length() = 0 then do

End_of_file()

return

end--if

n = n + 1

say n||':'||xx

iterate Loop1_again

end--Loop1_again

method End_of_file() static public ;

say n 'lines read'

exit

Summary

• Variables are calledProperties in NetRexx
• GLOBAL variables must be defined ahead of

their usage (as STATIC Properties after the
CLASS statement)

• As all variables are LOCAL by default (as in
Object Rexx ::Methods and ::Routines !!)

• Avoid Labels whenever possible, use
STRUCTURED Statements !!

Standard Program Layout
(Declarations)

• OPTIONS BINARY (when applicable)

• IMPORT package-name [.class-name]

• …

• CLASS class-name [USES class-name-list]

• PROPERTIES PUBLIC STATIC

• Global ‚Variable‘ declarations (visible outside class)

• PROPERTIES PRIVATE STATIC

• Global ;Variable‘ declarations (invisible outside class)

Standard Program Layout (Code)

• METHOD method-name PUBLIC STATIC

• METHOD method-name PRIVATE STATIC

• METHOD method-name (parameter-list) …
– Where parameterlist is COMMA-delimited LIST of

parameter-names (with types and default value)

– E.g. Name1, Name2, … (default Type REXX)

– Or Name1=Type1, Name2=Type2, …

Parameter Lists

• Semantically similar to USE ARG name-list in Object-
Rexx METHODS.

• Parameter Namesmust be different to class
PROPERTIES

• And ARE INVISIBLE (cannot be referenced) from
out-side of the respective METHOD

• DEFAULT values may be provided for OPTIONAL
parameters, e.g:

• METHOD ABC(par1= char[3], par2=int 0) PUBLIC
STATIC

Parameter Lists

• Semantically similar to USE ARG name-list in Object-
Rexx METHODS.

• Parameter Namesmust be different to class
PROPERTIES

• And ARE INVISIBLE (cannot be referenced) from
out-side of the respective METHOD

• DEFAULT values may be provided for OPTIONAL
parameters, e.g:

• METHOD ABC(par1= char[3], par2=int 0) PUBLIC
STATIC

Caution

• Notice thatPARSE ARG is ONLY
available for theMAIN program (main
method)

• Notice thatPULL and PARSE PULL are
NOT available

• Do not forget the keywordSTATIC for
methods associated with the CLASS, and
NOT the Objects constructed by the class.

Structured Statements

• Same structured statements than classic REXX

• With a few exceptions/additions:
– Repetitive DO is called LOOP now

– Additional key-words:
• Label name

• Protect term

• Catch excption

• Finally instruction-list

• Very well designed by M.F. Cowlishaw …

Structured Statements (2)

• Even PARSE-statement available
• PARSE statement variations no longer used

(reserved Variable names like ARG, SOURCE,
etc used in turn)

• With same Syntax and Semantics of the
TEMPLATES than classic Rexx

• With a small exception:
– No QUALIFIED Variables (like stems, etc) allowed in

NetRexx (why ?)

Caution (2)

• Notice that up to now we still didn‘t use any
OBJECTS

• But we ARE now able to Write/Generate
(procedural) NetRexx Code, at least.

• Object Oriented Programming is another
art, not part of this initial tutorial.

• … Good LUCK

