OpenOffice.org Automatisation Page 1

OpenOffice.org Automatisation with Object Rexx
Martin Burger
Vienna University of Economics and Business Administration
Reg. No. 0251293

E-Mail h0251293@wu-wien.ac.at

October 28, 2005

Bachelor Course Paper
Departement of Business Informatics

Prof. Dr. Rony G.Flatscher

mailto:h0251293@wu-wien.ac.at

OpenOffice.org Automatisation Page 2

Contents
1 INEEOAUCTION. ..ttt et ettt e bt st e b e 6
Lol ADSEIACE ..ttt ettt bttt eaees 6
1.2 Problem DISCUSSION.cc.eiriiriiriiiiieiienteete ittt sttt s eaees 6
LI AN o) (o 12Tl o RPN 6
1.4 KEYWOTAS....cevieiiiieiiieiie ettt et e vttt e et e et e et eesteeesbeesaeenbeesaeesseesaesnsaenssesnseenens 6
2 Discribing the main elements............ccueiiuieiiiiiiiiie e 7
2.1 Open Source DefINItioN........ccuvieiiieeiiie ettt e e e e e e saaeeeeanees 7
2.2 0PN ODBJECE REXX....uiiiiiieiiieiieeiieiie et esiee et estteeaeeteesteeteeebeesaessseesseessseenseesnseas 8
2.2, 1 HISTOTY . utteiieeieeiie ettt ettt ettt et e et estaeeateesbeeenbeesaeenseesseeenseensnesnsaens 8
2.2.2 Open ODJECt REXX....icicuiiiciiieiiieeciiie et ettt et eiee s e s e eeaeeeseaeeeaneas 9
2.2.3 Syntax EXamples.......ccccuieiiiiiiiieiiiecieeeee et 10
2.3 OPENOTTICE.OTG. ... eeeeiieiieeiiieiie ettt ettt ettt ettt e ste et eeabe e bt e esaeenbeenaaeenseesenas 11
23,1 HISEOTY ettt ettt ettt et ettt et e et eab e e naeeenbeeneas 11
2.3.2 The OpenOffice Product............cccuveeiiiiiiiiieiie e 12
2.4 The Bean Scripting FrameworK...........ccvveiiieiiiieiiiieeiieeie e 13
24,1 HISTOTY .ttt ettt ettt ettt et e et eat e et et e et e et e enbeeneas 13
2.4.2 Technical ConCePL.....c..coiirierieriinieeieetere ettt 13
2.5 BSFAREXX . ueeiuiieiiieeetieeeitte e eieeeeiteeeiteeesiteeetteeetteessbeeantaeeansaeeasseeenssaeennsaesnseeene 14
2.6 The Architecture of OpenOffiCe.0rg.......ccuevvieirieriieiieeieeeeee e 15
2.6.1 Universal Network ObJect CONCEPL ...c.vvveeviieeiiieeiieeeieeeeieeeeveeeevee e 16
2.6.2 UNO Service COMPONENILS........eeeruiieririreeirieeeieeensreessreeeseeesssseesseeessesessnes 17
2.6.2.1 Service ManQger.........c.ceoveeueeriieeieeniieeieenieeeseenieeereesseesseenseeenns 17
2.6.2.2 Services,Interfaces and Properties.........c.coovveveveevieecieeneeeciienneennn, 19
2.6.2.3 UNO JaVA ACCESS.....ueieiiiiaiieiaiieeeieeeeiteeeiteesiee et e et e e 20
3 Interaction Of EIEMENLS.coouiiiiiiiiiiiiie e 21
BT UNOLCLS. ..ottt ettt ettt e bt et e s st e s st e s e e st e sbeensesneenseennens 21
3.1.1 Java:ObJeCtREX XK. .ccuieeiiieiieciieeiee ettt et 22
L2 UNOLCLS ...ttt sttt s 23
4 Installation GUIAEcoouiiiiiiiiiiieeee ettt st 24
R 2 23111 o [T PSSR 26
5.1 Wordprocessor (,,swriter*) EXamples..........ccoooveriiaiiiniiiiiieieeceeeeeee e, 27
5.1.1 Example 01 — Hello World.........ccccoviiiiiiiiiniiiiiiiceccceeeeeee 29
5.1.2 Example 02 — Insert TeXttablecccevvieeiieriiinieeiieeie e 31
5.1.3 Example 03 — Cursor SHOW.......cccuvevieiiiieniiieiienie et 34

5.1.4 Example 04 — Page COUNLET.........ceveieiieiiieiieeie et 36

OpenOffice.org Automatisation Page 3

5.1.5 Example 05 — Insert Different Shapes........cccccveevvivieecieeniieeeieeeee e, 38
5.1.6 Example 06 - Sending e-Mail with Attachementccccceeevervienieennnen. 40
5.1.7 Example 07 — Using the Internet Explorer for Tracking Web-Sites
(WINAOWS-0NLY)...eiiiiiiiiiiiieiiecie ettt ettt st e e 44

5.1.8 Example 08 — Using a Search Descriptor..........ccceeveeciierieenieenieeieeeieeneen 47

5.2 ,,5CalC™ EXAMPLES....cciiiiiiiiieciie ettt e e e 50
5.2.1 Example 09 - ,,Hello World®...........cooiiiiiieeeeeeeeee e 51
5.2.2 Example 10 - Insert Values and Formulas..............ccccceeviiniiiniiniienineine 52
5.2.3 Example 11 - Copy Cell Ranges...........ccccueeviieriiiniienieeiienieeieeie e 54
5.2.4 Example 12 - Merging Cells.......ccooviiieiiiieiiieeieeeeeeeee e 56
5.2.5 Example 13 - Identify Row Differences...........cceoveviieiiieniieiienieeiieinn, 57
5.2.6 Example 14 - Chart ShOW.........cocceviiiiniiiiiiiiieceeceeeeeeee e 59
5.2.7 Example 15 - Using a Replace Describtorccccccveeeciveeeciieeniieeeiee e, 61
5.2.8 Example 16 - Inserting @ Shapecccoeeveviienieniieiieeieeeeeie e 62
5.2.9 Example 17 — Changing the Cell Formatccccoecueevieniienienieeiieeee, 63

5.3 ,,simpress® and ,,sdraw® EXamples.......c.ccocvviiiiiiieiiieeiieeeeeeiee e 65
5.3.1 Example 18 - Using Different Shapescccccveeviieeiieeniiieeiie e 66
5.3.2 Example 19 - Organi@ram...........cccceeeueerieeiiienieeieenieeieenieesveeseeesveeseeenns 68
5.3.3 Example 20 - Using Layer for Shapes..........cccoceeviienieriiienieeiienieeieeeene 70
5.3.4 Example 21 - Creating a Master Page..........cccceeeviieeiieeecieeeieeeie e 72
5.3.5 Example 22 - InSert Chartcoccvvveiiieiiiieeiie e 75
5.3.6 Example 23 - Animations and click actions.........c.cccceeveevervcnvinenncneenne. 78

5.4 General EXamPIEScocuevuiiiuiiiiniiiiiicieecet ettt 81
5.4.1 Example 24 - Access Internal Database............ccccceevieeviieniencieenieeieeene 81
5.4.2 Example 25 - Printing Different Documentsccccoeevverieeciieneeeneennen. 83

0 CONCIUSION ..ttt ettt ettt et et e et e st esabeesaeeenbeeseeeeabeesneeenne 86

T REEEIEIICES. .o e e et e e e et e raaeaaaeaeraees &7

OpenOffice.org Automatisation Page 4

Figures

figure 1: Architectural Overview, [Hane05].......c.cccoveeeiiieiiiieeieeeeeeeee e 13
Figure 2: BSF interaction with ObjectRexx and Java, [FlatO6]..........ccccoevieririeninnnnnne. 14
Figure 3: Components of OO0 [F1atOS5].......cccoeiiiiiiiiiiiieeeeeeeee e 15
Figure 4: Communication between UNO components [FI1atO5].........cccccveevevieniieennnns 16
Figure 5: The Service Manager [AUgUOS]......ccovieiiiriieiiieiieeieeeie e 17
Figure 6: Services [Open05, P.42]....coui ittt 19
Figure 7: Java Adapter [F1atOS5]........coouiiiiiiieiieeeeeeeee et e 20
Figure 8: The overall concept [AUZUOST.....ccovieiieiiiiiieiieeie ettt 21
Figure 9: 00REXXIMAKIOS.cc.eeiiriiiiiiiiiiieci ettt 24
figure 10: Text Document Model, [Open05, p.503]..cc..oveeriieiiieeieeeeeee e 27
figure 11: HEllo WOTLd......ccuveiiiieeee e e e 29
figure 12: Insert Text Table.......ccccooiriiiiiiiiiieieeteee e 32
figure 13: CUrsSOr SHOW.....cc.iiiiiiiiiiiiiiieeee et 35
figure 14: Page COUNTET........ooiiiiiiiiie ettt st e 37
Figure 15: Insert Different Shapes.........cooeeiiiiiiiiiiiiiieeeeeeee e 39
Figure 16: Confirm reqUESEcouerieiiirieniieeieeete ettt 41
Figure 17: Received mMail........c.ooiiiiiiiiiiiiii e e 42
Figure 18: E-mail BULtON.......coiiiiiiiiiiiiieieeeeee e 43
Figure 19: Loading Web SiteS........cciiieiiiiiiiirieieeierieee et 45
Figure 20: Using Search DesCriptor..........cooieiiiiiiiiiiieiierieeeeeee ettt 48
Figure 21: Spreadsheet Document Model [Open05, p.584].....cccvvveevieeciieeiiecieeeieeens 50
Figure 22: Hello WOrld CalC......couovuiiiiiiiiieiiiiececeeeee e 51
Figure 23: Values and FOrmulas...........ccccooieiiiiiiiiiniiienieeeeeceseee e 53
Figure 24: Copy Cell RANEES.......ccccuiieiiieeiieeciie ettt e e e e 55
Figure 25: Merging CellS......coui ittt 57
Figure 26: Identify ROW Differences.........cccovvveriiiiiniiniiniiniinieiecececeeeceeee e 58
Figure 27: Chart SHOW......cc.coiuiiiiiiiiiieeceee e 60
Figure 28: Using a Replace DesCriptor.......coouiiiiiiiiiiiiniieiierieeieesee et 61
Figure 29: InSerting @ Shape........c.ccocviiiiieiiieiieieeie ettt 63
Figure 30: Changing the Cell FOrmat...........cocooiiiiiiiniininiicicccececeeeecee 64
Figure 31: Drawing and Impress model [Open05].........ccooovieiiiiiiininiiiiieeeeeeeee 65
figure 32: Using Different Shapes.........cccooeeieriiiiiienieieeeseeeseeee e 67
FIGUIE 33: OrZANIZIAM.....eeiuiiiiieiiietieeieetteeteeteeeteeteeebeebeeesae e teeseaeesseessseeseessseenseennns 70

figure 34: Using Layer for SRHapes.........ccviiiiiieiiiieiiieceece ettt 72

OpenOffice.org Automatisation Page 5

figure 35: Creating @ Master Page..........ccceeviiieiiiieiiie et 74
figure 36: INSETt Chart........cociiiiiiie et e et e e e e aeeesnaee e 76
figure 37: Animation and Click ACHIONS........ccceriiriiriiriiniieieeieeeceeee e 79
Figure 38: Select type of external adress bOOK...........occeeviieriiiiiiniiniieeeeeeeseee 82

Figure 39: Confirm BOX.......ooiiiiiiiiie e &3

OpenOffice.org Automatisation Page 6

1 Introduction

The Introduction chapter will give you an short overwiew about the structure, the main
problem and the approach of this work.

1.1 Abstract

This paper discusses how different technical components of Open Office can work
together to support business processes. These technical components are Open Source
and freely available through downloading them form the Internet. The main focus will
be the script language Open Object Rexx, OpenOffice.org and the Bean Scripting
Framework for Open Object Rexx.

After explaining the main components of the system, some Examples should show how
the elements are working together and which effect is possible to achieve using them.
The next step is to create small nutshell examples which should be supported through
the interacting technical components mentioned above. At the end the conclusion part
should summarise the main aspects of this paper.

1.2 Problem Discussion

Software is generally expensive to buy, especially commercial applications for firms and
other organisations. In addition, software is often not independent from the operating
system. These arguments bring up the question, if there are other possibilities to use
software which supports working processes.

The first step toward a more independent way of using software is to identify
approaches which can answer this question.

1.3 Approach

The approach of this paper suggests to use Open Source Software to answer the problem
discussion due to several reasons. Open Source Software programs offer the possibility
to save expensive licences and maintain independence from big market share holders. In
addition the required automation of working processes can be achieved as described
later on.

1.4 Keywords

Open Source Software, Open Object Rexx, OpenOffice.org, Bean Scripting Framework
for Object Rexx, Automatisation

OpenOffice.org Automatisation Page 7

2 Discribing the main elements

In this chapter all used elemets, including generall definitions and software elements,
will be discribed. This is necessary to build up an appropriate context of knwoledge to
understand this issue in a more comprehensive way.

2.1 Open Source Definition
Open Source can be discribed through following criterias reffering to different sources'.
1. Source Code

The Source Code must be available for each Open Source Software. In addition
the code must be accessible in compiled form. This is necessary to assure the
possibility to modify and develop efficient Software.

2. Derived Works
This point simply means that modifications and derived works must be allowed.
3. Integrity of The Author's Source Code

Therefore ,,patch files* must be allowed which modify the program at build time.
The reason for this possibility of using Open Source license is to make

,unofficial“ changes available and protecting the original source code. In this

way, the reputation of the original Authors can be saved.

4. No Discrimination Against Persons of Groups

Open Source Software Projects try to gain a maximum of benefits for all
participants and user. This aspect could be endangered through forbidding
persons to contribute work afford.

5. No Discrimination Against Fields of Endeavor

It is forbidden to restrict the Field of Endeavor, for example to forbid
commercial usage.

6. Distribution of License

The rights for the software pass over to all persons who are receiving the
program. It is forbidden that a person has to buy additional licenses to use the
Software.

' [Osat06][Osorg06]

OpenOffice.org Automatisation Page 8

7. License Must Not Be Specific to a Product (Note: this argument is not always true)

The rights must not apply for a special software package. Parts of the package
have the same rights then the whole product.

8. License Must Not Restrict Other Software

The license must not influence the rights on other software which are distributed
on the same media.

To know these criterias is important for using Open Source Software. Especially for this
paper, due to the fact that only Open Source programs will be analyzed and applied.

2.2 Open Object Rexx

Open Object Rexx is the name of an freely available scripting language®. In the
following a history section, generally aspects and syntax examples of this programming
language will introduce you in the world of Open Object Rexx.

2.2.1 History’

Rexx was originally disegned and implented as a scripting language between 1979 and
1982 by Mike Cowlishaw of IBM. Over the years, IBM made Rexx available for all his
operating systems, Windows, java and Linux. In 1984/5 the first non-IBM version was
written by Charles Daney for PC-DOS. In addition, versions for Atari, Amiga, Unix,
Solaris, DEC, Windows CE, Pocket PC, MS-DOS, Palm OS, QNX, OS/2, Linux,
BeOS, EPOC32, AtheOS, OpenVMS, Open Edition, Macintosh, and Mac OS x were
also developed.

In 1992 two very important open source approaches of Rexx appeared. lan Collier's
REXX/imc¢ for Unix and Anders Christensen's Regina for Windows and Linux were
released. This two versions of Rexx are very popular and widely used.

In 1996 ANSI* published a standard named ANSI X3.274-1996 Information
Technology — Programming Language REXX*

The latest versions of Rexx are NetRexx and Object Rexx.

Object Rexx 1is object-oriented’ and upwards-compatible with Rexx. Further
information on this version will be provided in the next chapter.

Scripting programming languages are computer programming languages which are rather interpreted
than compiled.

¥ [WIkIREXX06]

The American National Standard Institute is a non-profit organization for standardization work in the
United States.

5 Object-Oriented programming is a programming paradigm using objects which are communicating
through messages.

OpenOffice.org Automatisation Page 9

2.2.2 Open Object Rexx*

Open Object Rexx is an Open Source Project managed by RexxLA’ and is distributed
under the Common Public License (CPL) v1.0°. This license includes the criterias
mentioned above in chapter 2.1. Open Source Definition.

Object Rexx can be characterized as follows:
An English-like statement:

That means that Rexx uses names for instructions which have a similar
semantics in the English language. For example SAY, IF...THEN..Else,
Do..End, and EXIT. This makes the using of this programming language a lot
easyer.

Fewer Rules:

In Rexx it is possible to write one instruction in several lines or several
instruction in one line. The language is also not case sensitive, for this reason it
doesn't matter if you are writing the code in lowercase or uppercase. Furthermore
one can keep spaces between lines which will cause no troubles during running
the program. Finally you can name your varibles like built in functions which
have the same name. The interpreter of Rexx will use the right function based on
the context.

Interpreted not compiled:
Object Rexx is a scripting language that interprets the statements.
Built in functions and methods:

Built in functions and methods are providing different functionalities which are
already implemented in the language.

Typeless variables:

In Rexx one don't have to declare variables, for example numbers or strings, due
to the fact that variables can hold any kind of Object.

6 [Oorex05]

" The Rexx Language Association tries to support the understanding and use of the Rexx Programming
language and consist of volunteers throughout the world.

8 [Osorg06]

OpenOffice.org Automatisation Page 10

String handling:

Rexx offers a powerful functionality for manipulating strings. This is an
advantage if you like to create programs which have to separate characters,
numbers, and mixed input.

Decimal Arithmetic:

Rexx bases it's arithmetic operations on decimal arithmetic and not on binary
arithmetic, which is used in many other programming languages.

Clear error messages and powerful debugging:

This point means simply that error messages of Rexx provide a full and
meaningful explanation. In addition the TRACE instruction offers a powerful
debugging tool.

2.2.3 Syntax Examples

In Object Rexx every value is an Object and is created as string by default. Even
numeric values are saved as String. In the following examples code snipes are shown
which are needed for some of the nutshell examples.

The first example shows how variables are used in Object Rexx.. The || operator
assembles two strings.

a = “ab “

b = 123

SAY a b /*->"abc 123" */
SAY a || b /*->"abc 123" */

The second example shows a loop:

DO i=1T0 3
i
END

The next code snippet shows the requires statement which is needed to make the
UNO.CLS module available. Within the UNO.CLS different routines are implemented
which makes the using of the Universal Network Object concept more easier. The UNO
concept will be described in chapter 2.6.1 Universal Network Object concept, p.16.

::requires UNO.CLS

For using methods within ObjectRexx the ,,Twiddle* is needed. An example is shown
below. The Twiddle can be compared with the . in Java an is used in the same way. If
you use two Twiddles (~~) the object itself will be returnded.

Objectl~methodl

OpenOffice.org Automatisation Page 11

The next code snippet shows how it is possible to create a procedure. For this, the
routine statement is used. The arguments a, b and c can be used in the instruction part.
The variable d will be returned.

::routine name

use arg a, b, c
[instructions]
return d

2.3 OpenOffice.org

In this chapter the first section describes the most important steps of the development of
OpenOffice.org. After this OpenOffice.org is described as product to show for which
tasks this software can be used.

2.3.1 History’

Macro Borries founded in 1984 at the age of 16 a company named Star Division in
Germany. This firm created star office, a office suite'® which was sold 25 million times.
In 1999 Sun Microsystems'' bought Star Division for 70 million dollars. Since that time
a free version of Star Office was made available via downloading it from the Internet. In
the year 2000 Sun announced the OpenOffice.org project. Several months later the
OpenOffice.org website went online with the possibility to download the Source Code
of Star Office 6.0. At this time the software had 400 MegaByte and 7.500.000 lines of
C++" Code.

The first running version was finished in October 2001 named Build 638c. The next
version named OpenOffice.org 1.1 was published in September 2003. In September
2005 OpenOffice.org 1.1.5 was available followed by the latest version OpenOffice.org
2.0 in October 2005.

Star Office is today commercially available and based on OpenOffice.org. Since the Star
Office Version 6.0 Sun uses the sources of the OpenOffice.org project, including the
source code, API's, file formats and reference implementation. In return Sun continues
to sponsor development on OpenOffice.org and contributes code for the project.

The difference between these two products are some additional features of Star Office
added by Sun.

9 [WikiOO006][00006]

Office Suite is a package of programs which can support usual office task's like writer letters or create
presentations.

Sun Microssystems is the name of a company which is producing computers and software in Silicon
Valley and is creater of Java.

2 A programming language which is machine-oriented and efficient.

OpenOffice.org Automatisation Page 12

2.3.2 The OpenOffice Product"

As mentioned above, Open Office is an integrated package of programs which can
support common office work. This package includes the following programs:

Writer

This program is similar to the Office Word" program of Microsoft. It allows for
writing simple letters or a whole book. There are many styles and formatting
options, AutoCorrect'® dictionary, different wizards and many other features.

Calc

The Calc program offers the possiblity to create spreadsheets which can be used
for many different tasks. This program is similar to the Excel program of
Microsoft.

Impress

This part of the package can be used to create presentations. It includes a wide
range of tools for designing and formatting. There are many similaritys to the
Microsoft program Power Point.

Draw

Draw is a program for drawing different graphics like diagrams and complex
plans.

Base

In the Base program you can develop Databases like in the Microsoft Office
program Access. You can create, modify tabels, forms, queries and reports. In
addition you can use wizards, SQL and other functionalities.

Math

Math is the OpenOffice.org component for designing mathematical equations.

Finally it is important to say that OpenOffice.org allows to import and export MS Office
document's.

3 [00006]
" The Office Word programm is a part of a office suite from Microsoft.
* AutoCorrect means that the program is checking and correcting your spelling as you are typing.

OpenOffice.org Automatisation Page 13

2.4 The Bean Scripting Framework

,,Bean Scripting Framework (BSF) is a set of Java classes which provides scripting
language support within Java applications, and access to Java objects and methods
from scripting languages........ “[Ajp05]

This statement means, that a Bean Scripting Framework allows scripting languages
access to Java objects and methods. Further information on the concept of this
technology will be given in chapter 2.4.2. Technical Concept, p.12.

2.4.1 History

In 1999 BSF started as an opensource research project in the Watson Research Center of
IBM. Initially the task was to provide access to Java Beans from scripting language
enviroments. Soon the interest for this technology grew internally and externally of
IBM. This sircumstances led the project moved to IBM's developer Works site, where
BSF could operate as an open source project. In 2002 BSF was integrated as a
subproject of Jakarta'®. Since this time many improvements were made and led to the
current version 2.3.[Ajp05]

2.4.2 Technical Concept"

The main components are named BSFManager and BSFEngine shown in the technical
context in figure.1.

Java Application

Seript Script Script ;:_Iili
Code Code | | Code g’ 4

figure 1: Architectural Overview, [Hane05].

'® The Jakarta Project offers a diverse set of open source Java solutions and is part of the Apache
Software Foundation.
" [Ap05]

OpenOffice.org Automatisation Page 14

The BSF Manager is responsible for all scripting execution engines running under its
control. In addition it mantains the object registry that permits scripts access to Java
objects.

The BSF Engine provides an interface that offers an abstraction of the scripting
language's capabilities that permits generic handling of script execution and object
registration within the execution context of the scripting language engine. The interface
must be impemented for a language to be used by BSF.

2.5 BSF4Rexx'®

As mentionde above, a Bean Scripting Framework offers the possibility for Scripting
languages to use Java objects and methods. BSF4Rexx provides this functionality for
the Scripting language Rexx.

The first proof of concept of BSF4Rexx, named Essener Versionl, was developed by
the student Peter Kalender in the year 2000/2001 according to the seminar task
assignment by Prof. Flatscher, who later has developed the full version of BSF4Rexx.

The secound version of the Rexx Bean Scripting Framework, called Augsburger
Version, was developed in the year 2003/2004. Using this framework, it was now
possible, amoung other improvements, to start Java from Rexx. In the former Version
this was not possible.

The latest version which is available at the time of writing (February 2006) is called
Vienna Version. The Wiener Version offers the usage of typeless variables and
additional methods amoung many other improvements. [Flat06]

BSF()
BsfDropFuncs()
BsflnvokedBy()
BsfLoadFuncs()
BsflLoadJava()
BsfQueryAllFunctions()
BsfQueryRegisteredFunctions()
BsfUnloadJava()
| |

Bsf\Version()
JNI =
BSF4Rexx
Rexx

. \ (C++) / scripts

~— i

Figure 2: BSF interaction with ObjectRexx and Java, [Flat06].

~Java Program

RexxEngine

RexxAndJaval

'8 [BSF4Rexx]

OpenOffice.org Automatisation Page 15

In figure.2 the architecture of BSF4Rexx is shown. In the following code example the
usage of this technology is demonstrated:
.bsf~new('java.awt.Frame', 'Hallo, liebe Welt - von Object Rexx aus.') ~show

call SysSleep 10
requires BSF.cls

[Flat06]

First the BSF module is loaded with the requires statement. After that BSF is used to
create a new java.awt.Frame and adds the string ,,Hallo, liecbe Welt — von Object Rexx
aus®. In the same line the Java Frame is set visible using the method show. Finally the
program stops for ten seconds.

2.6 The Architecture of OpenOffice.org"

uno swriter o
ELLE ey component
UNO |: r;
‘component
UNO mUNU
component Dﬂ"‘:’"‘l"':'"e"l o
UNO
component UNO
w:;'mem component
UNO
T component
component S Ca Ic UND

uno > i S
component
UHO

component UNO
component

UNO
component

UNO UNO

Figure 3: Components of OOo [Flat05].

OpenOffice.org was desigened as a client server architecture which is interacting via
TCP/IP sockets. Furthermore OQOo is based on components which provide different
functionalities. This means that all applications of OOo consist of different components
which offer together, for example, a swriter or scalc program.

In figure.3 different components are shown which are combined to provide an
application. In some cases one UNO component is used for several programs. For this it
is possible to save line of codes and to use automatisation knowledge for different
applications.

All these components are implemented as UNO objects. The UNO concept will be
described in the next section.

1 [00006] [Flat05]

OpenOffice.org Automatisation Page 16

2.6.1 Universal Network Object concept

Each component is described in the interface description lanugage (IDL) module®. The
UNO Interfaces Description Language Modules can be described as following:

,,...IDL modules may contain nested IDL modules, where the structure represents a
hierarchy having a root module. Identifying a type in this hierarchy of modules is
therefore easy, one starts out at the root module and names all nested modules one
needs to traverse, leading in and separating the names with double colons (::, c-style)
or separating them with a dot only (Java style). Hence the type named "XPrintable" has
the fully qualified name "::com::sun::star::view::XPrintable" (C++) or
"com.sun.star.view.XPrintable" (Java).... " [Flat05]

In the statement above it can be seen that UNO components can be implemented in
different programming languages.

client server
urp

(CORBA-like)

UNO < UNO
component > component

TCPIIP socket

Figure 4: Communication between UNO components [Flat05].

In figure.4 the communication between UNO components is shown. For communication
TCP/IP*' sockets are used, which makes it possible to run OpenOffice.org on different
computer systems connected via a network. Furthermore the UNO remote protocol is
used that is comparable to CORBA* (Common Object Request Broker
Architecture).[Flat05]

Through using UNO compents the following advantages can be achieved:

- different programming languages

As described above different programming languages can be used to automate
and extend OpenOffice.org. It is only necessary that a UNO language binding
exists.

2 The UNO IDL allows the defining of types (classes, components), structures (,struct‘) consisting of
fields only, exceptions, constants, and enumerations.

2 TCP/IP (Transmission Control Protocol / Internet Protocol) is a communication protocol for connecting
computers through the internet.

2 The OOo developer's guide [Open05] describes the communalities and differences.

OpenOffice.org Automatisation Page 17

- different operating systems

OpenOffice.org can be used on different operating systems like Windows, Linux
or Solaris. In the the context of OOo automatisation you should consider that
your used programming language is also platform independent.

— different networks

As mentioned above all components are communicating via TCP/IP. Normally
the client and the server component are installed on the same computer. Using
the UNO technology it is possible that the client component interacts with
the server component over a network. That offers the possiblity to run
OpenOffice.org clients on different computer systems. [Open05]

2.6.2 UNO Service Components

Each UNO component usually represents a service which consists of additional services,
interfaces and properties. To create services the Service Manager is needed.

2.6.2.1 Service Manager

,,UNO introduces the concept of service managers, which can be considered as
factories that create services.* [Open05, p.36]

The service manager in figure.5 is responsible to create services which represent UNO
objects. Each service manager exists in a component context. A compenent context
describes a set of components which are combined to run an application like the swriter.
In figure 3 each box can be described as component context.

Client Component Context Server Component Context
(e.g. swriter)

Service Manager

r
1
1

I .

Service Manager ' Service

1
1
1
1
Service Service :

i . UNO - object

Service Service . B is called ,service"

- provides more interfaces
- has properties

Figure 5: The Service Manager [Augu05]

OpenOffice.org Automatisation Page 18

For example, a service manager provides the following services®:

com.sun.star.frame.Desktop:

maintains loaded documents: is used to load documents, to get the current
document, and access all loaded documents

- com.sun.star.configuration.ConfigurationProvider:

yields access to the OpenOffice.org configuration, for instance the settings in the
Tools - Options dialog

- com.sun.star.sdb.DatabaseContext:
holds databases registered with OpenOffice.org
- com.sun.star.system.SystemShellExecute:

executes system commands or documents registered for an application on the
current platform

- com.sun.star.text. GlobalSettings:
manages global view and print settings for text documents

While creating the nutshell examples the desktop service will be the most important
service. As described above this service enables to load and access documents. The
desktop service will be described in more detail later on in this paper.

To create an instance of service components you have to use the method
,createlnstance()* or ,,createlnstanceWithArguments()* passing the fully qualified name
of the UNO component. The returned object is called ,,service object™ and can now be
used for automation.[Flat05]

The next step will be to explain the terms Services, Interfaces and Properties in more
detail.

[Open05, p.36]

OpenOffice.org Automatisation Page 19

2.6.2.2 Services,Interfaces and Properties

3 com.sun.starview. XPrintable

et Printer
selPrinter
priril

com.cun.star.document. com.sun.star.frame.XStorable
OfficeDocument

CAEITVICER S

haslacation

getlocation

iskeadlinly

STOre
com.sun.star.frame.XModel

attachResource
JetUEL
JeLArgs

com.sun.startext. XTextDocument

getlext
reformat

com.sunstar.util Xsearchable

com.sun.startext.

TextDocument creadeSaarchDescriplos
Tirelill

findFirst
fimdMexr

com.sun.star.util XRefreshable

CLSCIVICE> >

refresh
addRedresnlistener
remaveReleshListensr

Figure 6: Services [Open05, p.42]

»Services describe objects by combining interfaces and properties into an
abstract object specification.“[Open05, p.69]

Most objects in OpenOffice.org are called services. In figure.6 the TextDocument
Service is described in UML notation, which includes the OfficeDocument service.
Both services offer different interfaces. In OpenOffice.org the first letter of an interface
name is always a x. In this case the interfaces XPrintable, XStoreable and XModel are
provided from the OfficeDocument service. This service is implemented in every
document type of OOo and represents a component which is used from different
applications.

[Open05]

The TextDocument Service offers the interfaces XTextDocument, XSearchable and
XRefreshable.

., An interface is a set of methods and attributes that together define one single
aspect of an object. “[Open05, p.39]

OpenOffice.org Automatisation Page 20

Each interface includes different methods and optionally arguments. For Example, the
XTextDocument interface provides the methods getText and reformat. Interfaces and
Services include often Properties which can be described as following:

A property is a feature of a service which is not considered an integral or
structural part of the service and therefore is handled through generic
getPropertyValue () / setPropertyValue () methods instead of specialised
get methods... . " [Open035, p.41]

Generally, properties allow the storing and retrieving of information. If you want to
identify properties it is necessary to study the OpenOffice.org API*

2.6.2.3 UNO Java Access

Since Sun bought Star Office a java adapters were implemented. These Java adapters
allow to use UNO components like native Java components. In addition it is possible to
implement UNO components in Java. [Flat05]

Java Adapter

< UNO
> component

SESRESEE

Figure 7: Java Adapter [Flat05]

2 The OpenOffice.org API defines the interface for accessing office functionalaty independently from
certain programming languages. [O0O006]

OpenOffice.org Automatisation Page 21

3 Interaction of Elements

In chapter 2. Describing the main elements (p.7), all components of the OpenOffice.org
automatisation were described. Now it is important to show how these different
technologies are working together to build a bridge from OpenOffice.org to Object
Rexx.

|+ Rhino \

Javal \por| [
O
Resultat: Programm n
Fernsteuerung Skriptsprache
von OO
Java

Figure 8: The overall concept [Augu05]

In figure.8 all components of the OpenOffice.org automatisation are shown. As
described in section 2.6 OpenOffice.org (p.15) is based on UNO components. These
UNO components can be accessed through Java using the Java Adapter. The BSF4Rexx
can now build a bridge between Java and Object Rexx.

It would also be possible to build this bridge for other scripting languages as well using
BSF for this purpose. But, as mentioned above, it is important that a programming
language is also operating system independent like OpenOffice.org. ObjectRexx fullfill
this criteria and offers additional advantages which were already listed in chapter 2.2.2
Aspects of Object Rexx (p.8).

In addition to these features BSF4Rexx provides modules which makes the access to
UNO components easier. The newest module which can be used is named UNO.CLS
and will be described in the following chapter.

3.1 UNO.CLS

The UNO.CLS module supports the interaction with Open Office.org using Open
Object Rexx. The module can save several line of codes due to different functionalaties
which automate common steps. The advantages can be seen through comparing the
source code of two examples programmed in OpenObjectRexx. The first one is
translated directly from Java to Object Rexx without using the UNO.CLS module. The
secound one uses UNO.CLS. The result is shown and commented in the next two
sections.

OpenOffice.org Automatisation Page 22

3.1.1 Java:ObjectRexx*

The source code below shows ObjectRexx code which initialises a
xMultiServiceFactory in the blue marked part. The lines in red in the first paragraph
create a Desktop Service Interface. During the next step the XComponentLoader
Interface is created which makes it possible to open a new text document. This can be
done with the method loadComponentFromURL() which needs an Property Array
created in the black lines.

/*Beginning of the blue marked part*/

/* initialize connection to server, get its Desktop-service and XComponentLoader
interface */

sComponentContext = .bsf~new("com.sun.star.comp.helper.Bootstrap")
~createInitialComponentContext(.nil)

unoRuntime = .bsf~new("com.sun.star.uno.UnoRuntime")

sUrlResolver = sComponentContext~getServiceManager()
~createInstanceWithContext("com.sun.star.bridge.UnoUrlResolver", sComponentContext)

XUnoUr1lResolver = .bsf4rexx~Class.class~forName("com.sun.star.bridge.XUnoUrlResolver")
oUrlResolver = unoRuntime~queryInterface(XUnoUrlResolver, sUrlResolver)

unoUrl = "uno:socket,host=localhost,port=8100;urp;Star0ffice.NamingService"
oInitialObject = oUrlResolver~resolve(unoUrl)

XNamingService .bsf4rexx~Class.class~forName("com.sun.star.uno.XNamingService")
sNamingService = unoRuntime~queryInterface(XNamingService, oInitialObject)
oServiceManager = sNamingService~getRegisteredObject("StarOffice.ServiceManager")
XMSFactory = .bsf4rexx~Class.class~forName("com.sun.star.lang.XMultiServiceFactory")
sMSFactory = unoRuntime~queryInterface(XMSFactory, oServiceManager)

/*End of the blue marked part*/
/*Beginning of the marked red part*/
-- Retrieve the Desktop object, we need its XComponentLoader interface

-- to load a new document
sDesktop = sMSFactory~createInstance("com.sun.star.frame.Desktop")

XDesktop = .bsf4rexx~Class.class~forName("com.sun.star.frame.XDesktop")
oDesktop = unoRuntime~queryInterface(XDesktop, sDesktop)
XComponentLoaderName =

.bsfdrexx~Class.class~forName("com.sun.star.frame.XComponentLoader")
sComponentLoader = unoRuntime~queryInterface(XComponentLoaderName, oDesktop)

/*End of the red marked part*/

/*Beginning of the black marked part, until end*/

/* Open a blank text document */

/* No properties needed */

propertyValueName = .bsf4rexx~Class.class~forName("com.sun.star.beans.PropertyValue")
loadProps = .bsf~createArray(propertyValueName, 0)

/* 0=no elements, i.e. empty Java array */

/*End of the black marked part*/

/* load an empty text document */

oWriterComponent = sComponentLoader~loadComponentFromURL("private:factory/swriter",
" blank", 0, loadProps)

::requires BSF.cls

% [Flat06]

OpenOffice.org Automatisation Page 23

3.1.2 UNO.CLS*

Many steps which are described above in the first example are now automated from the
UNO.CLS module. This saves the code of the whole blue marked part, which requests
the XmultiServiceFactory. Furthermore the red marked part of the first example, which
initialises the Desctop Service Interface and the XCompenentLoader, is now reduced to
only two lines of code shown in lines commented with ,,get the OOo Desctop service
object” and ,,get componentLoader interface. In addition an empty array for loading a
new document like above can be easely created through the .UNO~noProps statement.

oDesktop = UNO.createDesktop() -- get the 000 Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

xWriterComponent = xComponentLoader~LloadComponentFromURL("private:factory/swriter",
" blank", 0, .UNO~noProps)

i:requires UNO.cls -- get UNO support

Finally one have to note that the UNO.CLS module offers many more functionalaties
which will partly shown in the following nutshell examples.

% [Flat06]

OpenOffice.org Automatisation Page 24

4 Installation Guide

1. Downloading OpenOffice.org

Download the newest version of OpenOffice.org. For the following nutshell
examples OpenOffice.org 2.1 is used. The latest version of OOo can be down
loaded at the OpenOffice.org homepage?®’.

2. Downloading Java

The next step is to download java from the from the Sun homepage®. Before
doing this it should be checked if java is already installed.

3. Downloading Open Object Rexx
Open Object Rexx can be downloaded from the Open Object Rexx homepage®

4. Downloading Bsf4rexx

At the time of writing the lates version of BSF4Rexx can be retrieved from the
Vienna University of Economics and Business Administration®

All steps for the installiation can be found in the readmeBSF4Rexx.txt file.

5. Differences between English and German OpenOffice.org versions

As mentioned above all steps for installing BSF4Rexx are described in the
readme file. To make some steps more clear the following describtions can be
used in addition.

For adding the ScriptProviderForooRexx.jar file the PackageManager is used.
The Package Manager can be found following the steps listed below:

(De) Extras--> Package Manager
(En) Tools--> PackageManager

ooRexx Makros
Makros

[&=Feine Makros:
=7 OpenCffice.org Makros Schlisfen
E;:" Vorlage zu wissenschaftl. arbeiten
LT:" Bakk_Arbeit_v.01.odt
IE’I InstallationGuide . doc

Erstellen...

Liaschen...

Hilfe

Figure 9: ooRexxMakros

7 [00006]
[Sun06]

9 [Oorex05]
[BSF4Rexx]

@ NN
o ®

OpenOffice.org Automatisation Page 25

After the file is added OpenOffice.org has to be closed including the Quick
starter. Then open OOo again. Now it is possible to create your own Macros
using the Macros Organiser (figure.9) which can be found in the following
menu:

(De) Extras--> Makros--> Makros verwalten--> ooRexx
(En) Tools--> Macros--> Organise Macros --> ooRexx

OpenOffice.org Automatisation Page 26

S Examples

In this chapter differnt nutshell examples are shown and described. The nutshell
examples should show how different UNO components can be accessed using the
technologies described above. Writing these examples following objectives were
considered:

Objectives

« gain the understanding of the UNO component concept,

- create a set of code snippets which could be used for further automatisation,

- make OpenOffice.org more attractive in view of competitive office packages,
- support independent OpenSource technologies for daily business processes.

- Gain the understanding of the UNO component concept

The UNO component concept is very complex and not easy to understand. If you
have read the first part of this paper carefully it should now be possible to get an
quick overview during analysing the examples below. Without any examples it
takes you a long time to translate theoretical knowledge into usefull source code.

- Create a database with code sinppets which could be used for further automatisation

The source code presented in this chapter can be easy by reused through copy
and paste. Every code part will be described and documented to make it clear
what functionality it provides.

- Make OpenOffice.org more attractive in view of competitive Office packages

This statement means that it is always necessary to force competition on markets
which results in better products and lower prices.

- Support independent OpenSource technologies for daily business processes

It is always necessary to automate some steps of daily business processes to be
more efficient. Due to the fact that OpenOffice.org is based on a Client/Server
system creative IT-Infrastructure architectures are possible. These and other
aspects allow to offer work place enviroments which support business processes
in an effecient way.

OpenOffice.org Automatisation Page 27

5.1 Wordprocessor (,,swriter®) Examples

The text document model is able to handle text contents. The document itself can be
stored and printed to make the result of the work a permanent resource. Model in this
context means data that forms the basis of a document and is organized in a way
allowing to work independent from the visiual presentation. [Open05]

The Text Document Model is illustrated in figure.10.

Service
Manager

XMultiServiceFactory
creates Text Contents

Controller & ViewData
<|> A .
I L % Services for
J Styles & Layout
Controller has Frame,
ViewCursor and . . XStyleFamiliesSupplier
LayoutCursor =l
'. MADO
DrawPage Services for Outline
2 XModel & Line Numbering
XDrawPageSupplier getCurrentController ()))
XChapterNumberingSupplier
XLineNumberingProperties
Text e
1.4. Chapter
\ Document :
Model
pUs]
XTextDocument
getText () i
Forms :
= ~—J» Document Aspects
ax XPrintable
XStorable
XReplaceable
XRefreshable
i XModifiable
TextContent SI.IPDIIEIS XDocumentinfoSupplier
XTextTablesSupplier
KTextFramesSupplier
KTextGraphicObjectsSupplier .

XTextEmbeddedObjectsSupplier .
XTextFieldsSupplier

XBookmarksSupplier .
XReferenceMarksSupplier

XFootNotesSupplier .
XEndMotesSupplier
XTextSectionsSupplier
XDocumentindexesSupplier
XRedlinesSupplier

figure 10: Text Document Model, [Open05, p.503]

OpenOffice.org Automatisation Page 28

The text document model consists of the following five major architectural areas:

« text,

. service manager,
 draw page,

+ text content suppliers,

« objects for styling and numbering.

The text document model consists of character strings grouped into paragraphs and
other text contents.

The service manager of the document model creates all text contents for the model.
Examples for such text contents are text tables, text fields, drawing shapes, text frames
or graphic objects. Important to notice is that this Service Manager is different to the
main Service Manager. Each document model has its own Service Manager.

All text contents mentioned above can be retrieved from text content suppliers. Only for
drawing shapes the draw page is used. This can be seen in section 5.1.5, Example 05

(p.37).

For styling and structuring of text, different services can be used. These services provi-
de, for example, style family suppliers for paragraphs, characters, pages and numbering
patterns, and suppliers for line and outline numbering.[Open05, p 503]

OpenOffice.org Automatisation Page 29

5.1.1 Example 01 — Hello World

This example insert a string into a new swriter document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader=oDesktop~XDesktop~XComponentLoader --get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL (url, " blank", 0, .UNO~noProps)

/* create the TextObject */

xWriterDocument = xWriterComponent~XTextDocument
XText = xWriterDocument~getText()

/*insert text */
XxText~insertString(xText~End(), "HellowWorld!", false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

The result can be seen in figure.11.

3 Untitled? - OpenOffice.org Writer

File Edit Wew Insert Format Table Tools Window Help
iB-2H= 8285 Ve B-& b & E

|E| |DeFauIt v| |Times Mews Roman v| |12 v| B 7 U |g|

L

Hello World !

figure 11: Hello World

The lines of code in more detail:

During the first steps an XDesktop object will be requested with the following statement
(coutout.1):

Cutout.1
oDesktop=xScriptContext~getDesktop

In the next code selection the XDesktop and XDocumentLoader interface are intialised
(coutout 2). It is no longer necessary to use the querylnterface() method to get an
interface due to the UNO.CLS support which is described in chapter 3.1 UNO.CLS
(p-20).

OpenOffice.org Automatisation Page 30

Cutout 2
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

If one want to know more about the XDesktop Service a look into the OpenOffice.org
Api®' may be helpfull.

In this context (cutout.3) the xComponentLoader is required which offers the method
loadComponentFromURL(URL, TargetFrameName, SearchFlag, PropertyValue).

The URL is an important attribute for the following examples and should be explained
in more detail. The URL contains a string which can contain the following values:

URL

url =, privat:factor/swriter* --opens a new swriter document

url =, privat:factor/scalc* --opens a new scalc document

url = ,,privat:factor/simpress* --opens a new simpress document

url = ,,privat:factor/sdraw* --opens a new sdraw document

url = ,,http://api.openoffice.org/* --opens an html document from the passed URL
url =, file:///c:/originaldoc.odt* --opens an existing document from the passed URL

Cutout 3
xWriterComponent = xComponentLoader~loadComponentFromURL (url, " blank", 0, .UNO~noProps)

To get more information on this interface you can have again a look into the
OpenOffice.org Api*.

In cutout 4 the XTextDocument interface and its getText() method are used. The
XTextDocument was already explained in chapter 2.6.2.2 Services, Interfaces and
Properties (p.18).

Cutout 4
xWriterDocument = xWriterComponent~XTextDocument
XxText = xWriterDocument~getText()

/*insert text */

xText~insertString (xText~End(), "HelloWorld!", false)

In cutout.4 the insertstring() method is used which requires two attributes. The first
passes a textrange with the end position of the text element. The last attribute defines if
the inserted text should overwrite the current text or not. For more detailed information
use the OpenOffice.org Api®.

31 [Api0Ba]
2 [ApiO6a]
3 [Api06b]

http://api.openoffice.org/

OpenOffice.org Automatisation Page 31

5.1.2 Example 02 — Insert Texttable

This example insert a Texttable and formats it.

ScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
/* open the blank *.sxw - file */

url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, " blank", 0, .UNO~noProps)

/* create the TextObject and the TextCursor */
xTextDocument = xWriterComponent~XTextDocument
XText = XTextDocument~getText

XTextCursor = xText~createTextCursor

/* create the MulitServiceFactory from the current document */
/* (otherwise the created objects cannot be inserted into the document) */
XDMsf = xTextDocument~XMultiServiceFactory

/* create the TextTable */
xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable
xTextTable~initialize(3,3)

/* insert TextTable in the Text */
xText~insertTextContent (xTextCursor, xTextTable, .false)

/* insert Text in the first row of the table */
xCellText = xTextTable~getCellByName("Al")~XText
xCellText~setString("first column")

xCellText = xTextTable~getCellByName("B1l")~XText
xCellText~setString("second column")

xCellText = xTextTable~getCellByName("C1l")~XText
xCellText~setString("third column")

/*insert values into the table*/

xTextTable~getCellByName("A2")~setValue(random(0,500))
XxTextTable~getCellByName("B2")~setValue(random(0,500))
xTextTable~getCellByName("C2")~setValue(random(0,500))
XxTextTable~getCellByName("A3")~setValue(random(0,500))
xTextTable~getCellByName("B3")~setValue(random(0,500))
xTextTable~getCellByName("C3")~setValue(random(0,500))

call syssleep 2

/*insert an additional row*/
xTextRows = xTextTable~getRows
XTextRows~insertByIndex(3,2)

/*set values into the new row*/

xTextTable~getCellByName("A4")~setValue(random(0,500))
xTextTable~getCellByName("B4")~setValue(random(0,500))
XTextTable~getCellByName("C4")~setValue(random(0,500))

call syssleep 2

/*set formulas into the last row*/

xTextTable~getCellByName("A5")~setFormula("mean <A2:A4>")
xTextTable~getCellByName("B5")~setFormula("mean <B2:B4>")
XTextTable~getCellByName("C5")~setFormula("mean <C2:C4>")

OpenOffice.org Automatisation

Page 32

/*set style properties of the table*/
XxTableRow = xTextRows~getbyIndex(0)
xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int",

XTableRow = XxTextRows~getbyIndex(4)
xProbRow = xTableRow~xPropertySet

XProbRow~setPropertyValue("BackColor", box("int",

r:requires UNO.cls -- get UNO support

"ebe6fa"x ~c2d))

"66cdaa"x ~c2d))

8 Untitled? - OpenDffice.org Writer

File Edit ¥iew Insert Format Table Tools ‘Window Help

B-eHae 2 BEaR 9= EEBR-¢ 6-0- A

|E| |Defau\t

v||TimesNewRoman v||12 v| B f !.! ‘g‘

0 [t o % 102130 4 Frb T B

first-column second-column third-column ¥
- 259 2064 42
. 452 664 302
458 S 219

figure 12: Insert Text Table

The result can be seen in figure.12.

About the Texttable:

Simply speaking, a text table is a set of rows and columns of text...Each column
is labeled asphabatically starting with the letter A...each row is labled
numerically starting with the number 1. The object method getCellByName()
uses this name to return the spcified cell. A similar object method,
getCellByPosition(), returns the cell based on the column and number. The
column and row number are zero-based numbers, so requesting (1,2) returns the
cell named ,, B3 “.[Pito04] (Chapter 13, Writer Documents, p.308)

The table below shows the names and index numbers which can be used to adress the

cells:

A1(0,0)

B1(1,0)

C1(2,0)

A2(0,1)

B2(1,1)

C2(2,1)

OpenOffice.org Automatisation Page 33

A1(0,0) B1(1,0) C1(2,0)

The lines of code explained in more detail:

First a new swriter document will be initialised. All steps which are necessary for this
were alread described in Example 01 (p.30).

Cutout.1

xTextDocument = xWriterComponent~XTextDocument
XText = XTextDocument~getText

XTextCursor = xText~createTextCursor

Furthermore a TextCorsur is needed (cutout.1) to traverse the text object and to place
the Texttable which will be created in the following lines of code (cutout.2):

Cutout.2

XxDMsf = xTextDocument~XMultiServiceFactory

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable
XxTextTable~initialize(3,3)

The next step initialise a XMultiServiceFactory which was already described in the
beginning of this chapter. Using this factory it is now possible to create a text content
named TextTable. The passed attributes used from the method initialize() specify the
number of columns and rows (cutout.3)

Cutout.3
xText~insertTextContent (xTextCursor, xTextTable, .false)

Using the statement above the text table will be inserted into the text (cutout.4). For this
the TextCorsur is used to place the table. The last attribute defines if the current text
will be overwritten or not.

Cutout.4
xCellText = xTextTable~getCellByName("Al")~XText
xCellText~setString("first column")

Inserting text the XCell interface has to be requested. For this the method
getCellbyName() is used described in the previous section ,,About the Texttable®.

Cutout.5
XxTextTable~getCellByName("A2")~setValue(random(0,500))

In the previous lines of code (cutout.5) random values are inserted. For initialising the
cells the method getCellByName() is used described in the lines above. Now the values
can be set with setValue(). The passed values are in this case random numbers created
from a rexx routine.

Cutout 6
XxTextRows = xTextTable~getRows
XxTextRows~insertByIndex(3,2)

An additional row can be inserted (cutout.6) using the XTextRows interface which
offers the method insertByIndex().

OpenOffice.org Automatisation Page 34

Cutout 7
xTextTable~getCellByName("A5")~setFormula("mean <A2:A4>")

For setting new formulas (cutout.7) into the text table the setFormula() method is used
passing the name and range of the formula using a string.

Coutout.8

xTableRow = xTextRows~getbyIndex(4)

XProbRow = xTableRow~xPropertySet
XProbRow~setPropertyValue("BackColor", box("int", "66cdaa"x ~c2d))

In the last paragraph (coutout.8) of the source code the style properties of two rows are
set. For this the XRow interface is initialised. Afterwards the XPropertySet interface
will be requested which allows to pass property values. The method setPropertyValue()
requires the name of the property and an integer value which spedifies the color. As
described in section 2.2.3 Syntax Examples (p.10) Object Rexx uses only strings for
variables. This makes it necessary to use the box routine which creates a Interger class
containing the stated value. This class will be passed and makes it possible that
OpenOffice.org can identify the value.

5.1.3 Example 03 — Cursor Show

In this example different corsurs are created and used to set text and to change the view
on the current document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentlLoader interface

/* open the blank *.sxw - file */
url = "file:///c:/originaldoc.odt"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, " blank", ©,.UNO~noProps)

/* create the TextObject */
xTextDocument = xWriterComponent~XTextDocument
XText = XTextDocument~getText

/*create a text corsur*/
XTextCursor = xText~createTextCursor

/*create a word corsur*/
xSentenceCursor = xTextCursor~xSentenceCursor

/* create a Screen Cursor */

xScreenCursor=xTextDocument~XModel~getCurrentController
~XtextViewCursorSupplier~getViewCursor~XPropertySet~XScreenCursor

/* create a Page Cursor */

xPageCursor=xTextDocument~XModel~getCurrentController
~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

/*create the cursor property*/
XTextCursorProps = xTextCursor~xPropertySet
xTextCursorProps~setPropertyValue("CharBackColor", box("int", "e6e6fa"x ~c2d))

Call syssleep 2

XxTextCursor~gotoStart(.false)
xText~insertString(xTextCursor, "Additional Text ", .false)

Call syssleep 2

OpenOffice.org Automatisation Page 35

xSentenceCursor~gotonextSentence(.false)
XText~insertString(xSentenceCursor,"This is page number ", .false)

xSentenceCursor~gotoEndOfSentence(.false)
XText~insertString(xTextCursor, xPageCursor~getPage, .false)

Call syssleep 2

/*move the screen down*/
xScreenCursor~screenDown

Call syssleep 2

/*move the screen up*/
xScreenCursor~screenlUp

xSentenceCursor~gotonextSentence(.false)
xText~insertString(xSentenceCursor, "Back again", .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

JE | originaldoc - OpenOffice.org Writer

File Edit Wiew Insert Format Table Tools window Help
E-sH=2 ZF 28R V= B-g b & = -

|@| |Defau|t v| |Times New Roman v| ‘12 v| B J U |;

A dditional ‘Text{This is-my firstsentenceq
This iz -page number - 19
Back-again

1
1
1
1
1
1

figure 13: Cursor Show

The result can be seen in figure 13.
About cursors:

,» The view cursor knows how the data ist displayed, but doesn't know about the
data itself. Text cursors (non-view cursors), however, know a lot about the data
but very little about how it is displayed. For example, view cursors do not know
about words or paragraphs, and text cursors do not know about lines, screens
or pages. " [Pito04] (Chapter 13, Writer Documents, p.283)

The lines of code explained in more detail:

First an existing swriter document is loaded. In contrast to the examples presented
before the passed URL adresses an existing document.

Cutout.1
/*create a text corsur*/
XTextCursor = xText~createTextCursor

OpenOffice.org Automatisation Page 36

/*create a word corsur*/
xSentenceCursor = xTextCursor~xSentenceCursor

/* create a Screen Cursor */

xScreenCursor=xTextDocument~XModel~getCurrentController
~XtextViewCursorSupplier~getViewCursor~XPropertySet~XScreenCursor

/* create a Page Cursor */

xPageCursor=xTextDocument~XModel~getCurrentController
~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

In the beginning part of the source code (cutout.1) cursors are created. The XTextCursor
and the XSentenceCursor are called text (non-view) cursors and are used to traverse
text. The XScreenCursor and the XPageCursor represents view cursors which are used
to suport commands that are directly related to viewing. (See: ,,About corsurs" p.35)

Cutout.2
XTextCursorProps = xTextCursor~xPropertySet
XTextCursorProps~setPropertyValue("CharBackColor", box("int", "e6e6fa"x ~c2d))

Generally it is possible to set property values for TextCursors as shown in the code lines
above (cutout.2). If one use now the cursor for inserting text, the set style will be
adopted.

In the code lines which following after setting the cursor properties, the text cursors are
used to traverse the text and inserting strings.

Cutout.3
XText~insertString(xTextCursor, xPageCursor~getPage, .false)

In cutout 3 a method of the XPageCursor is used to get the current Page number.

Cutout.4
xScreenCursor~screenDown
xScreenCursor~screenUp

At the end of the example (cutout.4) the XScreenCursor is used to move the screen up
and down. As described above (,,About cursors, p.35) view cursors can only be used
for command related to viewing. They can not be used to work on the text object.

5.1.4 Example 04 — Page Counter

This example shows how the page cursor can be used to count the number of pages of
any swriter document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentlLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "file:///c:/mydocument.odt"

xWriterComponent = xComponentLoader~loadComponentFromURL (url, " blank", O,
.UNO~noProps)

/*get the text of the document*/
xTextDocument = xWriterComponent~XTextDocument
XText = XTextDocument~getText

OpenOffice.org Automatisation Page 37

/*Creating a page cursor*/
xPageCursor=xTextDocument~XModel~getCurrentController
~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

/*Creating a text cursor*/
XTextCursor = xText~createTextCursor

/*counts the number of pages*/

page = 1

Do While xPageCursor~jumpToNextPage = 1
page = page + 1

End

XxTextcursor~gotoEnd(.false)
xText~insertString(xTextcursor, " This document has " || page || " pages", .false)

r:requires UNO.CLS -- load UNO support for OpenOffice.org

£l mydocument - OpenOffice.org Writer

File Edit “iew Insert Faormat Table Tools wWindow Help
B-cHe B BESR VR XLB - w0

|ﬁ| |DeFauIt - | |Times e Romarn "l |12 b | B / U

v

Thiz -document -has-1-pagesy

figure 14: Page Counter

The result of this example can be seen in figure 14.
The lines of code explained in more detail:

First an existing document is loaded, in this example named mydocument. Afterwards a
Page Cursor is created like in the example before (Example 03, p.34)

Cutout.1
page = 1

Do While xPageCursor~jumpToNextPage = 1
page = page + 1
End

The do while loop shown in cutout.l uses the Rexx variable page. This variable is
initialised with one because the page cursor resides at the first page at the beginning.
During every loop the XPageCursor jumps to the next page and the counter is raised by
one. If there are no more pages the jumpToNextPage() method returns zero and the loop
will be interrupted.

OpenOffice.org Automatisation Page 38

Cutout.2
XxTextcursor~gotoEnd(.false)
XText~insertString(xTextcursor,

This document has " page " pages", .false)

At the end of the example (cutout.2) the page counter is added to the end of the
document.

5.1.5 Example 05 — Insert Different Shapes

This example shows how different shapes can be inserted into a text document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
oDoc=xScriptContext~getDocument -- get the document service (an XModel object)

xComponentLoader = oDesktop~XDesktop~XComponentlLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, " blank", 0, .UNO~noProps)

/* create the TextObject and the TextCursor */
XxTextDocument = xWriterComponent~XTextDocument
XText = XTextDocument~getText

XxTextCursor = xText~createTextCursor

/* create the MulitServiceFactory from the current document */
/* (otherwise the created objects cannot be inserted into the document) */
XDMsf = xTextDocument~XMultiServiceFactory

/* create a RectangleShape */

Shape = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")
xShape = Shape~xShape

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xShape~setSize(size)

XxPropertySet=xShape~xPropertySet
xPropertySet~setPropertyValue("FillColor", box("int", "CO CO CO"x ~c2d))
xTextContentShape = Shape~xTextContent

/*insert the shape*/
xText~insertTextContent (xText~getEnd, xTextContentShape, .false)

/*insert text into the shape*/
xShapeText = Shape~xText
xShapeText~setString("The components of OpenOffice.org:")

/*create a GraphicObjectShape with picture*/

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")
XGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

XGraph~setSize(size)

XxPropertySet=xGraph~xPropertySet
XPropertySet~setPropertyValue("GraphicURL", "file:///C:/0OpenOffice.bmp")
xTextContentShape2 = oGraph~xTextContent

/*Shape*/
xText~insertTextContent (xText~getEnd, xTextContentShape2 , .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 39

3 Untitled3 - OpenOffice.org Writer

File Edit Yew Insert Format Table Tools Window Help
B2 Ha= BESRIP = B-¢ &-

: ‘ﬁ| Default | [Times tew Roman vz v B FU

OpenOffice.org 2.0 Components: \
B =) B
The components of OpenOffice. org E b ‘}_ l d ‘__ B

Writer [mpress Math Draw Calc Base

- B ¥

Figure 15: Insert Different Shapes

The result of this example can be seen in figure.14.
The lines of code explained in more detail:

First a new text document is opened in the same way like it could be seen in the
examples above. Moreover the XMultiServiceFactory is needed to create instances of
different shapes.

Cutout.1
Shape = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")
xShape = Shape~xShape

In cutout.1 a rectangle shape is created. To set needed values like size and position the
XShape interface will be requested.

Cutout.2

size = .bsf~new("com.sun.star.awt.Size")
size~Height = 2500

size~Width = 8000

xShape~setSize(size)

Next a com.sun.star.Size structure is needed which contains two integer values named
Height and Weight. For this BSF is used like shown in chapter 2.5 BSF4Rexx, p.13.
After adding these two variables the size structure is passed to the shape using the
setSize() method (cutout.2).

Cutout.3
XxPropertySet=xShape~xPropertySet
XPropertySet~setPropertyValue("FillColor", box("int", "CO CO CO"x ~c2d))

As shown in cutout.3 the XShape inteface includes a XPropertySet interface which
allows to set properties like already done for a XTableRow interface in Example 02,
cutout.8 (p.34) or Example 03, cutout.2 (p.36) for an XTextCorsur interface.

OpenOffice.org Automatisation Page 40

Cutout.4
XTextContentShape = Shape~xTextContent

To insert the shape into the text the XTextContent interface is needed (cutout.4). This
interface enables objects to be inserted into a text and provide their location in text once
they are inserted into it.

Cutout.5
xText~insertTextContent (xText~getEnd, xTextContentShape, .false)

A similar statement was already explained in Example 02, cutout.3 (p.33). Only the
inserted object is different.

Cutout.5
xShapeText = Shape~xText
xShapeText~setString("The components of OpenOffice.org:")

The Shape object includes a XText interface which can be used like in Example 01,
cutout.4 (p.30).

Cutout 6
oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")
XPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.bmp")

The second inserted object is a com.sun.star.drawing.GraphicObjectShape which can be

filled with a graphic object. For this the GraphicURL property has to be set.

5.1.6 Example 06 - Sending e-Mail with Attachement

This program demonstrates how a text document can be attached to an e-mail which
will be sent to a specific mail adress.

/*NOTE! This example is tested with Thunderbird and Windows XP */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
oContext=xScriptContext~getComponentContext

-- get the context(an XComponentContext object)
/*get xMultiComponentFactory*/
xMcf = oContext~getServiceManager

xComponentLoader=oDesktop~XDesktop~XComponentlLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent=xComponentLoader~loadComponentFromURL (url, " blank", @, .UNO~noProps)

/* create the TextObject and the TextCursor */
xTextDocument = xWriterComponent~XTextDocument
XxText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/*design a document*/
/*create TextFields to insert date and time*/
xDmsf = xTextDocument~xMultiServiceFactory

XxTextFieldTimel =
XDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

xTextFieldTime2 =
XxDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

XxTextFieldTimel~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))

XText~insertString(xTextCursor, "This is an attachement sent from Martin Burger, on the
", .false)

OpenOffice.org Automatisation

Page 41

XxText~insertTextContent (xTextCursor, xTextFieldTimel, .false)
XText~insertString(xTextCursor, " at ", .false)
xText~insertTextContent (xTextCursor, xTextFieldTime2, .false)

/*save the document*/
xWriterComponent~xStorable~storeAsURL("file:///c:/attachement.odt", .UNO~noProps)

/*create xSimpleMailClient(for sending) and SimpleMailMessage(for adding Subject,
Recipient and Attachement)*/

SimpleMailSystem=xMcf~createInstancewithContext("com.sun.star.system.SimpleSystemMail",
- oContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier
XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient
mail = XSimpleMailClient~createSimpleMailMessage

/*set Recipient and Subject*/
mail~setRecipient("h0251293@wu-wien.ac.at")
mail~setSubject("mail from OpenOffice.org 2.0")

/*setAttachement*/

attach = bsf.createArray(.bsfd4rexx~string.class, 1)
attach[1l] = "file:///c:/attachement.odt"
mail~setAttachement (attach)

XSimpleMailClient~sendSimpleMailMessage(mail,
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO USER INTERFACE"))

r:requires UNO.CLS -- load UNO support for OpenOffice.org

% | Inbox - Mozilla Thunderbird
Eil

le Edit Wew Go Message Tools Help
— - - p— N
&. 2 B P N X @ @& &
Get Mail irite Address Book | Reply Reply Al Forward Delete Mot Junk | Print
Folders Wiewa: | Al - |
= Local Falde

=30 Confirm Eqkhiss Ba
o Un: inhard 5
_.3 D3l Another application is attempting ko send mail using your user profile, Are you sure you want ko iner Keg
=] Se e el rkin Hau
T@ Tra Warn me whenever other applications try bo send mail from me by G, Fl
e : I 'Wacho
J hannes F

— Airistian b

‘ || Re: [api-dev] DIsableCommandTest.java @ Tobias Kr

Ej’ Thunderbird thinks this message is junk mail

= Subject: Fwd: Fwd: JUMP Club - Kickoff Party, Mi 15.3.
From: Ricarda Zeier <ricarda zeler@yshoo.dex

Figure 16: Confirm request

In figure.16 the Thunderbird e-mail programm requests if the mail should be sent. This

happens during running the program.

OpenOffice.org Automatisation Page 42

mail from Openoffice,org 2.0 + MMartin Burger

= Subject: mail from OpenOffice.org 2.0
From: Martin Burger <h0251293@wy-wien.ac, at>
Date: 09:37

To: h0z51793@wu-wien.ac.at <——

Attachments:

E‘f attachement.odt <=

Figure 17: Received mail

In figure.17 the sent e-mail is shown with all added values and attachement.

The lines of code explained in more detail:

Cutout.1
oContext=xScriptContext~getComponentContext

-- get the context(an XComponentContext object)
xMcf = oContext~getServiceManager

In addition to the XDesktop object the XComponentContext object is required. The
XComponentContext can be requested to get the XMultiComponentFactory (cutout.1)
which will be needed later to create a mail instance.

In the following lines of code a XTextDocument is created like in the examples above.
Afterwards com.sun.star.text. TextField.DateTime instances are added. Text fields can
be described as following:

A text field is text content that is usually inserted into the existing text, but the actual
content comes from elsewhere-for example, the total number of pages or a database
field. [Pito04] (Chapter 13, Writer Documents, p.312)

Cutout.2

XxTextFieldTimel =
XxDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

XxTextFieldTime2 =
XxDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

xTextFieldTimel~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))

In our example the property ,IsDate* of TextField number one is set true. This means
that it will contain the current date and not the time like the TextField number two
(cutout.2).

OpenOffice.org Automatisation Page 43

Cutout.3
xWriterComponent~xStorable~storeAsURL("file:///c:/attachement.odt", .UNO~noProps)

Afterwards the document is saved using the XStoreable interface (cutout.3).

Cutout.4
SimpleMailSystem=xMcf~createInstancewithContext("com.sun.star.system.SimpleSystemMail",
- oContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier
XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

mail = XsimpleMailClient~createSimpleMailMessage

e

| Baklc_Arbeit_w.01.o0dt - OpenOffice.org Writer,

File Edit Wjew Insert Format Table Tools SWwindow |

E-sH=z R RBSR V=
|J@| |.ﬂ.l:|sat2_1 V| |Times Mew Raornan
i "'E"'E"'l"'g'"1J'_"2'J'

CpenOffice.org

Figure 18: E-mail button

In cutout4 the XMultiComponentFactory interface is used to create a
com.sun.star.system.SimpleSystemMail instance. This service would be also used if the
e-mail button of the swriter application would be clicked, shown in figure.18.

Now different methods are used to initialise a XSimpleMailMessage which offers
methods to set recipient and subject (cutout.5).

Cutout.5
mail~setRecipient("h0251293@wu-wien.ac.at")
mail~setSubject("mail from OpenOffice.org 2.0")

In cutout.6 a string array containing the URL of the attachement is created and passed to
the interface.

Cutout.6

attach = bsf.createArray(.bsf4rexx~string.class, 1)
attach[1l] = "file:///c:/attachement.odt"
mail~setAttachement(attach)

For sending the e-mail the constant SimpleMailClientFlag is defined with
»NO_USER INTERFACE* (cutout.7). Using this definition no user interaction will be
necessary to sent the mail.

Cutout.7

XSimpleMailClient~sendSimpleMailMessage(mail,
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO USER INTERFACE"))

OpenOffice.org Automatisation Page 44

5.1.7 Example 07 — Using the Internet Explorer for Tracking Web-
Sites (Windows-only)
This example shows how the Microsoft Internet Explorer can be used to load web sites

and request data. The requested information will be inserted in a text table which shows
the actual loading status, the URL and the title.

/* Internet Tracker */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
oContext=xScriptContext~getComponentContext

-- get the context(an XComponentContext
object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader
interface

/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* create the TextObject and the TextCursor */
xTextDocument = xWriterComponent~XTextDocument
XxText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create and insert TextTable*/

XDMsf = xTextDocument~XMultiServiceFactory

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable
XxTextTable~initialize(1,3)

xText~insertTextContent (xTextCursor, xTextTable, .false)

/*creating xTextRows service, needed later for properties*/
xTextRows = xTextTable~getRows

xCellText = xTextTable~getCellByName("Al")~XText
xCellText~setString("Title")

xCellText = xTextTable~getCellByName("B1")~XText
xCellText~setString("URL")

xCellText = xTextTable~getCellByName("C1l")~XText
xCellText~setString("loading status")

xTableRow = xTextRows~getbyIndex(0)
XProbRow = xTableRow~xPropertySet
xProbRow~setPropertyValue("BackColor", box("int", "e6e6fa"x ~c2d))

/*creating Internet Explorer*/

myIE = .0LEObject~New("InternetExplorer.Application.1")
myIE~Width= 1000

myIE~Height= 250

myIE~Visible= .true

myIE~Statusbar= .false

myIE~menubar= .false

myIE~toolbar= .false

Call loading mylE, xTextTable, "1", "http://www.OpenOffice.org"
Call loading mylE, xTextTable, "2", "http://www.oorexx.org"

http://www.oorexx.org/
http://www.OpenOffice.org/

OpenOffice.org Automatisation Page 45

Call loading mylE, xTextTable, "3", "http://www.ibm.com"
Call loading mylE, xTextTable, "4", "http://www.apache.org"
Call loading mylE, xTextTable, "5", "http://www.wu-wien.ac.at"

::requires UNO.CLS -- load UNO support for OpenOffice.org
::routine loading
use arg myIE, xTextTable, rownr, url

XTextRows = xTextTable~getRows
XTextRows~insertByIndex(rownr ,1)

myIE~Navigate(url)

DO WHILE myIE~Busy = .true
CALL syssleep 0.01

xCell = xTextTable~getCellByName("C" || rownr+l)
xCellText = xCell~XText
xCellText~setString("loading..... ")

xCellProbs = xCell~xPropertySet
xCellProbs~setPropertyValue("BackColor", box("int", "ff0000"x ~c2d))
END

xCell = xTextTable~getCellByName("C" || rownr+l)

xCellText = xCell~XText

xCellText~setString("fertig")

xCellProbs = xCell~xPropertySet
xCellProbs~setPropertyValue("BackColor", box("int", "adff2f"x ~c2d))

title = myIE~document~title
url = myIE~document~url

xCellText = xTextTable~getCellByName("A" || rownr+l)~XText
xCellText~setString(title)

xCellText = xTextTable~getCellByName("B" || rownr+l)~XText
xCellText~setString(url)

a Open Object Rexx - About - Microseft Internet Explorer

— . User:| |password:| | [Leain
OpenOfficerg

RGINEM Download Support Contributing Projects My pages About

. free office suite -
native
language OpenOffice.org is a multiplatform and multiingual affice suite and an s '
nnen-cnliree nrnioct Comnatinle w_irh all athar mainr affira clites the i

Titley TUERLY loading-stats
OpenCffice. org: Home | hitp/fwww openoffice. org/y fertigy
Y 1 foatng 4]
1

Figure 19: Loading Web Sites

In figure.19 It can be seen how the ,Internet Tracker” loads and shows different Web
Sites.

http://www.wu-wien.ac.at/
http://www.apache.org/
http://www.ibm.com/

OpenOffice.org Automatisation Page 46

In the first part of the example a new swriter document is created. Afterwards a text
table is inserted which provide for each tracked web site a row divided into three co-
lumns named loading status, url and title.

About OLE Object:

OLE Objects (Objects Linking and Embedding) are based on the Microsoft developed
Component Object Model (COM).

Microsoft COM (Component Object Model) technology in the Microsoft
Windows-family of Operating Systems enables software components to com
municate. COM is used by developers to create re-usable software components,
link components together to build applications, and take advantage of Windows
services. The family of COM technologies includes COM+, Distributed COM
(DCOM) and ActiveX® Controls.[IBM0O6]

A Microsoft ActiveX control is essentially a simple OLE object that supports the
1Unknown interface.[IBM06]

Summarising the statements above OLE(ActiveX) can be described as COM based
interfaces providing the possiblity to link different programs™.

The lines of code explained in more detail:

In our example ObjectRexx uses java which is able to access windows applications
using the technology described in the paragraph ,,About OLE Object*.

Cutout.1

myIE = .0lEObject~New("InternetExplorer.Application.1")
myIE~Width= 1000

myIE~Height= 250

myIE~Visible= .true

myIE~Statusbar= .false

myIE~menubar= .false

myIE~toolbar= .false

In cutout.1 an new OLEODbject instance named mylIE is created. Afterwards attributes

are set to define the window appearance.

After opening the Internet Explorer the loading routine is used which implements the
following functionalities:

Cutout.2/loading routine.l
XxTextRows = xTextTable~getRows
XTextRows~insertByIndex(rownr ,1)

Before initialising the loop a new row is created an added to the table
(cutout.2/loading routine.1).

3 The usage of the COM technologiy with OpenObjectRexx is explained in more detail in the [Flat06]
course slides.

file:///library/en-us/com/htm/cmi_q2z_9dwu.asp

OpenOffice.org Automatisation Page 47

Cutout.3/loading routine.2
DO WHILE myIE~Busy = .true
CALL syssleep 0.01

xCell = xTextTable~getCellByName("C" || rownr)
xCellText = xCell~XText
xCellText~setString("loading..... ")

xCellProbs = xCell~xPropertySet
xCellProbs~setPropertyValue("BackColor", box("int", "ff0000"x ~c2d))
END

Afterwards the DO While loop checks if the Internet Explorer is still loading the
web site until the busy method returns false (cutout.3/loading routine.2). During
the last step values which are requested from the IE instance are inserted into
the new row.

5.1.8 Example 08 — Using a Search Descriptor

The example of this section demonstrates how a search descriptor can be used to
traverse text and mark all occurences of a spedifed word.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader
-- get componentLoader interface

/* open the blank *.odt - file */
url = "file:///c:/articel.odt"
xWriterComponent = xComponentLoader~loadComponentFromURL (url, " blank", 0, .UNO~noProps)

/* create the TextObject and the TextCursor */
xTextDocument = xWriterComponent~XTextDocument
XxText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create SearchDescriptor*/

xSearchabel = xTextDocument~xSearchable
xSearchDescriptor = xSearchabel~createSearchDescriptor
xSearchDescriptor~setSearchString("OpenOffice.org")

xFound = xSearchabel~findFirst(xSearchDescriptor)

if xFound = .nil
then

xText~insertstring(xText~End, "nothing found", .false)
else

xFoundProbs = xFound~xPropertySet
xFoundProbs~setPropertyValue("CharWeight", -

box("float", bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD")))
found = "true"

counter =1

DO WHILE found = "true"
xFound = xSearchabel~findNext (xFound, xSearchDescriptor)

if xFound = .nil
then do

OpenOffice.org Automatisation Page 48

found = "false"
leave
end
else
do
found = "true"

xFoundProbs = xFound~xPropertySet
xFoundProbs~setPropertyValue("CharWeight", -

box("float", bsf.getConstant("com.sun.star.awt.FontWeight","BOLD")))
counter = counter + 1

end

END

xText~insertString (xText~End, "In this text part " || counter || " occurences of " ||
xSearchDescriptor~getSearchString || " could be found" , .false)

::requires UNO.CLS -- load UNO support for OpenOffice.org

assure the robustness, usability and security that users expect in their office suite "

In addition to the OpenDocument format, the redesigned user mterface and a new database module,
OpenOffice.org 2.0 also adds improved PDF support, a superior spreadsheet module, enhanced
desktop integration and several other features that take advantage of its advanced XML capabilities,
such as the ability to easily create, edit and vse XForms.

For more detaled information regarding OpenOffice.org 2.0, please refer to the Press Eit at
http fwraw. openoffice.org/press /2. Ofindex. html .

Abeut OpenOffice.org

The OpenOffice.org Project is an international community of volunteers and sponsors including
founding sponsor and primary centributer, Sun Microsystems. OpenOffice.org develops, supports,
and promotes the open-source office productivity suite, OpenOffice.org. The project can be found
at http /fwww openoffice.org/. OpenOffice.org supports the Open Decument Format for Office
Applications (OpenDocument) OASIS Standard and iz available on major computing platforms in
ower 60 languages. OpenOffice.org is prowided under the GINU Lesser General Public Licence
(LGFL)

In this text part 25 occurences of OpenOffice org could be found

S me-E T D "

Figure 20: Using Search Descriptor

In figure.20 the output of this program can be seen.
The lines of code explained in more detail:

During the first steps an existing word document containing an articel is opened.
Afterwards the XTextDocument is requested for the xSearchable interface stated in
cutout.1.

Cutout.1
xSearchabel = xTextDocument~xSearchable

Now a search descriptor is created (cutout.2). A search descriptor can be described as
following:

OpenOffice.org Automatisation Page 49

,..A search descriptor supports the string property SearchString, which
represents the string to search. The xSearchDescriptor interface defines the
methods getSearchString() and setSearchString() to get and set the property.... "
[Pito04] (Chapter 13, Writer Documents, p.296)

Cutout.2
xSearchDescriptor = xSearchabel~createSearchDescriptor
xSearchDescriptor~setSearchString("OpenOffice.org")

Then the the method findFirst() is used to check if any occurrences of the word
,OpenOffice.org” can be found. If not, the string ,,nothing found* is added to the end of
the text. Otherwise the found variable is set to true to initalise the Do While loop. In
addition the founded expression is set bold.

The Do While loop uses the method findnext() to find the next occurence of the
searched string. If no new occurrence is found the loop is interrupted using the leave
statement. In the case of the XFound variable returns an object it is marked bold.
Furthermore the counter is increased by one.

In the last lines of code a string is set at the end of the traversed text including the
counter and SearchString.

OpenOffice.org Automatisation Page 50

5.2 ,,scalc Examples

The Spreadsheet Document Model is similar structured as the Writer Document Model.
The definition of a model was already given in chapter 5.1 swriter, p.27. This definition
can be understood in the same way for this context.

Service
Manager

1]

the only shest contends created by
AMultiServceFactony are text felds in page
headers, shape objects and form conirols

Controller & ViewData [
| | Services for
<|> Ji— P Styles & Layout
5 - WstyleFarriliesSuppher
Cortrodler has Frame i Wl
- getCurrentCant roller
AEOO&
Spreadsheet
DrawFages ¢ | Document Services for
Elrawragessuppler | Maodel MNumber Formats

I ANumkerFomrarssuppler

KSpreadheatDocumeant
getShents ||

k Spreadshests Comtainer
¢Fﬂrms EEpE———

Calculation Aspects {'—I Content Properties |—. Document Aspects

Rioal ek progerly MarmadRanges KPrinlable
%Calculatable prepenty DatahaseRanges Astorablo
K onsolidatable progenty Colursed sbelRanges WMadifiable
property Romlabelianges WPretpctable
priperty Arealinks KDocumentAuditing
property Sheetlinks ADocumentinfosupplier

Huztration 8.1 Spreadsheer Document Component

Figure 21: Spreadsheet Document Model [Open05, p.584]

The Spreadsheet Document Model consits of five major architectural areas:

- spreadsheet container

+ service manager (document internal)
- drawPages

- content properties

« Objects for Styling

OpenOffice.org Automatisation Page 51

The core of the spreadsheet document model are the spreadsheets contained in the
spreadsheet container.

The service manager of the spreadsheet document model can be used to create shape
objects, text fields and controls which can be added to the spreadsheet.

Each sheet in a spreadsheet document can have a drawpage which is used for drawing
contents.

Different contents, like ranges, can be accessed through content properties at the
document model. In contrast to the text documents no suppliers are provided.

Finally, there are services which allow styling and structuering of spreadsheets
documents.

In addtion to the five main architectural areas, document and calculation aspects
provided from the spreadsheet document model can be found. They are shown in the
bottom left corner of figure.21.

5.2.1 Example 09 - ,,Hello World*

In this example a simple string is inserted.
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface
/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "Hello World"

::requires UNO.cls -- get UNO support

The result of this prograr

8 Untitled1 - OpenOffice.org Calc

File Edit Wew Insert Format Tools Data ‘Window Help

. E3 = b
= 1 = BS% Ve & BHR-
S| Lanial vl | B Fu z

Al v fm T = |HeIIoWorId

w [EEE
HeIIDWDrIdL

J‘o\‘m‘-&|w‘l\) —-

Figure 22: Hello World calc

OpenOffice.org Automatisation Page 52

About the data structure of scalc documents:

The primary purpose of a spreadsheet document is to act as a container for
individual ~sheets through the xSpreadsheetDocument interface. The
xSpreadsheetDocument interface defines the single method getSheetcollecting()
that returns Spreadsheet objects used to manipulate the individual sheets.
[Pito04] (Chapter 14, Calc Documents, p.326)

A spreadsheet document contsists of individual sheets that are composed of rows
and columns of cells. Each column is labled alphabetically starting with the
letter A, and each row is labeled numerically startin with the number 1. A cell
can be identified by its name, which uses the column letter an the row number,
or by its position. The upper-left cell is ,,A1" at position (0,0) and cell ,,B3*
is at location (1,2). [Pito04] (Chapter 14, Calc Documents, p.327)

The lines of code explained in more detail:

Cutout.1
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

First a new scalc document is created in the same way like the swriter document
(cutout.1).

Cutout.2

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

Now the XSpreadSheetContainer, described above during introducing the spreadsheet
document model, is requested for the spreadsheet with index number zero, which is the
first element (cutout.2).

Cutout.3
CALL UNO.setCell xSheet, 0, 0, "Hello World"

Now the UNO module is used to set the ,,Hello World* string. For this the spreadsheet
document and the cell coordinates are passed (cutout.3).

5.2.2 Example 10 - Insert Values and Formulas

This example inserts different values and a formula which summerizes them.

/* basic cell operations */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentlLoader
-- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

OpenOffice.org Automatisation Page 53

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "4"
CALL UNO.setCell xSheet, 0, 1, "1"
CALL UNO.setCell xSheet, 0, 2, "5"
CALL UNO.setCell xSheet, 0, 3, "11"
CALL UNO.setCell xSheet, 0, 4, "55"

/*insert formula into table*/

xCell = xSheet~getCellByPosition (0@, 5)
xCell~setFormula("=sum(A1:A5)")

/*set Property values*/
xCell~XPropertySet~setPropertyValue("CellBackColor", box("int", "ff 00 00"x ~c2d))

::requires UNO.cls -- get UNO support

8l Untitled? - OpenOffice.org Calc

File Edit WYiew Insert Format Toaols Data ‘Window Help
B SH9 X ESR TR KRB
| dd | [rial ~v|ljo ~ B J U === :¢
Al L E = 4
i | [}
A e = e E

1 4L

2 1

3 5

4 11

5 25

£

7

5

Figure 23: Values and Formulas

In figure.23 The resulting spreadsheet of this program can be seen.

About cell data:

A cell can contain four types of data named ,,empty®, ,,value®, ,text* and ,,formula“. For
example, using the text type it would be possible to insert a text field which contains the
current date. In our example a new formula is inserted. The formula type can be
described as following:

,...A cell can contain a formula. The methods getFormula() and setFormula()
get and set a cell's formula....when setting a cell’s formula, you must include the
leading equals (=) and the formula must be in English....” [Pito04] (Chapter
14, Calc Documents, p.328)

The lines of code explained in more detail:

First different values are inserted like in Example 09, cutout.3 (p.52).

Cutout.1
xCell~setFormula("=sum(Al1:A5)")
xCell~XPropertySet~setPropertyValue("CellBackColor", box("int", "ff 00 00"x ~c2d))

OpenOffice.org Automatisation Page 54

In the last cell a formula is inserted which adds up th cell values inserted before.
Furthermore the CellBackColor is set to red (cutout.1).

5.2.3 Example 11 - Copy Cell Ranges

This example copies a cell range and insert it into a second sheet.

/* setting and using cell area */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader
-- get componentLoader interface
/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", @, .UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

/* insert values into tables*/
CALL UNO.setCell xSheet, 0, 0, "original"

xCell = xSheet~getCellByPosition(0, 0)
xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

CALL UNO.setCell xSheet, 0, 1, "1"
CALL UNO.setCell xSheet, 0, 2, "5"
CALL UNO.setCell xSheet, 0, 3, "11"
CALL UNO.setCell xSheet, 0, 4, "55"

CALL syssleep 1
/*working with secound sheet*/

xSheet2=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(1l) -
~XSpreadSheet

xSheetview=xCalcComponent~XSpreadSheetDocument~XModel~getCurrentController~xSpreadsheet
View
xSheetview~setActiveSheet (xSheet2)

/*coping cell ranges*/

CALL UNO.setCell xSheet2, 0, 0, "copied"
xCell = xSheet2~getCellByPosition(0, 0)
xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A6")
rangeaddress = xCellRange~XCellRangeAddressable~getRangeAddress
xCell = xSheet2~getCellByPosition(0, 1)

celladdress = xCell~xCellAddressable~getCellAddress

XMovement = xSheet2~xCellRangeMovement
XMovement~copyRange(celladdress, rangeaddress)

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 55

Fil Untitled] - OpenDffice.org Calc

File Edt Wiew I[nsert Format Tools Data Window Help

‘B-=2Ha BESRVE BB -
;|Q|Arial vi[t ~» B J U = ===
a1 w f,{x}Z=|c0pied

Figure 24: Copy Cell Ranges

In figure.24 the result of this example can be seen.

About cell ranges:

.,....In Writer documents, continous text can be grouped in a text range. In a
spreadsheet, cells can be grouped in rectangular regions with a
SheetCellRange. Grouping cells together allows multiple cells to be
operated on at one time. The SheetCellRange service supports many of the same

interfaces and properties as a SheetCell....." [Pito04] (Chapter 14, Calc
Documents, p.333)

About cell adresse:

,,....a cell's adress is specified by the sheet that contains the cell, and the row
and column in which the cell is located....” [Pito04] (Chapter 14, Calc
Documents, p.328)

About the xCellRangeMovement interface:

,,...The interface com.sun.star.sheet.XCellRangeMovement of the Spreadsheet

service supports inserting and removing cells from a spreadsheet, and copying
and moving cell contents....“ [Open05, p.609]

The lines of code explained in more detail:

In the first part of the example a new Spreadsheet document is created. Then different
values are inserted into the first sheet.

Cutout.1
XxSheetview=xCalcComponent~XSpreadSheetDocument~XModel~getCurrentController -
~xSpreadsheetView

XxSheetview~setActiveSheet (xSheet2)

OpenOffice.org Automatisation Page 56

After the second sheet was requested the code lines above initialise the current
controller (cutout.1). The current controller provides access to the current view status
and makes it possible to change the view using the XSpreadsheetView interface and the
method setActiveSheet(). In this case the view is set to the second sheet.

Cutout.2
xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A6")
rangeaddress = xCellRange~XCellRangeAddressable~getRangeAddress

In cutout.2 first a cell range is defined representing a group of cells. Now it is possible
to get the address object of the cells which is needed for the copyRange() method.

Cutout.3
xCell = xSheet2~getCellByPosition(0, 1)
celladdress = xCell~xCellAddressable~getCellAddress

Furthermore a cell adress for inserting the copied range is needed (cutout.3).

Cutout.4
XMovement = xSheet2~xCellRangeMovement
XMovement~copyRange(celladdress, rangeaddress)

In cutout.4 the XCellRangeMovement interface provides the method copyRange()
which is used to copy the range passing the cell adress.

5.2.4 Example 12 - Merging Cells

In this example different cells are merged to show one of different functionalaties of
XCell Ranges.

/* mergin cells */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader

-- get componentLoader interface
/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

/* insert values into tables*/
CALL UNO.setCell xSheet, 0, 0, "merging"

xCell = xSheet~getCellByPosition(0, 0)
xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))
CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

CALL syssleep 2

/*mergin cells*/

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A5")
xMergRang = xCellRange~xMergeable

XMergRang~merge(.true)

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 57

A Untitled1 - OpenOffice.org Calc

Eile Edit Yiew Insert Format Tools Data Window Help
B-cHe P BSR P X
)| [aral v|[m ~| B F U

M T E = |merging

T
—_

B [€ D i

|

R B w0) B SO R N]
iy

—
o

Figure 25: Merging Cells

In figure.57 the result of this code snippet can be seen.
About merging cells:

.A range of cells can be merged and unmerged using the merge (Boolean)
method — merge(True) merges the range merge(False) unmerges the
range...merging cells causes the top-left cell to use the entire merged area.*
[Pito04] (Chapter 14, Calc Documents, p.342)

The lines of code explained in more detail:

After creating a new Spreadsheet document different values are inserted like in
Example 09, cutout.3 (p.52).

Cutout.1

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A5")
xMergRang = xCellRange~xMergeable

xMergRang~merge(.true)

Using the xMergeable interface for a defined range it is possible to merge all cells of the
XCellRange (cutout.1).

5.2.5 Example 13 - Identify Row Differences

This example loads an existing spreadsheet document with already inserted values. First
a cell range is defined. From this cell range a XCellRangesQuery interface is requested.
This interface provides different query statements like the queryColumnDifferences()
method. [Api06¢c]

/* comparing rows */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader
- get componentLoader interface

OpenOffice.org Automatisation Page 58

/* open the blank *.sxw - file */

url = "file:///c:/compare.ods"

xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)
/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

xCellRange = xSheet~xCellRange~getCellRangeByName("Al:C4")

xCell = xSheet~getCellByPosition(4,1)
xAdress = xCell~xCellAddressable~getCellAddress

xCellQuery = xCellRange~XCellRangesQuery
differentCells = xCellQuery~queryColumnDifferences (xAdress)

adresses = differentCells~getCells
enum = adresses~createEnumeration

CALL UNO.setCell xSheet, 0, 6, differentCells~getRangeAddressesAsString
DO WHILE enum~hasMoreElements

xCell = enum~nextElement

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff0000"x
~c2d))

END

::requires UNO.CLS -- load UNO support for OpenOffice.org

& com pare - OpenOffice.org Calc

File Edit %ew Insert Format Tools Data Window Help
BrocHae 2 B8R V= X RE-¢
E|ﬁ§||nﬁm vi[w ~ B 7 U

P
A B E [D E
2 2
2

Searchvalue] 1]

58]

JRER PR D Y

Tabellel.B1;Tabelle1.B4: Tabelle1.C3:C4

L= =l e R = T R R L e

=
(=1

Figure 26: Identify Row Differences

In figure.26 the result of this example can be seen.

The lines of code explained in more detail:

Cutout.1
adresses = differentCells~getCells
enum = adresses~createEnumeration

In cutout.1 the returned object of the method createEnumeration() is a
XEnumerationAccess container which can be traversed through wusing the
XEnumeration interface used in a loop as following (cutout.2):

OpenOffice.org Automatisation Page 59

Cutout.2
DO WHILE enum~hasMoreElements

xCell = enum~nextElement
xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff0000"x~c2d))

END

The loop shown above traverses all XCell objects of the container and markes them red
through setting the property ,,CellBackColor*.

5.2.6 Example 14 - Chart Show

In this example an existing spreadsheet document providing data for a chart is opened.
Afterwards a rectangular shape is created which is needed to insert the chart into the
document. In addtion a XCellRange is defined which covers the data used for the chart.

/* inserting different charts */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "file:///c:/chartbase.ods"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

oRect = .bsf~new("com.sun.star.awt.Rectangle")
oRect~X = 300

oRect~Y = 5000

oRect~Width = 10000

oRect~Height = 8000

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:C5")
Addr = xCellRange~xCellRangeAddressable~getRangeAddress

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"
0Addr = bsf.createArray(.UNO~CellRangeAddress, 1)
0Addr[1] = Addr

XxTableCharts = xSheet~xTableChartsSupplier~getCharts
xTableCharts~addNewByName("FirstChart", oRect, oAddr, .true, .true)

xChartObj = xTableCharts~xNameAccess~getByName("FirstChart")
XxChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject
xChartDocument = xComponent~XChartDocument

XxMsf = xChartDocument~XMultiServiceFactory

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.PieDiagram")~xDiagram
xChartDocument~setDiagram(xDiagram)

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.LineDiagram")~xDiagram
XChartDocument~setDiagram(xDiagram)

OpenOffice.org Automatisation Page 60

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.AreaDiagram")~xDiagram
xChartDocument~setDiagram(xDiagram)

CALL UNO.setCell xSheet, 0, 7, "fertig"

::requires UNO.CLS -- load UNO support for OpenOffice.org
A [B [< [D [E [
1 SpalteB SpalteC
z |Zeilel 32 22
3 |Zeile2 33 55
4 [Zeile3 2 34
5 |Zeiled 44 33
&
7
s
El
10
11
= Main title

14
15
16
17
18
19
z0
21
2z
23
24
25
26
27
28
29

=n

e
I Spatt=C

T T
Zeil=n Zeile2 Zeile3 Leiled

Figure 27: Chart Show

Figure.27 shows the result of this example.

The lines of code explained in more detail:

Cutout.1
XxTableCharts = xSheet~xTableChartsSupplier~getCharts
xTableCharts~addNewByName ("FirstChart", oRect, oAddr, .true, .true)

In cutout.] the XTableCharts container is requested. Using the method
addNewByName() a new chart provided from the XTableCharts interface is created. For
creating a chart different attributes are needed. The first attribute contains a string
representing the name. Furthermore the rectangle shape and the adress of the text range
defined above are passed. [Api06d]

Cutout.2

xChartObj = xTableCharts~xNameAccess~getByName("FirstChart")
xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject
xChartDocument = xComponent~XChartDocument

XMsf = xChartDocument~XMultiServiceFactory

In cutout.2 the Service Manager of the chart document created before is initialised.
Using the XMultiServiceFactory it is possible to create different diagram types.

Cutout.3
xDiagram = xMsf~createInstance("com.sun.star.chart.PieDiagram")~xDiagram
xChartDocument~setDiagram(xDiagram)

Using the method setDiagram() the new created diagram type can be set for the chart
(cutout.3). In the example this is done several times using always the same data base.

OpenOffice.org Automatisation Page 61

5.2.7 Example 15 - Using a Replace Describtor

This example creates and Replace Describtor to search and replace values in cells.

/* setting and using cell area */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentlLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", @, .UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

CALL UNO.setCell xSheet, 6, 0, "33"
CALL UNO.setCell xSheet, 0, 1, "44"
CALL UNO.setCell xSheet, 0, 2, "66"
CALL UNO.setCell xSheet, 0, 3, "23"
CALL UNO.setCell xSheet, 0, 4, "0"
CALL UNO.setCell xSheet, 0, 5, "67"

xCellRange = xSheet~xCellRange~getCellRangeByName("Al:A6")
Replace = xCellRange~XReplaceable

XReplaceDescriptor = Replace~createReplaceDescriptor
XReplaceDescriptor~setSearchString("0")
XReplaceDescriptor~setReplaceString("zero")

Replace~replaceAll(xReplaceDescriptor)

CALL UNO.setCell xSheet, 0, 6, "fertig"

::requires UNO.CLS -- load UNO support for OpenOffice.org
A | B C
1 33L
2 44
3 BE
4 23
5 |Zerd
£ &7
7 [fertig
g
9

Figure 28: Using a Replace Descriptor

About searching and replacing in a spreadsheet document:

, The thing that I find most interesting about searching in a spreadsheet
document is that searching is not supported by the document object. Cell object
and cell range objects support searching, however...." [Pito04] (Chapter 14,
Calc Documents, p.341)

The lines of code explained in more detail:

OpenOffice.org Automatisation Page 62

In this example a simple new spreadsheet document is created and different values are
inserted. These values are traversed using a replace descriptor which replace a specific
value with a defined string.

For this a XCellRange has to be defined to cover the data and make searching and
replacing possible. This range is used to create a Replace Descriptor (cutout.1).

Cutout.1
XReplaceDescriptor~setSearchString("0")
XReplaceDescriptor~setReplaceString("zero")
Replace~replaceAll(xReplaceDescript)

Now the search and replace string are set and the replace query is executed (cutout.1).

5.2.8 Example 16 - Inserting a Shape

In this example a rectangular shape is inserted into a spreadsheet document.

/* setting and using cell area */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XspreadSheet

/*creating Multi Service Factory*/
xCalcFactory = xCalcComponent~xMultiServiceFactory

/*creating draw page*/
xDrawPages = xSheet~xDrawPageSupplier
xDrawPage = xDrawPages~getDrawPage~xDrawPage

/*creating scalc shape*/
calcShape = xCalcFactory~createInstance("com.sun.star.drawing.RectangleShape")
xcalcShape = calcShape~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 8000

point~x = 1000

point~y= 1000

xcalcShape~setSize(size)

xcalcShape~setPosition(point)

xPropertySet=xcalcShape~xPropertySet
xPropertySet~setPropertyValue("FillColor", box("int", "CO CO CO"x ~c2d))

xDrawPage~add (xCalcShape)

textShape = calcShape~xText
textShape~setString("This is a Rectangle Shape")

OpenOffice.org Automatisation Page 63

A | B C D E

1 L

2

3

q.

=) ..

= This 15 a Eectangle Shape

7

g

9

10

11

12

Figure 29: Inserting a shape

::requires UNO.CLS -- load UNO support for OpenOffice.org

In figure.29 the result of this code snippet can be seen.
The lines of code explained in more detail:

In this example, first it is necessary to get the Service Manager of the current document,
like shown in cutout.1.

Cutout.1

xCalcFactory = xCalcComponent~xMultiServiceFactory

xDrawPages = xSheet~xDrawPageSupplier
xDrawPage = xDrawPages~getDrawPage~xDrawPage

During the introduction scalc documents it was already mentioned that the DrawPage is
needed to insert shapes (5.2 scalc examples, p.48). For this the XDrawPageSupplier is
used to get one.

After initialising a shape using the XMultiServiceFactory the rectangle is added to the
draw page.

At the end of the example some text is inserted into the shape using its XText interface.

5.2.9 Example 17 — Changing the Cell Format

The next example shows how a cell format can be changed.
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

OpenOffice.org Automatisation Page 64

~XSpreadSheet

/*change cell type*/

xCell = xSheet~getCellByPosition(0, 0)

CALL UNO.setCell xSheet, 0, 0, "38748"
xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

Call syssleep 3

xCell~xPropertySet~setPropertyValue("NumberFormat", box("short", 84))
xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff7f50"x ~c2d))

::requires UNO.CLS -- load UNO support for OpenOffice.org

a1 W :F[x] Al o flﬂ b

[, 5]

s EIIB-EH—B‘I!

-+ w‘m

I|4h‘tu‘ho -
]
m

[

Figure 30: Changing the Cell Format

In figure.30 the original and the format changed cell can be seen.

In this example, first the value ,,38748% is inserted. This value can represent a date
within OpenOffice.org which can be seen after changing the format.

Cutout.1
xCell~xPropertySet~setPropertyValue("NumberFormat", box("short", 84))

For changing the format of a cell the PropertyValue ,,NumberFormat* has to be set. In
cutout.1 the format is changed to the date format of ISO 8501°°.

To find out which value is needed to set a specified format two ways are possible:

The easiest way to get the value is to format the cell first manually. Afterwards
you can request the property using the method getPropertyValue().

The more professional way would be to use the xNumberFormats service. A
describtion of this theme can be found in chapter 6.2.5 NumberFormats of the
Developers Guide [Open05, p.472].

®ISO (International Organization for Standardization) describes an international organisation for
standardization which defined a standard for dates called ISO 8501. For more detailed information use
following link: http://www.w3.0org/TR/NOTE-datetime

OpenOffice.org Automatisation Page 65

5.3 ,,simpress* and ,,sdraw* Examples

»Simpress® and ,,sdraw® are vector oriented applications which can create drawings and
presentations. Both programs have similar abilities to create different shape types, such
as rectangle, text, curve, or graphic shapes. In contrast to the draw application, simpress
offers in addition presentation functionalaties like enhanced page structure, presentation
objects, slide transition and object effects. figure.31 show the impress and draw
document structure:

Service
Manager

creates shape objects ard form condrols
fier insarteon inta ihe dawpages

ﬁ:llntrnller 2 [| nn—
& ViewData ’ Services
J % Sn:les & la;luur
Controller has Frame e
KaayleFamiliesSuppler

- EModel

qat-CurramtConbrllar [
gaooa
Drawing
MasterPages Dacument
EMasterPagesSiupnlier Mﬂdel

ADmwPagessupplior
petDrraPages

Drawpages Cantainer

LayerManager [—

XLayersupplier

v

Document Aspects

XPrintable
HStorabls
AMiadifiabla
KD umnentinfoSupplier

¢ Figure 31: Drawing and Impress model [Open05]

Persentation Aspects

KFresentationSuapplier
XCurstorn PresenitationSupplier
XHandoutMasterSupplier

The box in the bottom left corner of the drawing model above represents the additional
presentation aspects of the impress model.[Open05, p.692]

OpenOffice.org Automatisation Page 66

5.3.1 Example 18 - Using Different Shapes

In this example first a new draw page document is opened. Afterwards different shapes
are inserted.

/* Inserting Graph */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader
-- get componentLoader interface
/* open the blank *.sxd - file */
url = "private:factory/sdraw"
xDrawComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

XDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */
xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -
~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")
xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 6000

point~y= 3000

XGraph~setSize(size)

XxGraph~setPosition(point)

XPropertySet=xGraph~xPropertySet
xPropertySet~setPropertyValue("FillColor", box("int", "COCOCO"x ~c2d))
XxPropertySet~setPropertyValue("LineColor", box("int", "FFFF99"x ~c2d))

xDrawPage~add (xGraph)

oGraph = xDMsf~createInstance("com.sun.star.drawing.EllipseShape")
xGraph2 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")
point = .bsf~new("com.sun.star.awt.Point")
size~Height = 2500

size~Width = 2500

point~x = 9000

point~y= 5000

XGraph2~setSize(size)
xGraph2~setPosition(point)
XPropertySet=xGraph2~xPropertySet
xDrawPage~add (xGraph2)

GraphText2 = xGraph2~xText

xShapeProps2 = xGraph2~XPropertySet

xShapeProps2~setPropertyValue("CircleKind",
bsf.getConstant("com.sun.star.drawing.CircleKind", "SECTION"))

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))
xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 18000))
xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

oGraph = xDMsf~createInstance("com.sun.star.drawing.TextShape")
xGraph3 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 2500

point~x = 9000

point~y= 5000

OpenOffice.org Automatisation Page 67

xGraph3~setSize(size)
XGraph3~setPosition(point)
xDrawPage~add (xGraph3)

graphtext3 = xGraph3~xText
xShapeProps3 = xGraph3~xPropertySet

xShapeProps3~setPropertyValue("TextFitToSize",
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

graphtext3~setString("1")
call syssleep 1

xShapeProps2~setPropertyValue("CircleStartAngle”, box("int", 9000))
xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 27000))
xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))
xDrawPage~add (xGraph2)

graphtext3~setString("2")

call syssleep 1

xShapeProps2~setPropertyValue("CircleStartAngle”, box("int", 9000))
xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 36000))
xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))
xDrawPage~add (xGraph2)

graphtext3~setString("3")

call syssleep 1

xShapeProps2~setPropertyValue("CircleKind",
bsf.getConstant("com.sun.star.drawing.CircleKind", "FULL"))

xDrawPage~add (xGraph2)
graphtext3~setString("4")

call syssleep 1

xDrawPage~remove (xGraph2)
xDrawPage~remove (xGraph3)

/* set the properties of the rectangle shape */
xShapeProps = xGraph~XPropertySet

xShapeProps~setPropertyValue("TextAnimationKind",
bsf.getConstant("com.sun.star.drawing.TextAnimationKind", "SCROLL"))

graphtext = xGraph~xText

graphtext~setString("The animation showed was created with a Text Shape and a Ellipse
Shape")

r:requires UNO.CLS -- load UNO support for OpenOffice.org

figure 32: Using Different Shapes

OpenOffice.org Automatisation Page 68

In figure.32 a screen shot of the running program can be seen.
The lines of code explained in more detail:

The interesting part of this program will be to set different properties for the shapes.

Cutout.1

xShapeProps3~setPropertyValue("TextFitToSize",
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

As shown in cutout.l the property value ,,TextFitToSize* is set ,,PROPORTIONAL*
using a bsf routine to get the correct constant type. The value ,,PROPORTIONAL*
defines that if the shape is scaled, the text character size is scaled proportionally.

Moreover the following properties are set during executing the code:

Cutout.2
xShapeProps2~setPropertyValue("CircleStartAngle”, box("int", 9000))
xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 27000))

In cutout.2 Integer values are passed defining the start and end point of the circle shape.

Cutout.3
bsf.getConstant("com.sun.star.drawing.CircleKind", "FULL"))
bsf.getConstant("com.sun.star.drawing.TextAnimationKind", "SCROLL"))

In cutout.3 the first line sets the com.sun.star.drawing.CircelKind property, the second
adds a text animation named scroll to the rectangle shape.

5.3.2 Example 19 - Organigram

This example shows how Connector Shapes can be set to connect shapes.

/* Inserting Pictures */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader
-- get componentLoader interface
/* open the blank *.sxd - file */
url = "private:factory/sdraw"
xDrawComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */
xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -
~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")
XxGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")
point = .bsf~new("com.sun.star.awt.Point")
size~Height = 6000

size~Width = 8000

point~x = 5000

point~y= 3000

xGraph~setSize(size)
XxGraph~setPosition(point)
XxPropertySet=xGraph~xPropertySet

OpenOffice.org Automatisation Page 69

XPropertySet~setPropertyValue("GraphicURL", "file:///C:/0OpenOffice.org 01.gif")
xDrawPage~add (xGraph)
Call syssleep 2

/*set transparency*/
xPropertySet~setPropertyValue("Transparency", box("short", 50))
XGraphText = xGraph~xText

xGraphText~setString("OpenOffice.org - Automatisierung")

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")
XxGraph2 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 3000

size~Width = 4000

point~x = 3000

point~y= 12000

xGraph2~setSize(size)

xGraph2~setPosition(point)

XPropertySet=xGraph2~xPropertySet
xPropertySet~setPropertyValue("GraphicURL", "file:///C:/oorexx.gif")

xDrawPage~add (xGraph2)

oGraph = xDMsf~createInstance("com.sun.star.drawing.ConnectorShape")
xGraphconn = oGraph~xShape

oGraph2 = xDMsf~createInstance("com.sun.star.drawing.ConnectorShape")
xGraphconn2 = oGraph2~xShape

xDrawPage~add (xGraphconn)
xDrawPage~add (xGraphconn2)

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")
xGraph3 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 3000

size~Width = 4000

point~x = 11000

point~y= 12000

xGraph3~setSize(size)

xGraph3~setPosition(point)

XPropertySet=xGraph3~xPropertySet
xPropertySet~setPropertyValue("GraphicURL", "file:///C:/bsf logo.jpg")

xDrawPage~add (xGraph3)

xConnProps = xGraphconn~xPropertySet
xConnProps2 = xGraphconn2~xPropertySet

xConnProps~setPropertyValue("StartShape", xGraph)
xConnProps~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps~setPropertyValue("EndShape", xGraph2)
xConnProps~setPropertyValue("EndGluePointIndex", box("int", 4))

xConnProps2~setPropertyValue("StartShape", xGraph)
xConnProps2~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps2~setPropertyValue("EndShape", xGraph3)
xConnProps2~setPropertyValue("EndGluePointIndex", box("int", 4))

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 70

)

OpenOfice.org -.'f-":rmal%ermg
] i
w

i

7 s

o =

figure 33: Organigram

The result of this example can be seen in figure.33.
The lines of code explained in more detail:

First the header shape is inserted. After a short break it is set transperant and all other
shapes are added.

Cutout.1
xConnProps~setPropertyValue("StartShape", xGraph)
xConnProps~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps~setPropertyValue("EndShape", xGraph2)
xConnProps~setPropertyValue("EndGluePointIndex", box("int", 4))

In cutout.1 the start and end shape are defined. Next the glue points are set which are
available by default through the properties StartGluePointindex and EndGluePointIndex
passing an index number. The Glue Points define the connecting postion of the
Connector Shape and the Start or End Shape. The four index numbers represent a top,
bottom, left and right placed glue point of the shape. [Open05, p.728]

5.3.3 Example 20 - Using Layer for Shapes

This example shows how layer can be created and added to a shape. In Draw and
Impress, each shape uses exactly one layer. This layer has different properties which
defines if the shape is visible, printable or editable.

/*use Layer for sdraw documents*/
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentlLoader interface
/* open the blank *.sxd - file */

url = "private:factory/sdraw"
xDrawComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©,.UNO~noProps)

OpenOffice.org Automatisation Page 71

XDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */
xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -
~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")
XGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 5000

point~y= 3000

XxGraph~setSize(size)

XGraph~setPosition(point)

XxPropertySet=xGraph~xPropertySet
xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org 01.gif")

oGraph = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")
xGraphtext = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 1000

size~Width = 8000

point~x = 6000

point~y= 10000

XxGraphtext~setSize(size)

XGraphtext~setPosition(point)

xDrawPage~add (xGraph)
xDrawPage~add (xGraphtext)

layersupplier = xDrawComponent~xLayerSupplier
XxNameAccess = layersupplier~getlLayerManager
XxLayerManager = xNameAccess~XLayerManager

/*Layer 1*/

xNotVisibleAndEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)
xPropsLay = xNotVisibleAndEditable~XPropertySet
xPropsLay~setPropertyValue("Name", "NotVisibleAndEditable")
xPropsLay~setPropertyValue("IsVisible", box(boolean, false))
xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

/*Layer 2*/

xNotEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)
xPropsLay = xNotEditable~XPropertySet
xPropsLay~setPropertyValue("Name", "NotEditable")
XPropsLay~setPropertyValue("IsVisible", box(boolean, true))
xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

xLayerManager~attachShapeTolLayer(xGraph, xNotVisibleAndEditable)
xGraphText = xGraphtext~xText
xGraphText~setString("NotVisibleAndEditable")

Call syssleep 2

xLayerManager~attachShapeTolLayer(xGraph, xNotEditable);
xPropertySet~setPropertyValue("Transparency", box("short", 50))

xGraphText~setString("NotEditable")

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 72

| NaEditable |

figure 34: Using Layer for Shapes

In figure.34 The result of this example can be seen.
The lines of code explained in more detail:

The Layer can be accessed through using the com.sun.star.drawing.XLayerSupplier
giving access to the XlayerManager interface.

Cutout.1

layersupplier = xDrawComponent~xLayerSupplier
XNameAccess = layersupplier~getlLayerManager
xLayerManager = xNameAccess~XLayerManager

In cutout.1 the XLayer Manager is initalised.

Cutout.2

xNotVisibleAndEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)
XxPropsLay = xNotVisibleAndEditable~XPropertySet
xPropsLay~setPropertyValue("Name", "NotVisibleAndEditable")
xPropsLay~setPropertyValue("IsVisible", box(boolean, false))
xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

Next a new Layer is created. As mentioned above it is now possible to set different
properties. In this example two layers are created and set (cutout.2).

5.3.4 Example 21 - Creating a Master Page

In this example first a master page®® is created. Into this page different contents are
inserted. To show that these contents are used for all linked draw pages a new slide is
added afterwards.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load

% A master page in this context describes a slide of a ,simpress“ presentation which design is added to
other draw pages linked with it.

OpenOffice.org Automatisation Page 73

-- a new document
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/simpress"
xImpressComponent = xComponentlLoader~loadComponentFromURL (url, " blank",®,.UNO~noProps)

-- need document's factory to be able to insert created objects
xImpressFactory = xImpressComponent~XMultiServiceFactory

/*creating a master Page*/

XMasterPagesSupplier = xImpressComponent~XMasterPagesSupplier
XMasterPages = xMasterPagesSupplier~getMasterPages
XxMasterPage = xMasterPages~getByIndex(0)~XDrawPage

/*create a GraphicObjectShape with picture*/

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.GraphicObjectShape")
xGraph = oGraph~xShape

xGraph = setshape(xGraph, 2500, 8000, 1000, 1600)

xPropertySet = xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/0OpenOffice.org 02.jpg")

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.TextShape")
xGraph4 = oGraph~xShape

xGraph4 = setshape(xGraph4, 1800, 21000, 4500, 9500)

props4 = xGraph4~xPropertySet

props4~setPropertyValue("TextFitToSize",
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

XxMasterPage~add (xGraph4)

graphtext = xGraph4~xText
graphtext~setString("This is the Master Slide")

XxMasterPage~add (xGraph)

xTextFieldPage=xImpressFactory~createInstance("com.sun.star.text.TextField.PageNumber")
~XTextField

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.TextShape")
XxGraph3 = oGraph~xShape

xGraph4 = setshape(xGraph3, 5000, 5000, 23000, 19000)

graphtext3 = xGraph3~xText

XxMasterPage~add (xGraph3)

TextCursor = graphtext3~createTextCursor
graphtext3~insertString(TextCursor, "Folie Nr.: ", .false)
graphtext3~insertTextContent (TextCursor, xTextFieldPage, .false)

/*Inserting Text Shapes into documents*/

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier
xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage@® = xDrawPages~insertNewByIndex(0)~XDrawPage

xSlideProps = xDrawPage®~xPropertySet
xSlideProps~setPropertyValue("Effect", -
bsf.getConstant("com.sun.star.presentation.FadeEffect", "RANDOM"))

xSlideProps~setPropertyValue("Speed",
bsf.getConstant("com.sun.star.presentation.AnimationSpeed", "MEDIUM"))

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.TextShape")
xGraph5 = oGraph~xShape

xGraph5 = setshape(xGraph5, 1800, 21000, 4000, 8000)

props = XGraph5~xPropertySet

props~setPropertyValue("TextFitToSize",
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

xDrawPageO~add (xGraph5)

graphtext = xGraph5~xText
graphtext~setString("This is an example DrawPage")

OpenOffice.org Automatisation Page 74

/* start the presentation */

XxPresentation = xImpressComponent~XPresentationSupplier~getPresentation
- "start" is a method in ooRexx class "Object", hence using message

-- "bsf.invoke()" to dispatch "start" on the Java sid

XPresentation~bsf.invoke("start")

::requires UNO.CLS -- load UNO support for OpenOffice.org
::routine setshape

use arg xGraph, h, w, x, y

size = .bsf~new("com.sun.star.awt.Size")
point = .bsf~new("com.sun.star.awt.Point")
size~Height = h

size~Width = w

point~x = x

point~y=y

XxGraph~setPosition(point)
XGraph~setSize(size)

return xGraph

OB‘E?Ofﬁce.org

This is an example DrawPage
This is the Master Slide

Folie Nr.: 2

figure 35: Creating a Master Page

In figure.35 A draw page using the master page can be seen.
About impress documents:

,»The PresentationDocument service implements the DrawingDocument service.
This means that every presentation document looks like a drawing document. To
distinguish between the two document types, you must first check for a
presentation (Impress) document and then check for a drawing document.....

« A master page, unlike a regular draw page, may not link to a master page

« A master page may not be removed from a document if any draw page links
to it

« Modifications made to a master page are immediately visible on every draw
page that uses that master page..... " [Pito04] (Chapter 15, Calc Documents,
p-375)

OpenOffice.org Automatisation Page 75

The lines of code explained in more detail:

Cutout.1

xMasterPagesSupplier = xImpressComponent~XMasterPagesSupplier
XMasterPages = xMasterPagesSupplier~getMasterPages
XMasterPage = xMasterPages~getByIndex(0)~XDrawPage

In the cutout.1 the XMasterPageSupplier is requested and used to retrieve the master
page. Now it is possible to use the method getMasterPages() which returns a indexed
container accessable with the service MasterPages. This service can be used like the
XDrawPages interface. Furthermore the XDrawPage interface can be requested and
used to design the MasterPage.

In this program different shapes and text fields are added, which was already shown in
Example.19 and 20.

Cutout.2

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier
xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage® = xDrawPages~insertNewByIndex(0)~XDrawPage

The XDrawPages of the Impress document are used like the DrawPages of the Draw
document, which can be seen in cutout.2.

At the end of the example some additional text is inserted to show that the last side is a
normal Draw Page.

5.3.5 Example 22 - Insert chart

In this example an existing chart from a scalc document is inserted into an impress
document. For this an ole2shape object is used. This means that this example runs only
using a Windows operating system.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object
oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/simpress"
xImpressComponent = xComponentLoader~loadComponentFromURL (url, " blank",®,.UNO~noProps)

/* open the blank *.sxw - file */
url = "file:///c:/chartbase impress.ods"

props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .true)

xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", ©, props)
/* get first sheet in spreadsheet */
xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

xTableCharts = xSheet~xTableChartsSupplier~getCharts

OpenOffice.org Automatisation Page 76

xChartObj = xTableCharts~xIndexAccess~getByIndex(0)

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject
xDiagram = xComponent~XChartDocument~getData

-- need document's factory to be able to insert created objects
xImpressFactory = xImpressComponent~XMultiServiceFactory

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier
xDrawPages = xDrawPagesSupplier~getDrawPages
xDrawPage = xDrawPages~getByIndex(0)~XDrawPage

ole2shape = xImpressFactory~createInstance("com.sun.star.drawing.0LE2Shape")~xShape
xDrawPage~add (ole2shape)

size = .bsf~new("com.sun.star.awt.Size")
point = .bsf~new("com.sun.star.awt.Point")
size~Height = 14000

size~Width = 18000

point~x = 6000

point~y= 3000

ole2shape~setSize(size)
ole2shape~setPosition(point)

msChartClassID = "12dcae26-281f-416f-a234-c3086127382e"

oleShapeProps = ole2shape~xPropertySet
oleShapeProps~setPropertyValue("CLSID", msChartClassID)

model = oleShapeProps~getPropertyValue("Model")
xChartDocument = model~xChartDocument

XxChartDocument~attachdata(xDiagram)

::requires UNO.CLS -- load UNO support for OpenOffice.org

& Untitled9 - OpenOffice.org Impress

File Edit Yew Insert Format Tools Slide Show ‘Window Help
iBrEeH=2 X BS VI EBhRe 6-0- DEH
Hod) O =~ |

slides *®

Slide 1

v| |D,00cm ¢| |- Black V| & |Co|or VIIII EBlue & v|]

Mormal |Outline | Maotes | Handout || Slide Sorter

1

Main title

figure 36: Insert Chart

In figure.36 the inserted chart can be seen.

OpenOffice.org Automatisation Page 77

The lines of code explained in more detail:

First the scalc document is openend using a property array (cutout.l).

Cutout.1

props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Hidden"

props[1]~Value = box("boolean", .true)

In the former examples always an empty array was passed. In the lines above the
proberty value ,,Hidden* is set true (cutout.1). For this the scalc document is not visible.

Cutout.2

xTableCharts = xSheet~xTableChartsSupplier~getCharts
xChartObj = xTableCharts~xIndexAccess~getByIndex(0)
xChart = xChartObj~xTableChart

Now the XTableCharts container is accessed like in Example 14, cutout.2 (p.60). In the
second line it would also be possible to use the interface XNameAccess providing the
method getByName().

Cutout.3
xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject
xDiagram = xComponent~XChartDocument~getData

In coutout.3 the xChartDocument interface is accessed which provides the method
getData().

After retrieving the diagram data of the chart a sdraw document is opened. Using the
Service Manager of this document an ole2shape object is created. To use this shape for
charts it is necessary to set a unique class-id.[Open05, p.749]

Cutout.4
msChartClassID = "12dcae26-281f-416f-a234-c3086127382e"

The class id of chart objects is shown above set as a string value (cutout.4).

Cutout.5
oleShapeProps = ole2shape~xPropertySet
oleShapeProps~setPropertyValue("CLSID", msChartClassID)

The class id is simply passed using the setPropertyValue() method (cutout.5).

Cutout.6
model = oleShapeProps~getPropertyValue("Model")
xChartDocument = model~xChartDocument

Now we need the XChartDocument of the chart used in the ole2shape object (cutout.6).
Afterwards the data from the chart document opend before is set (cutout.7).

Cutout.7
XxChartDocument~attachdata(xDiagram)

OpenOffice.org Automatisation Page 78

5.3.6 Example 23 - Animations and click actions

In this example different shapes are created with animation effects and onClick actions.

/* Presentation Events */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */
url = "private:factory/simpress"
xImpressComponent = xComponentLoader~loadComponentFromURL (url, " blank",®,.UNO~noProps)

-- need document's factory to be able to insert created objects
xImpressFactory = xImpressComponent~XMultiServiceFactory

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier
xDrawPages = xDrawPagesSupplier~getDrawPages

DO WHILE xDrawPages~getCount < 3
xDrawPages~insertNewByIndex(0)
END

xDrawPage@® = xDrawPages~getByIndex(0)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")
XGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 10600, 16000)

xDrawPage@~add (xGraph)

xSlideProps = xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "WAVYLINE FROM BOTTOM"))

xSlideProps~setPropertyValue("DimHide", box(boolean, false))
xSlideProps~setPropertyValue("DimPrevious", box(boolean, true))
xSlideProps~setPropertyValue("DimColor", box("int", "C0 CO C0"x ~c2d))

xDrawPage® = xDrawPages~getByIndex(1l)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")
xGraph = oGraph~xShape

XxGraph = setshape(xGraph, 5000, 5000, 21000, 15000)

xDrawPage@~add (xGraph)

xSlideProps = xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "HIDE"))

xDrawPage@® = xDrawPages~getByIndex(2)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")
xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 10600, 86000)

xDrawPage@~add (xGraph)

xSlideProps = XxGraph~xPropertySet

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE FROM BOTTOM"))

xSlideProps~setPropertyValue("OnClick",
bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE"))

xDrawPage® = xDrawPages~getByIndex(2)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")
xGraph oGraph~xShape

XGraph = setshape(xGraph, 5000, 5000, 22000, 8000)

xDrawPage0~add (xGraph)

OpenOffice.org Automatisation Page 79

xSlideProps = xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM BOTTOM"))

xSlideProps~setPropertyValue("OnClick",
bsf.getConstant("com.sun.star.presentation.ClickAction", "BOOKMARK"))

xNamed = xDrawPages~getbyIndex(1)~xNamed
xNamed~setName("page - two")
xSlideProps~setPropertyValue("Bookmark", xNamed~getName)

r:requires UNO.CLS -- load UNO support for OpenOffice.org
::routine setshape

use arg xGraph, h, w, x, y

size = .bsf~new("com.sun.star.awt.Size")
point = .bsf~new("com.sun.star.awt.Point")
size~Height = h

size~Width = w

point~x = x

point~y=y

xGraph~setPosition(point)
XGraph~setSize(size)

return xGraph

& Untitled1 - OpenDffice.org Impress

file Edit Wiew [nsert Fgrmat Ipols Slide Show Window Help

iB-2He X ES VR kR -0 QES @

(B @ = - | 7 | 2| Mok v| O Ko v [Hmes v @
slides x —_———————
-—,—— Outline |Motes | Handout | Slide Sorter
‘(I

Slide 1
2

page - bwo

3

Slide 3

figure 37: Animation and Click Actions

The resulting slides of this program can be seen in figure.37

About presentation shapes:

,Shapes contained in Impress documents differ from shapes in Draw
documents in that they support the com.sun.star.presentation.Shape service. The
presentation Shape service provides properties that define special behavior to
enhance presentations.”“ [Pito04] (Chapter 15, Draw and Impress, p.403)

In this example the following two properties are used:

OpenOffice.org Automatisation Page 80

- OnClick, Specify an action if the user clicks on the shape

- Effect, Animation effect for this shape

The lines of code explained in more detail:

In the example first three draw pages are created. Afterwards in the first slide a shape is
inserted to add some animation effects.

Cutout.1
xSlideProps = xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "WAVYLINE FROM BOTTOM"))

xSlideProps~setPropertyValue("DimHide", box(boolean, false))
xSlideProps~setPropertyValue("DimPrevious", box(boolean, true))
xSlideProps~setPropertyValue("DimColor", box("int", "CO CO CO"x ~c2d))

In cutout.1 an animation effect is added through setting properties. Afterwards an ellipse
shape, again with animation effect, is inserted into the second draw page. To the third
draw page two shapes are set with following properties (cutout.2):

Cutout.2

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE FROM BOTTOM"))

xSlideProps~setPropertyValue("OnClick",
bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE"))

xSlideProps~setPropertyValue("Effect",
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE FROM BOTTOM"))

xSlideProps~setPropertyValue("OnClick",
bsf.getConstant("com.sun.star.presentation.ClickAction", "BOOKMARK"))

xNamed = xDrawPages~getbyIndex(1)~xNamed
xNamed~setName ("page - two")
xSlideProps~setPropertyValue("Bookmark", xNamed~getName)

The code shows the adding of animations effects and click actions. The first shape
points to the first page if the click action is triggered. To the second shape a bookmark is
set as click action refering to the second page.

OpenOffice.org Automatisation Page 81

5.4 General Examples

The following examples can not be dedicated to a specific document structure like the
examples before. In contrast they show generally functionalaties provided from
OpenOffice.org. First a database example will be described followed by a printing
program. At the end Object Rexx will be used to create message boxes.

5.4.1 Example 24 - Access Internal Database

In this example first the Thunderbird adress book is imported into OpenOffice.org. After
doing this the macro requests data using a SQL statement. In the following this data is
used to send e-mails.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

xContext=xScriptContext~getComponentContext
-- get the context(an XComponentContext object)

XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory

-- first we create our RowSet object and get its XRowSet interface
oRowSet = xMcf~createInstanceWithContext("com.sun.star.sdbc.RowSet", xContext)
XRowSet = oRowSet~XRowSet

-- set the properties needed to connect to a database
XProp = xRowSet~XPropertySet

-- the DataSourceName can be a data source registered with [PRODUCTNAME],
-- among other possibilities
xProp~setPropertyValue("DataSourceName", "adresses")

-- the CommandType must be TABLE, QUERY or COMMAND - here we use COMMAND
XProp~setPropertyValue("CommandType", -
box("int", bsf.getStaticValue("com.sun.star.sdb.CommandType", "COMMAND")))

-- the Command could be a table or query name or a SQL command, depending on
-- the CommandType
xProp~setPropertyValue("Command", 'SELECT' ' "E-Mail" ' 'FROM addressmozilla')

XRowSet~execute -- prepare the XRow interface for column access
XRow = oRowSet~XRow

/*sending e-mail to every address listed in the table addressmozilla*/
SimpleMailSystem=XMcf -
~createInstancewithContext("com.sun.star.system.SimpleSystemMail", xContext)
XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier
XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

DO WHILE xRowSet~next > 0

email = xRow~getString(1l)
mail = XSimpleMailClient~createSimpleMailMessage

/*set Recipient and Subject*/
mail~setRecipient (email)
mail~setSubject("mail from OpenOffice.org 2.0")

XsimpleMailClient~sendSimpleMailMessage(mail, -
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO USER INTERFACE"))

END

::requires UNO.CLS -- load UNO support for OpenOffice.org

OpenOffice.org Automatisation Page 82

Address Book Data Source Wizard &

H Welcome to the Address Data Source Wizard.

Openoffice.org lets you access address data already present in your system. To da this, a
OpenCffice. org data source will be created in which vour address data is available in tabular Form.,

This wizard helps you create the data source.

Flease select the tvpe of vour external address book:
() Mozila | Metscape
(OF|
() LDAP address data
() Qutlook address book.

() windows system address baok

() ther external data source

Figure 38: Select type of external adress book

First you have to import the Thunderbird adress book into OpenOffice.org. For this
open the Adress Data Source assistent which can be found in File/Wizards/Adress Data
Source...... There you have to choose Thunderbird, as shown in figure.38.

Now it is possible to choose a adress book which you will load into OpenOffice.org.
Next one have to define a name for the database. In this example the data source is
named addresses. Now just press finish and the new data source is available. I

To access the data source the service RowSet is used. The RowSet is described as
following:

,,RowSet is a client side ResultSet, which combines the characteristics of a Statement
and a ResultSet...Before you use the RowSet, you have to specify a set of properties like
a DataSource and a Command and other properties known Statement. Afterwards, you
can populate the RowSet by its execute method to fill the set with data....can be used to
retrieve the data of a DataSource.... " [ApiO6e]

The lines of code explained in more detail:

As described above the RowSet needs different properties for requesting a data source.
First the Name of the data source has to be set as property. This happens in this example
through using the setPropertyValue() method (cutout.1):

Cutout.1
xProp~setPropertyValue("DataSourceName", "adresses")

The command, in this case a SQL-statement, is set in the same way (cutout.2):

Cutout.2
XProp~setPropertyValue("Command", 'SELECT' ' "E-Mail" ' 'FROM addressmozilla')

OpenOffice.org Automatisation Page 83

\?2 another application is atkempting to send mail using your user profile, Are you sure you wank Eo
send mail?

wWarn me whenever ather applications kry ko send mail Fram me

[ook | [Cancel]

Figure 39: Confirm Box

After executing the query a row of data is returned containing all e-mail adresses of the
accessed adress book. At the end of the example this row is traversed using a loop
which sends an e-mail to every adress. Before the e-mail is sent a message box
(figure.39) asks you for confirming the process.

5.4.2 Example 25 - Printing Different Documents

In this example different document types are printed.

/* Printing Files */
xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader
-- get componentLoader interface

/*printing swriter file*/

/* open the swriter - file */
url = "file:///C:/articel.odt" -- get the document from the current folder

props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~propertyValue~new

props[1]~Name = "Hidden"
props[1]~Value = box("boolean", .true)
xWriterComponent = xComponentLoader~loadComponentFromURL (url, " blank", 0, props)

/* set the printer */
xPrintable = xWriterComponent~XPrintable

props[1]~Name = "Name"
props[1]~Value "Brother HL-5030 series" -- the name of your printer

xPrintable~setPrinter(propsl)

/* set the print-options */
props[1]~Name = "Pages"
props[1]~Value = "1"

/* print current file */
XPrintable~print(props2)

/*Printing scalc-File*/

url = "file:///C:/compare.ods" -- get the document from the current folder
props[1] = .UNO~propertyValue~new

props[1l]~Name = "Hidden"

http://www.ooRexx.org/

OpenOffice.org Automatisation Page 84

props[1]~Value = box("boolean", .true)
xCalcComponent = xComponentLoader~loadComponentFromURL (url, " blank", 0, props)

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
~XSpreadSheet

/* create a cell range, then get the CellRangeAddress */
myRange = xSheet~XCellRange~getCellRangeByName("Al:C5")
myAddr = myRange~XCellRangeAddressable~getRangeAddress

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"

0Addr = bsf.createArray(.UNO~CellRangeAddress, 1) -- create Java array
0Addr[1] = myAddr -- assign CellRangeAddress
XxSheet~XPrintAreas~setPrintAreas (oAddr) -- set PrintAreas

xPrintable = xCalcComponent~XPrintable
xPrintable~setPrinter(propsl)
XxPrintable~print(props2)

/*modifying props*/

props = bsf.createArray(.UNO~propertyValue, 2)
props[1] = .UNO~propertyValue~new
props[1l]~Name = "Hidden"

props[1]~Value = box("boolean", .false)
props[2] = .UNO~propertyValue~new
props[2]~Name "IsPrintHandout"
props[2]~Value = box("boolean", .true)

url="file:///c:/handout.odp"
xImpressComponent = xComponentLoader~loadComponentFromURL(url, " blank", @, props)

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier
xDrawPages = xDrawPagesSupplier~getDrawPages

XPrintable = xImpressComponent~XPrintable
XPrintable~setPrinter(propsl)

props = bsf.createArray(.UNO~propertyValue, 2)
props[1] = .UNO~propertyValue~new
props[1]~Name = "IsPrintHandout"
props[1]~Value = box("boolean", .true)
props[2] = .UNO~propertyValue~new
props[2]~Name = "Pages"

props[2]~Value = "1-" || xDrawPages~getCount
xPrintable~print(props)

::requires UNO.CLS -- load UNO support for OpenOffice

The lines of code explained in more detail:

First a swriter document is opened hidden. Afterwards the XPrintable interface is
requested which offers the method setprinter() and print(). The setprinter() method
allows to define a printer which is used for printing. This method requires an property
array which contains the name. Afterwards the printer() function can be used to print the
file. The number of pages can be set passing the property value page.

Cutout.1
xSheet~XPrintAreas~setPrintAreas (oAddr)

Next a scalc document is printed. For this it is necessary to set printAreas, shown in
cutout. 1. The method setPrintAreas() uses in this case a cell range adress. The next steps
for printing are the same like described above for the swriter document.

OpenOffice.org Automatisation Page 85

At the end of the example an impress presentation is printed. For this it is necessary to
find out how many documents are used within the presentation to cover all slides. For
this two ways are possible. First, one can open the file and look how many slides are
within the presentation. Maybe this way is not really effecient in the face of
automatisation. The secound way is used in this example and can be seen in the line
below, where the getCount() method returns the number of documents contained in the
XDrawPages container (cutout.2). This value is inserted into the PropertyArray which is
passed for the printing.

Cutout.2
xDrawPages~getCount

OpenOffice.org Automatisation Page 86

6 Conclusion

At the beginning of this paper the following question was defined:

»Software is generally expensive to buy, especially commercial applications for
firms and other organisations. In addition, software is often not independent
from the operating system. These arguments bring up the question, if there are
other possibilities to use software which supports working processes.

The first step toward a more independent way of using software is to identify
approaches which can answer this question.“(1.2 Problem Discussion, p.6).

This question should be know answered through the explanation of the software
elements and examples which were used in this work. These parts form together the
approach which is supposed as answer for the problem discussion.

It could be seen that all components of the introduced architecture are freely available
and thus correspond to the statement that commercial software is expensive and
alternatives should be found. Furthermore the different examples underline the ability of
this architecture to support working processes efficient.

The last two paragraphs should give an short overview of some experiences made by the
author:

During the work it was sometimes not easy to find the information which was needed to
create some examples. The main information resources (Api Project homepage[Ajp05],
Developer's Guide [Open05], Macros Explained [Pito04]) were very helpfull, but would
can provide better support if some aspects would be more considered. Especially the
Api Projekt homepage describes often interfaces or other objects only in a short way. In
addition it was often very difficult to find out the sequence of interfaces which you have
to retrieve to get the interface you need.

Finally there seems to be a great potential for further developments on this issue, and
thus students and other people who will deal with this context. The author hopes to
provide some helpfull findings for them.

OpenOffice.org Automatisation Page 87

7 References

[Ajp05]

[ApiO0006]

[ApiO6a]

[Api06b]

[Api06c]

[Api06d]

[Api06e]

[Augu05]

[BSF4Rexx]

[Flat06]

[Flat05]

[HaneO05]

Apache Jakarta Project homepage, URL (2006-01-18):
http://www.openoffice.org/

Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/

Api Project homepage, URL (2005-01-16):

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
XComponentl.oader

Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ X Text.html

Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/-
XCellRangesQuery.html

Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/table/
XTableCharts.html

Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/
RowSet.html

Augustin, Walter: Examples for Open Office Automation with Scripting
Languages (2005),
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/-
bsf.ooffice/

retrieved on 2005-11-10

BSF4Rexx home, URL (2006-03-13):
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/

Flatscher, Rony G.: Java Automation - Course slides (in German),
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/folien/
2004; retrieved on2005-11-10

Flatscher, Rony G.: “Automating OpenOffice.org with OORexx:
OORexx nutshell exmaples for write and calc”,
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell OOo.pdf;
retrieved on 2005-11-10

Hahnekamp, Rainer: Extending the scripting abilities of OpenOffice.org
with BSF and JSR-223; course paper, Vienna University of

Economics and Business Administration, Information Systems and
Operations (Flatscher, Rony G.); January, 2005

http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell_OOo.pdf
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/folien/
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/-
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/-
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
http://api.openoffice.org/
http://www.openoffice.org/

OpenOffice.org Automatisation Page 88

[IBMO6] Microsoft homepage, URL (2006-01-22):
http://www.microsoft.com/com/default.mspx

[00006] OpenOffice.org homepage, URL (2006-01-18):
http://www.microsoft.com/com/default.mspx

[Open05] OpenOffice.org: OpenOffice.org 1.1 - Developer's Guide,

http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
retrieved on 2005-11-10

[Oorex05] OpenObjectRexx homepage, URL (2006-01-18):
http://www.oorexx.org/

[Osat06] OpenSource.co.at homepage, URL (2006-01-18):
http://www.opensource.co.at/content.php?cid=5

[Osorg06] OpenSource.org homepage, URL (2006-01-18):
http://opensource.org/

[Pito04] Pitonyak, Andrew: OpenOffice.org Macros Explained (2004)

[Sun06] Sun homepage, URL (2006-01-18)
http://java.sun.com/

[Wiki06] Wikipedia homepage, URL (2006-01-18):
http://de.wikipedia.org/wiki/Rexx

[WikiOO006] Wikipedia homape, URL (2006-01-18):
http://de.wikipedia.org/wiki/OpenOffice.org

http://de.wikipedia.org/wiki/OpenOffice.org
http://de.wikipedia.org/wiki/Rexx
http://opensource.org/
http://www.opensource.co.at/content.php?cid=5
http://www.oorexx.org/
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://www.openoffice.org/
http://www.openoffice.org/
http://www.microsoft.com/

	1 Introduction
	1.1 Abstract
	1.2 Problem Discussion
	1.3 Approach
	1.4 Keywords

	2 Discribing the main elements
	2.1 Open Source Definition
	2.2 Open Object Rexx
	2.2.1 History3
	2.2.2 Open Object Rexx6
	2.2.3 Syntax Examples

	2.3 OpenOffice.org
	2.3.1 History9
	2.3.2 The OpenOffice Product13

	2.4 The Bean Scripting Framework
	2.4.1 History
	2.4.2 Technical Concept17

	2.5 BSF4Rexx18
	2.6 The Architecture of OpenOffice.org19
	2.6.1 Universal Network Object concept
	2.6.2 UNO Service Components
	2.6.2.1 Service Manager
	2.6.2.2 Services,Interfaces and Properties
	2.6.2.3 UNO Java Access

	3 Interaction of Elements
	3.1 UNO.CLS
	3.1.1 Java:ObjectRexx25
	3.1.2 UNO.CLS26

	4 Installation Guide
	5 Examples
	5.1 Wordprocessor („swriter“) Examples
	5.1.1 Example 01 – Hello World
	5.1.2 Example 02 – Insert Texttable
	5.1.3 Example 03 – Cursor Show
	5.1.4 Example 04 – Page Counter
	5.1.5 Example 05 – Insert Different Shapes
	5.1.6 Example 06 - Sending e-Mail with Attachement
	5.1.7 Example 07 – Using the Internet Explorer for Tracking Web-Sites (Windows-only)
	5.1.8 Example 08 – Using a Search Descriptor

	5.2 „scalc“ Examples
	5.2.1 Example 09 - „Hello World“
	5.2.2 Example 10 - Insert Values and Formulas
	5.2.3 Example 11 - Copy Cell Ranges
	5.2.4 Example 12 - Merging Cells
	5.2.5 Example 13 - Identify Row Differences
	5.2.6 Example 14 - Chart Show
	5.2.7 Example 15 - Using a Replace Describtor
	5.2.8 Example 16 - Inserting a Shape
	5.2.9 Example 17 – Changing the Cell Format

	5.3 „simpress“ and „sdraw“ Examples
	5.3.1 Example 18 - Using Different Shapes
	5.3.2 Example 19 - Organigram
	5.3.3 Example 20 - Using Layer for Shapes
	5.3.4 Example 21 - Creating a Master Page
	5.3.5 Example 22 - Insert chart
	5.3.6 Example 23 - Animations and click actions

	5.4 General Examples
	5.4.1 Example 24 - Access Internal Database
	5.4.2 Example 25 - Printing Different Documents

	6 Conclusion
	7 References

