
OpenOffice.org Automatisation Page 1

OpenOffice.org Automatisation with Object Rexx
Martin Burger

Vienna University of Economics and Business Administration

Reg. No. 0251293

E-Mail h0251293@wu-wien.ac.at

October 28, 2005

Bachelor Course Paper

Departement of Business Informatics

Prof. Dr. Rony G.Flatscher

mailto:h0251293@wu-wien.ac.at


OpenOffice.org Automatisation Page 2

Contents

1 Introduction.....................................................................................................................6

1.1 Abstract....................................................................................................................6

1.2 Problem Discussion................................................................................................. 6

1.3 Approach..................................................................................................................6

1.4 Keywords................................................................................................................. 6

2 Discribing the main elements......................................................................................... 7

2.1 Open Source Definition........................................................................................... 7

2.2 Open Object Rexx................................................................................................... 8

2.2.1 History...........................................................................................................8

2.2.2 Open Object Rexx.........................................................................................9

2.2.3 Syntax Examples.........................................................................................10

2.3 OpenOffice.org...................................................................................................... 11

2.3.1 History.........................................................................................................11

2.3.2 The OpenOffice Product............................................................................. 12

2.4 The Bean Scripting Framework.............................................................................13

2.4.1 History.........................................................................................................13

2.4.2 Technical Concept...................................................................................... 13

2.5 BSF4Rexx..............................................................................................................14

2.6 The Architecture of OpenOffice.org......................................................................15

2.6.1 Universal Network Object concept ............................................................16

2.6.2 UNO Service Components..........................................................................17

2.6.2.1 Service Manager...........................................................................17
2.6.2.2 Services,Interfaces and Properties................................................19
2.6.2.3 UNO Java Access.........................................................................20

3 Interaction of Elements.................................................................................................21

3.1 UNO.CLS.............................................................................................................. 21

3.1.1 Java:ObjectRexx......................................................................................... 22

3.1.2 UNO.CLS................................................................................................... 23

4 Installation Guide .........................................................................................................24

5 Examples ..................................................................................................................... 26

5.1 Wordprocessor („swriter“) Examples....................................................................27

5.1.1 Example 01 – Hello World......................................................................... 29

5.1.2 Example 02 – Insert Texttable ................................................................... 31

5.1.3 Example 03 – Cursor Show........................................................................ 34

5.1.4 Example 04 – Page Counter........................................................................36



OpenOffice.org Automatisation Page 3

5.1.5 Example 05 – Insert Different Shapes........................................................ 38

5.1.6 Example 06 - Sending e-Mail with Attachement .......................................40

5.1.7  Example  07  –  Using  the  Internet  Explorer  for  Tracking  Web-Sites 
(Windows-only)....................................................................................... 44

5.1.8 Example 08 – Using a Search Descriptor................................................... 47

5.2 „scalc“ Examples...................................................................................................50

5.2.1 Example 09 - „Hello World“...................................................................... 51

5.2.2 Example 10 - Insert Values and Formulas..................................................52

5.2.3 Example 11 - Copy Cell Ranges.................................................................54

5.2.4 Example 12 - Merging Cells.......................................................................56

5.2.5 Example 13 - Identify Row Differences..................................................... 57

5.2.6 Example 14 - Chart Show...........................................................................59

5.2.7 Example 15 - Using a Replace Describtor .................................................61

5.2.8 Example 16 - Inserting a Shape ................................................................. 62

5.2.9 Example 17 – Changing the Cell Format ...................................................63

5.3 „simpress“ and „sdraw“ Examples........................................................................ 65

5.3.1 Example 18 - Using Different Shapes ....................................................... 66

5.3.2 Example 19 - Organigram...........................................................................68

5.3.3 Example 20 - Using Layer for Shapes........................................................ 70

5.3.4 Example 21 - Creating a Master Page.........................................................72

5.3.5 Example 22 - Insert chart ...........................................................................75

5.3.6 Example 23 - Animations and click actions............................................... 78

5.4 General Examples .................................................................................................81

5.4.1 Example 24 - Access Internal Database......................................................81

5.4.2 Example 25 - Printing Different Documents ............................................. 83

6 Conclusion ................................................................................................................... 86

7 References.....................................................................................................................87



OpenOffice.org Automatisation Page 4

Figures

figure 1: Architectural Overview, [Hane05]....................................................................13

Figure 2: BSF interaction with ObjectRexx and Java, [Flat06].......................................14

Figure 3: Components of OOo [Flat05]...........................................................................15

Figure 4: Communication between UNO components [Flat05]......................................16

Figure 5: The Service Manager [Augu05].......................................................................17

Figure 6: Services [Open05, p.42]...................................................................................19

Figure 7: Java Adapter [Flat05].......................................................................................20

Figure 8: The overall concept [Augu05]..........................................................................21

Figure 9: ooRexxMakros................................................................................................. 24

figure 10: Text Document Model, [Open05, p.503]........................................................27

figure 11: Hello World.....................................................................................................29

figure 12: Insert Text Table............................................................................................. 32

figure 13: Cursor Show....................................................................................................35

figure 14: Page Counter................................................................................................... 37

Figure 15: Insert Different Shapes...................................................................................39

Figure 16: Confirm request .............................................................................................41

Figure 17: Received mail.................................................................................................42

Figure 18: E-mail button..................................................................................................43

Figure 19: Loading Web Sites......................................................................................... 45

Figure 20: Using Search Descriptor.................................................................................48

Figure 21: Spreadsheet Document Model [Open05, p.584]............................................ 50

Figure 22: Hello World calc............................................................................................ 51

Figure 23: Values and Formulas......................................................................................53

Figure 24: Copy Cell Ranges...........................................................................................55

Figure 25: Merging Cells.................................................................................................57

Figure 26: Identify Row Differences............................................................................... 58

Figure 27: Chart Show.....................................................................................................60

Figure 28: Using a Replace Descriptor............................................................................61

Figure 29: Inserting a shape.............................................................................................63

Figure 30: Changing the Cell Format.............................................................................. 64

Figure 31: Drawing and Impress model [Open05].......................................................... 65

figure 32: Using Different Shapes................................................................................... 67

figure 33: Organigram..................................................................................................... 70

figure 34: Using Layer for Shapes................................................................................... 72



OpenOffice.org Automatisation Page 5

figure 35: Creating a Master Page................................................................................... 74

figure 36: Insert Chart......................................................................................................76

figure 37: Animation and Click Actions..........................................................................79

Figure 38: Select type of external adress book................................................................ 82

Figure 39: Confirm Box...................................................................................................83



OpenOffice.org Automatisation Page 6

1 Introduction

The Introduction chapter will give you an short overwiew about the structure, the main 
problem and the approach of this work. 

1.1 Abstract

This  paper  discusses  how different  technical  components  of  Open Office  can  work 
together to support business processes. These technical components are Open Source 
and freely available through downloading them form the Internet. The main focus will 
be  the  script  language  Open  Object  Rexx,  OpenOffice.org  and  the  Bean  Scripting 
Framework for Open Object Rexx.

After explaining the main components of the system, some Examples should show how 
the elements are working together and which effect is possible to achieve using them. 
The next step is to create small nutshell examples which should be supported through 
the interacting technical components mentioned above. At the end the conclusion part 
should summarise the main aspects of this paper.

1.2 Problem Discussion

Software is generally expensive to buy, especially commercial applications for firms and 
other organisations. In addition, software is often not independent from the operating 
system. These arguments bring up the question, if there are other possibilities to use 
software which supports working processes.

The  first  step  toward  a  more  independent  way  of  using  software  is  to  identify 
approaches which can answer this question.

1.3 Approach

The approach of this paper suggests to use Open Source Software to answer the problem 
discussion due to several reasons. Open Source Software programs offer the possibility 
to save expensive licences and maintain independence from big market share holders. In 
addition the required automation of working processes can be achieved as described 
later on. 

1.4 Keywords

Open Source Software, Open Object Rexx, OpenOffice.org, Bean Scripting Framework 
for Object Rexx, Automatisation



OpenOffice.org Automatisation Page 7

2 Discribing the main elements

In this chapter all used elemets, including generall definitions and software elements, 
will be discribed. This is necessary to build up an appropriate context of knwoledge to 
understand this issue in a more comprehensive way. 

2.1 Open Source Definition

Open Source can be discribed through following criterias reffering to different sources1.

1. Source Code

The Source Code must be available for each Open Source Software. In addition 
the code must be accessible in compiled form. This is necessary to assure the  
possibility to modify and develop efficient Software.

2. Derived Works

This point simply means that modifications and derived works must be allowed.

3. Integrity of The Author's Source Code

 Therefore „patch files“ must be allowed which modify the program at build time. 
The  reason  for  this  possibility  of  using  Open  Source  license  is  to  make  
„unofficial“ changes available and protecting the original source code. In this  
way, the reputation of the original Authors can be saved.

4. No Discrimination Against Persons of Groups

Open  Source  Software  Projects  try  to  gain  a  maximum  of  benefits  for  all  
participants  and  user.  This  aspect  could  be  endangered  through  forbidding  
persons to contribute work afford. 

5. No Discrimination Against Fields of Endeavor

It  is  forbidden  to  restrict  the  Field  of  Endeavor,  for  example  to  forbid  
commercial usage. 

6. Distribution of License

The rights  for  the  software  pass  over  to  all  persons  who  are  receiving  the  
program. It is forbidden that a person has to buy additional licenses to use the 
Software.

1 [Osat06][Osorg06]



OpenOffice.org Automatisation Page 8

7. License Must Not Be Specific to a Product (Note: this argument is not always true)

The rights must not apply for a special software package. Parts of the package 
have the same rights then the whole product.

8. License Must Not Restrict Other Software

The license must not influence the rights on other software which are distributed 
on the same media.

To know these criterias is important for using Open Source Software. Especially for this 
paper, due to the fact that only Open Source programs will be analyzed and applied.

2.2 Open Object Rexx

Open  Object  Rexx  is  the  name  of  an  freely  available  scripting  language2.  In  the 
following a history section, generally aspects and syntax examples of this programming 
language will introduce you in the world of Open Object Rexx. 

2.2.1 History3

Rexx was originally disegned and implented as a scripting language between 1979 and 
1982 by Mike Cowlishaw of IBM. Over the years, IBM made Rexx available for all his 
operating systems, Windows, java and Linux. In 1984/5 the first non-IBM version was 
written by Charles Daney for PC-DOS. In addition, versions for Atari, Amiga, Unix, 
Solaris,  DEC,  Windows  CE,  Pocket  PC,  MS-DOS,  Palm  OS,  QNX,  OS/2,  Linux, 
BeOS, EPOC32, AtheOS, OpenVMS, Open Edition, Macintosh, and Mac OS x were 
also developed. 

In 1992 two very important open source approaches of Rexx appeared. Ian Collier's 
REXX/imc for Unix and Anders Christensen's Regina for Windows and Linux were 
released. This two versions of Rexx are very popular and widely used.

In  1996  ANSI4 published  a  standard  named  ANSI  X3.274-1996  „Information 
Technology – Programming Language REXX“

The latest versions of Rexx are NetRexx and Object Rexx. 

Object  Rexx  is  object-oriented5 and  upwards-compatible  with  Rexx.  Further 
information on this version will be provided in the next chapter. 

2 Scripting programming languages are computer programming languages which are rather interpreted 
than compiled. 

3 [WikiREXX06]
4 The American National Standard Institute is a non-profit organization for standardization work in the 

United States.
5 Object-Oriented  programming is  a  programming paradigm using objects  which are communicating 

through messages.



OpenOffice.org Automatisation Page 9

2.2.2 Open Object Rexx6

Open Object Rexx is an Open Source Project managed by RexxLA7 and is distributed 
under  the  Common  Public  License  (CPL)  v1.08.  This  license  includes  the  criterias 
mentioned above in chapter 2.1. Open Source Definition.

Object Rexx can be characterized as follows:

An English-like statement: 

That  means  that  Rexx  uses  names  for  instructions  which  have  a  similar  
semantics  in  the  English  language.   For  example  SAY,  IF....THEN..Else,  
Do..End, and EXIT. This makes the using of this programming language a lot  
easyer.

Fewer Rules:

In  Rexx  it  is  possible  to  write  one  instruction  in  several  lines  or  several  
instruction in one line. The language is also not case sensitive, for this reason it 
doesn't matter if you are writing the code in lowercase or uppercase. Furthermore 
one can keep spaces between lines which will cause no troubles during running 
the program. Finally you can name your varibles like built in functions which 
have the same name. The interpreter of Rexx will use the right function based on 
the context. 

Interpreted not compiled:

Object Rexx is a scripting language that interprets the statements.

Built in functions and methods:

Built in functions and methods are providing different functionalities which are 
already implemented in the language.

Typeless variables:

In Rexx one don't have to declare variables, for example numbers or strings, due 
to the fact that variables can hold any kind of Object.

6 [Oorex05]
7 The Rexx Language Association tries to support the understanding and use of the Rexx Programming 

language and consist of volunteers throughout the world. 
8 [Osorg06]



OpenOffice.org Automatisation Page 10

String handling:

Rexx  offers  a  powerful  functionality  for  manipulating  strings.  This  is  an  
advantage if  you like to  create programs which have to  separate  characters,  
numbers, and mixed input. 

Decimal Arithmetic:

Rexx bases it's arithmetic operations on decimal arithmetic and not on binary 
arithmetic, which is used in many other programming languages. 

Clear error messages and powerful debugging:

This  point  means  simply  that  error  messages  of  Rexx  provide  a  full  and  
meaningful explanation. In addition the TRACE instruction offers a powerful  
debugging tool.

2.2.3 Syntax Examples

In Object  Rexx  every value  is  an  Object  and  is  created  as  string by default.  Even 
numeric values are saved as String. In the following examples code snipes are shown 
which are needed for some of the nutshell examples. 

The  first  example  shows  how  variables  are  used  in  Object  Rexx..  The  ||  operator 
assembles two strings.

a = “ab “

b = 123 

SAY a b /*->“abc  123“ */

SAY a || b /*->“abc 123“ */

The second example shows a loop:

DO i = 1 TO 3

i

END 

The  next  code  snippet  shows  the  requires  statement  which  is  needed  to  make  the 
UNO.CLS module available. Within the UNO.CLS different routines are implemented 
which makes the using of the Universal Network Object concept more easier. The UNO 
concept will be described in chapter 2.6.1 Universal Network Object concept, p.16.

::requires UNO.CLS

For using methods within ObjectRexx the „Twiddle“ is needed. An example is shown 
below. The Twiddle can be compared with the . in Java an is used in the same way. If 
you use two Twiddles (~~) the object itself will be returnded. 

Object1~method1



OpenOffice.org Automatisation Page 11

The next  code snippet shows how it  is  possible  to create a procedure.  For this,  the 
routine statement is used. The arguments a, b and c can be used in the instruction part. 
The variable d will be returned.

::routine name

use arg a, b, c

[instructions]

return d

2.3 OpenOffice.org

In this chapter the first section describes the most important steps of the development of 
OpenOffice.org. After this OpenOffice.org is described as product to show for which 
tasks this software can be used. 

2.3.1 History9

Macro Börries founded in 1984 at the age of 16 a company named Star Division in 
Germany. This firm created star office, a office suite10 which was sold 25 million times. 
In 1999 Sun Microsystems11 bought Star Division for 70 million dollars. Since that time 
a free version of Star Office was made available via downloading it from the Internet. In 
the  year  2000 Sun announced the  OpenOffice.org  project.  Several  months  later  the 
OpenOffice.org website went online with the possibility to download the Source Code 
of Star Office 6.0. At this time the software had 400 MegaByte and 7.500.000 lines of 
C++12 Code.  

The first running version was finished in October 2001 named Build 638c. The next 
version named OpenOffice.org 1.1 was published in  September 2003.  In September 
2005 OpenOffice.org 1.1.5 was available followed by the latest version OpenOffice.org 
2.0 in October 2005. 

Star Office is today commercially available and based on OpenOffice.org. Since the Star 
Office Version 6.0 Sun uses the sources of the OpenOffice.org project, including the 
source code, API's, file formats and reference implementation. In return Sun continues 
to sponsor development on OpenOffice.org and contributes code for the project. 

The difference between these two products are some additional features of Star Office 
added by Sun.   

9 [WikiOOo06][OOo06]
10 Office Suite is a package of programs which can support usual office task's like writer letters or create 

presentations. 
11 Sun Microssystems is the name of a company which is producing computers and software in Silicon 

Valley and is creater of Java. 
12 A programming language which is machine-oriented and efficient.



OpenOffice.org Automatisation Page 12

2.3.2 The OpenOffice Product13

As mentioned above,  Open Office  is  an integrated  package of  programs which can 
support common office work. This package includes the following programs:

– Writer

This program is similar to the Office Word14 program of Microsoft. It allows for 
writing  simple  letters  or  a  whole  book.  There  are  many  styles  and  formatting 
options, AutoCorrect15 dictionary, different wizards and many other features.

– Calc

The Calc program offers the possiblity to create spreadsheets which can be used 
for  many different  tasks.  This  program is  similar  to  the  Excel  program of  
Microsoft.

– Impress

This part of the package can be used to create presentations. It includes a wide  
range of tools for designing and formatting. There are many similaritys to the  
Microsoft program Power Point.

– Draw

Draw is a program for drawing different graphics like diagrams and complex  
plans. 

– Base

In the Base program you can develop Databases like in the Microsoft Office  
program Access. You can create, modify tabels, forms, queries and reports. In 
addition you can use wizards, SQL and other functionalities.

– Math

Math is the OpenOffice.org component for designing mathematical equations.

Finally it is important to say that OpenOffice.org allows to import and export MS Office 
document's. 

13 [OOo06]
14 The Office Word programm is a part of a office suite from Microsoft.
15 AutoCorrect means that the program is checking and correcting your spelling as you are typing.



OpenOffice.org Automatisation Page 13

2.4 The Bean Scripting Framework

„Bean Scripting Framework (BSF) is a set of Java classes which provides scripting  
language support within Java applications, and access to Java objects and methods 
from scripting languages........“ [Ajp05]

This  statement  means,  that  a  Bean Scripting  Framework  allows  scripting  languages 
access  to  Java  objects  and  methods.  Further  information  on  the  concept  of  this 
technology will be given in chapter 2.4.2. Technical Concept, p.12.

2.4.1 History

In 1999 BSF started as an opensource research project in the Watson Research Center of 
IBM. Initially the task was to provide access to Java Beans from scripting language 
enviroments.  Soon the interest  for  this  technology grew internally and externally of 
IBM. This sircumstances led the project moved to IBM's developer Works site, where 
BSF  could  operate  as  an  open  source  project.  In  2002  BSF  was  integrated  as  a 
subproject of Jakarta16.  Since this time many improvements were made and led to the 
current version 2.3.[Ajp05]

2.4.2 Technical Concept17

The main components are named BSFManager and BSFEngine shown in the technical 
context in figure.1. 

16 The Jakarta  Project  offers a diverse set  of open source Java solutions and is part  of  the Apache 
Software Foundation.

17 [Ajp05]

figure 1: Architectural Overview, [Hane05].



OpenOffice.org Automatisation Page 14

The BSF Manager is responsible for all scripting execution engines running under its 
control. In addition it mantains the object registry that permits scripts access to Java 
objects.

The  BSF  Engine  provides  an  interface  that  offers  an  abstraction  of  the  scripting 
language's  capabilities  that  permits  generic  handling  of  script  execution  and  object 
registration within the execution context of the scripting language engine. The interface 
must be impemented for a language to be used by BSF.

2.5 BSF4Rexx18

As mentionde above, a Bean Scripting Framework offers the possibility for Scripting 
languages to use Java objects and methods. BSF4Rexx provides this functionality for 
the Scripting language Rexx.

The first proof of concept of BSF4Rexx, named Essener Version1, was developed by 
the  student  Peter  Kalender  in  the  year  2000/2001  according  to  the  seminar  task 
assignment by Prof. Flatscher, who later has developed the full version of BSF4Rexx.

The  secound  version  of  the  Rexx  Bean  Scripting  Framework,  called  Augsburger 
Version,  was  developed  in  the  year  2003/2004.  Using  this  framework,  it  was  now 
possible, amoung other improvements, to start Java from Rexx. In the former Version 
this was not possible.

The latest version which is available at the time of writing (February 2006) is called 
Vienna  Version.  The  Wiener  Version  offers  the  usage  of  typeless  variables  and 
additional methods amoung many other improvements. [Flat06]

18 [BSF4Rexx]

Figure 2: BSF interaction with ObjectRexx and Java, [Flat06].



OpenOffice.org Automatisation Page 15

In figure.2 the architecture of BSF4Rexx is shown. In the following code example the 
usage of this technology is demonstrated:

.bsf~new('java.awt.Frame', 'Hallo, liebe Welt - von Object Rexx aus.') ~show 

call SysSleep 10 -– sleep 10 seconds

::requires BSF.cls

[Flat06] 

First the BSF module is loaded with the requires statement. After that BSF is used to 
create a new java.awt.Frame and adds the string „Hallo, liebe Welt – von Object Rexx 
aus“. In the same line the Java Frame is set visible using the method show. Finally the 
program stops for ten seconds.

2.6 The Architecture of OpenOffice.org19

OpenOffice.org was desigened as a client server architecture which is interacting via 
TCP/IP sockets.  Furthermore  OOo is  based on  components  which  provide  different 
functionalities. This means that all applications of OOo consist of different components 
which offer together, for example, a swriter or scalc program. 

In  figure.3 different  components  are  shown  which  are  combined  to  provide  an 
application. In some cases one UNO component is used for several programs. For this it 
is  possible  to  save  line of  codes  and to  use  automatisation knowledge for  different 
applications. 

All  these components are  implemented as UNO objects.  The UNO concept  will  be 
described in the next section.

19 [OOo06] [Flat05]

Figure 3: Components of OOo [Flat05].



OpenOffice.org Automatisation Page 16

2.6.1 Universal Network Object concept 

Each component is described in the interface description lanugage (IDL) module20. The 
UNO Interfaces Description Language Modules can be described as following:

„...IDL modules may contain nested IDL modules,  where the structure represents a  
hierarchy  having  a  root  module.  Identifying  a  type  in  this  hierarchy  of  modules  is  
therefore easy, one starts out at the root module and names all nested modules one  
needs to traverse, leading in and separating the names with double colons (::, c-style) 
or separating them with a dot only (Java style). Hence the type named "XPrintable" has 
the  fully  qualified  name  "::com::sun::star::view::XPrintable"  (C++)  or  
"com.sun.star.view.XPrintable" (Java)....“ [Flat05]

In the statement above it  can be seen that UNO components can be implemented in 
different programming languages. 

In figure.4 the communication between UNO components is shown. For communication 
TCP/IP21 sockets are used, which makes it possible to run OpenOffice.org on different 
computer systems connected via a network. Furthermore the UNO remote protocol is 
used  that  is  comparable  to  CORBA22 (Common  Object  Request  Broker 
Architecture).[Flat05] 

Through using UNO compents the following advantages can be achieved:

– different programming languages  

As described above different programming languages can be used to automate 
and extend OpenOffice.org. It is only necessary that a UNO language binding  
exists. 

20 The UNO IDL allows the defining of types (classes, components), structures („struct“) consisting of 
fields only, exceptions, constants, and enumerations. 

21 TCP/IP (Transmission Control Protocol / Internet Protocol) is a communication protocol for connecting 
computers through the internet.

22 The OOo developer's guide [Open05] describes the communalities and differences.

Figure 4: Communication between UNO components [Flat05].



OpenOffice.org Automatisation Page 17

– different operating systems  

OpenOffice.org can be used on different operating systems like Windows, Linux 
or Solaris. In the the context of OOo automatisation you should consider that  
your used programming language is also platform independent.

– different networks  

As mentioned above all components are communicating via TCP/IP. Normally 
the client and the server component are installed on the same computer. Using 
the UNO technology it  is  possible  that  the  client  component  interacts  with  
the  server  component  over  a  network.  That  offers  the  possiblity  to  run  
OpenOffice.org clients on different computer systems. [Open05]

2.6.2 UNO Service Components

Each UNO component usually represents a service which consists of additional services, 
interfaces and properties. To create services the Service Manager is needed. 

2.6.2.1 Service Manager

„UNO introduces the concept of service managers, which can be considered as 
factories that create services.“ [Open05, p.36]

The service manager in figure.5 is responsible to create services which represent UNO 
objects.  Each service manager exists  in  a component  context.  A compenent  context 
describes a set of components which are combined to run an application like the swriter. 
In figure 3 each box can be described as component context. 

Figure 5: The Service Manager [Augu05]



OpenOffice.org Automatisation Page 18

For example, a service manager provides the following services23:

– com.sun.star.frame.Desktop:

maintains  loaded documents:  is  used  to  load  documents,  to  get  the  current  
document, and access all loaded documents

– com.sun.star.configuration.ConfigurationProvider:

yields access to the OpenOffice.org configuration, for instance the settings in the 
Tools - Options dialog

– com.sun.star.sdb.DatabaseContext:

holds databases registered with OpenOffice.org

– com.sun.star.system.SystemShellExecute:

executes system commands or documents registered for an application on the  
current platform

– com.sun.star.text.GlobalSettings:

manages global view and print settings for text documents

While creating the nutshell  examples the desktop service will be the most important 
service. As described above this  service enables to load and access documents.  The 
desktop service will be described in more detail later on in this paper. 

To  create  an  instance  of  service  components  you  have  to  use  the  method 
„createInstance()“ or „createInstanceWithArguments()“ passing the fully qualified name 
of the UNO component. The returned object is called „service object“ and can now be 
used for automation.[Flat05] 

The next step will be to explain the terms Services, Interfaces and Properties in more 
detail.

23 [Open05, p.36]



OpenOffice.org Automatisation Page 19

2.6.2.2 Services,Interfaces and Properties

„Services describe objects by combining interfaces and properties into an 
abstract object specification.“[Open05, p.69]

Most  objects  in  OpenOffice.org  are  called  services.  In  figure.6 the  TextDocument 
Service  is  described  in  UML notation,  which  includes  the  OfficeDocument  service. 
Both services offer different interfaces. In OpenOffice.org the first letter of an interface 
name is always a x. In this case the interfaces XPrintable, XStoreable and XModel are 
provided  from  the  OfficeDocument  service.  This  service  is  implemented  in  every 
document  type  of  OOo  and  represents  a  component  which  is  used  from  different 
applications. 

[Open05]

The  TextDocument  Service  offers  the  interfaces  XTextDocument,  XSearchable  and 
XRefreshable.

„An interface is a set of methods and attributes that together define one single 
aspect of an object.“[Open05, p.39]

Figure 6: Services [Open05, p.42]



OpenOffice.org Automatisation Page 20

Each interface includes different methods and optionally arguments. For Example, the 
XTextDocument interface provides the methods getText  and reformat. Interfaces and 
Services include often Properties which can be described as following:

„A property is a feature of a service which is not considered an integral or  
structural  part  of  the  service  and  therefore  is  handled  through  generic  
getPropertyValue() /  setPropertyValue() methods instead of specialised  
get methods... .“ [Open05, p.41]

Generally, properties allow the storing and retrieving of information.  If you want to 
identify properties it is necessary to study the OpenOffice.org API24

2.6.2.3 UNO Java Access
Since Sun bought Star Office a java adapters were implemented. These Java adapters 
allow to use UNO components like native Java components. In addition it is possible to 
implement UNO components in Java. [Flat05]

24  The OpenOffice.org API defines the interface for accessing office functionalaty independently from 
certain programming languages. [OOo06] 

Figure 7: Java Adapter [Flat05]



OpenOffice.org Automatisation Page 21

3 Interaction of Elements

In chapter 2. Describing the main elements (p.7), all components of the OpenOffice.org 
automatisation  were  described.  Now  it  is  important  to  show  how  these  different 
technologies  are  working  together  to  build  a  bridge  from OpenOffice.org to  Object 
Rexx.

In figure.8 all components of the OpenOffice.org automatisation are shown. As 
described in section 2.6 OpenOffice.org (p.15) is based on UNO components. These 
UNO components can be accessed through Java using the Java Adapter. The BSF4Rexx 
can now build a bridge between Java and Object Rexx.

It would also be possible to build this bridge for other scripting languages as well using 
BSF for this purpose. But, as mentioned above, it is important that a programming 
language is also operating system independent like OpenOffice.org. ObjectRexx fullfill 
this criteria and offers additional advantages which were already listed in chapter 2.2.2 
Aspects of Object Rexx (p.8). 

In addition to these features BSF4Rexx provides modules which makes the access to 
UNO components easier. The newest module which can be used is named UNO.CLS 
and will be described in the following chapter.

3.1 UNO.CLS

The  UNO.CLS  module  supports  the  interaction  with  Open  Office.org  using  Open 
Object Rexx. The module can save several line of codes due to different functionalaties 
which automate common steps.  The advantages can be seen through comparing the 
source  code  of  two  examples  programmed  in  OpenObjectRexx.  The  first  one  is 
translated directly from Java to Object Rexx without using the UNO.CLS module. The 
secound one  uses  UNO.CLS.  The result  is  shown and commented  in  the  next  two 
sections. 

Figure 8: The overall concept [Augu05]



OpenOffice.org Automatisation Page 22

3.1.1 Java:ObjectRexx25

The  source  code  below  shows  ObjectRexx  code  which  initialises  a 
xMultiServiceFactory in the blue marked part. The lines in red in the first paragraph 
create  a  Desktop  Service  Interface.  During  the  next  step  the  XComponentLoader 
Interface is created which makes it possible to open a new text document. This can be 
done  with  the  method  loadComponentFromURL()  which  needs  an  Property  Array 
created in the black lines. 

/*Beginning of the blue marked part*/

/* initialize connection to server, get its Desktop-service and XComponentLoader 
interface */

sComponentContext = .bsf~new("com.sun.star.comp.helper.Bootstrap") 
~createInitialComponentContext(.nil)

unoRuntime = .bsf~new("com.sun.star.uno.UnoRuntime")

sUrlResolver = sComponentContext~getServiceManager() 
~createInstanceWithContext("com.sun.star.bridge.UnoUrlResolver", sComponentContext)

XUnoUrlResolver = .bsf4rexx~Class.class~forName("com.sun.star.bridge.XUnoUrlResolver")

oUrlResolver = unoRuntime~queryInterface(XUnoUrlResolver, sUrlResolver)

unoUrl = "uno:socket,host=localhost,port=8100;urp;StarOffice.NamingService"

oInitialObject = oUrlResolver~resolve(unoUrl)

XNamingService = .bsf4rexx~Class.class~forName("com.sun.star.uno.XNamingService")

sNamingService = unoRuntime~queryInterface(XNamingService, oInitialObject)

oServiceManager = sNamingService~getRegisteredObject("StarOffice.ServiceManager")

XMSFactory = .bsf4rexx~Class.class~forName("com.sun.star.lang.XMultiServiceFactory")

sMSFactory = unoRuntime~queryInterface(XMSFactory, oServiceManager)

/*End of the blue marked part*/

/*Beginning of the marked red part*/

-- Retrieve the Desktop object, we need its XComponentLoader interface

-- to load a new document

sDesktop = sMSFactory~createInstance("com.sun.star.frame.Desktop")

XDesktop = .bsf4rexx~Class.class~forName("com.sun.star.frame.XDesktop")

oDesktop = unoRuntime~queryInterface(XDesktop, sDesktop)

XComponentLoaderName = 
.bsf4rexx~Class.class~forName("com.sun.star.frame.XComponentLoader")

sComponentLoader = unoRuntime~queryInterface(XComponentLoaderName, oDesktop)

/*End of the red marked part*/

/*Beginning of the black marked part, until end*/

/* Open a blank text document */

/* No properties needed */

propertyValueName = .bsf4rexx~Class.class~forName("com.sun.star.beans.PropertyValue")

loadProps = .bsf~createArray(propertyValueName, 0) 

/* 0=no elements, i.e. empty Java array */

/*End of the black marked part*/

/* load an empty text document */

oWriterComponent = sComponentLoader~loadComponentFromURL("private:factory/swriter", 
"_blank", 0, loadProps)

::requires BSF.cls

25 [Flat06]



OpenOffice.org Automatisation Page 23

3.1.2 UNO.CLS26

Many steps which are described above in the first example are now automated from the 
UNO.CLS module. This saves the code of the whole blue marked part, which requests 
the XmultiServiceFactory. Furthermore the red marked part of the first example, which 
initialises the Desctop Service Interface and the XCompenentLoader, is now reduced to 
only two lines of code shown in lines commented with „get the OOo Desctop service 
object“ and „get componentLoader interface“. In addition an empty array for loading a 
new document like above can be easely created through the .UNO~noProps statement. 

oDesktop = UNO.createDesktop() -- get the OOo Desktop service object

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

xWriterComponent = xComponentLoader~loadComponentFromURL("private:factory/swriter", 
"_blank", 0, .UNO~noProps)

::requires UNO.cls -- get UNO support

Finally one have to note that the UNO.CLS module offers many more functionalaties 
which will partly shown in the following nutshell examples. 

26 [Flat06]



OpenOffice.org Automatisation Page 24

4 Installation Guide 
1. Downloading OpenOffice.org

Download the newest  version of OpenOffice.org.  For the following nutshell  
examples OpenOffice.org 2.1 is used. The latest version of OOo can be down
loaded at the OpenOffice.org homepage27.

2. Downloading Java

The next step is to download java from the from the Sun homepage28. Before  
doing this it should be checked if java is already installed.

3. Downloading Open Object Rexx

Open Object Rexx can be downloaded from the Open Object Rexx homepage29

4. Downloading Bsf4rexx

At the time of writing the lates version of BSF4Rexx can be retrieved from the 
Vienna University of Economics and Business Administration30

All steps for the installiation can be found in the readmeBSF4Rexx.txt file. 

5. Differences between English and German OpenOffice.org versions

As mentioned above all  steps  for  installing BSF4Rexx  are  described in  the  
readme file. To make some steps more clear the following describtions can be 
used in addition. 

For adding the ScriptProviderForooRexx.jar file the PackageManager is used.  
The Package Manager can be found following the steps listed below: 

(De) Extras--> Package Manager
(En) Tools--> PackageManager

27 [OOo06]
28 [Sun06]
29 [Oorex05]
30 [BSF4Rexx]

Figure 9: ooRexxMakros



OpenOffice.org Automatisation Page 25

After  the  file  is  added OpenOffice.org has  to  be closed including the Quick
starter. Then open OOo again. Now it is possible to create your own Macros  
using the Macros  Organiser  (figure.9)  which can be found in  the  following  
menu:

(De) Extras--> Makros--> Makros verwalten--> ooRexx
(En) Tools--> Macros--> Organise Macros --> ooRexx



OpenOffice.org Automatisation Page 26

5 Examples 

In  this  chapter  differnt  nutshell  examples  are  shown  and  described.  The  nutshell 
examples  should  show how different  UNO  components  can  be  accessed  using  the 
technologies  described  above.  Writing  these  examples  following  objectives  were 
considered:

– Gain the understanding of the UNO component concept

The UNO component concept is very complex and not easy to understand. If you 
have read the first part of this paper carefully it should now be possible to get an 
quick overview during analysing the examples below. Without any examples it 
takes you a long time to translate theoretical knowledge into usefull source code.

– Create a database with code sinppets which could be used for further automatisation

The source code presented in this chapter can be easy by reused through copy 
and paste. Every code part will be described and documented to make it clear  
what functionality it provides.  

– Make OpenOffice.org more attractive in view of competitive Office packages

This statement means that it is always necessary to force competition on markets 
which results in better products and lower prices. 

– Support independent OpenSource technologies for daily business processes

It is always necessary to automate some steps of daily business processes to be 
more efficient. Due to the fact that OpenOffice.org is based on a Client/Server 
system creative  IT-Infrastructure architectures are possible. These and other  
aspects allow to offer work place enviroments which support business processes 
in an effecient way.

Objectives

• gain the understanding of the UNO component concept,
• create a set of code snippets which could be used for further automatisation,
• make OpenOffice.org more attractive in view of competitive office packages,
• support independent OpenSource technologies for daily business processes.



OpenOffice.org Automatisation Page 27

5.1 Wordprocessor („swriter“) Examples

The text document model is able to handle text contents. The document itself can be 
stored and printed to make the result of the work a permanent resource. Model in this 
context  means  data  that  forms  the  basis  of  a  document  and  is  organized  in  a  way 
allowing to work independent from the visiual presentation. [Open05]

The Text Document Model is illustrated in figure.10.

figure 10: Text Document Model, [Open05, p.503]



OpenOffice.org Automatisation Page 28

The text document model consists of the following five major architectural areas:

• text,

• service manager,

• draw page,

• text content suppliers,

• objects for styling and numbering.

The text  document  model  consists  of  character  strings  grouped into  paragraphs  and 
other text contents. 

The service manager of the document model creates all  text  contents  for the model. 
Examples for such text contents are text tables, text fields, drawing shapes, text frames 
or graphic objects. Important to notice is that this Service Manager is different to the 
main Service Manager. Each document model has its own Service Manager.

All text contents mentioned above can be retrieved from text content suppliers. Only for 
drawing shapes the draw page is used. This can be seen in section 5.1.5, Example 05 
(p.37).

For styling and structuring of text, different services can be used. These services provi-
de, for example, style family suppliers for paragraphs, characters, pages and numbering 
patterns, and suppliers for line and outline numbering.[Open05, p 503]



OpenOffice.org Automatisation Page 29

5.1.1 Example 01 – Hello World

This example insert a string into a new swriter document. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader=oDesktop~XDesktop~XComponentLoader --get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject */

xWriterDocument = xWriterComponent~XTextDocument

xText = xWriterDocument~getText()

/*insert text */

xText~insertString(xText~End(), "HelloWorld!", false)

::requires UNO.CLS   -- load UNO support for OpenOffice.org

The result can be seen in figure.11.

The lines of code in more detail:

During the first steps an XDesktop object will be requested with the following statement 
(coutout.1): 

Cutout.1

oDesktop=xScriptContext~getDesktop  

In the next code selection the XDesktop and XDocumentLoader interface are intialised 
(coutout  2).  It  is  no  longer  necessary to  use  the  queryInterface()  method  to  get  an 
interface due to the UNO.CLS support  which is described in chapter 3.1 UNO.CLS 
(p.20).

figure 11: Hello World



OpenOffice.org Automatisation Page 30

Cutout 2

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

If one want to know more about the XDesktop Service a look into the OpenOffice.org 
Api31 may be helpfull. 

In this context (cutout.3) the xComponentLoader is required which offers the method 
loadComponentFromURL(URL, TargetFrameName, SearchFlag, PropertyValue).

The URL is an important attribute for the following examples and should be explained 
in more detail. The URL contains a string which can contain the following values:

URL

url = „privat:factor/swriter“ --opens a new swriter document
url = „privat:factor/scalc“ --opens a new scalc document
url = „privat:factor/simpress“ --opens a new simpress document
url = „privat:factor/sdraw“ --opens a new sdraw document
url = „http://api.openoffice.org/“ --opens an html document from the passed URL
url = „file:///c:/originaldoc.odt“ --opens an existing document from the passed URL

Cutout 3

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

To  get  more  information  on  this  interface  you  can  have  again  a  look  into  the 
OpenOffice.org Api32.

In  cutout  4  the  XTextDocument  interface  and  its  getText()  method  are  used.  The 
XTextDocument  was  already  explained  in  chapter  2.6.2.2  Services,  Interfaces  and 
Properties (p.18).

Cutout 4

xWriterDocument = xWriterComponent~XTextDocument

xText = xWriterDocument~getText()

/*insert text */

xText~insertString(xText~End(), "HelloWorld!", false)

In cutout.4 the insertstring()  method is  used which requires two attributes.  The first 
passes a textrange with the end position of the text element. The last attribute defines if 
the inserted text should overwrite the current text or not. For more detailed information 
use the OpenOffice.org Api33. 

31 [Api06a]
32 [Api06a]
33 [Api06b]

http://api.openoffice.org/


OpenOffice.org Automatisation Page 31

5.1.2 Example 02 – Insert Texttable 

This example insert a Texttable and formats it. 

ScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create the MulitServiceFactory from the current document */

/* (otherwise the created objects cannot be inserted into the document) */

xDMsf = xTextDocument~XMultiServiceFactory

/* create the TextTable */

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable

xTextTable~initialize(3,3 )

/* insert TextTable in the Text */

xText~insertTextContent(xTextCursor, xTextTable, .false)

/* insert Text in the first row of the table */

xCellText = xTextTable~getCellByName("A1")~XText

xCellText~setString("first column")

xCellText = xTextTable~getCellByName("B1")~XText

xCellText~setString("second column")

xCellText = xTextTable~getCellByName("C1")~XText

xCellText~setString("third column")

/*insert values into the table*/

xTextTable~getCellByName("A2")~setValue(random(0,500))

xTextTable~getCellByName("B2")~setValue(random(0,500))

xTextTable~getCellByName("C2")~setValue(random(0,500))

xTextTable~getCellByName("A3")~setValue(random(0,500))

xTextTable~getCellByName("B3")~setValue(random(0,500))

xTextTable~getCellByName("C3")~setValue(random(0,500))

call syssleep 2

/*insert an additional row*/

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(3,2)

/*set values into the new row*/

xTextTable~getCellByName("A4")~setValue(random(0,500))

xTextTable~getCellByName("B4")~setValue(random(0,500))

xTextTable~getCellByName("C4")~setValue(random(0,500))

call syssleep 2

/*set formulas into the last row*/

xTextTable~getCellByName("A5")~setFormula("mean <A2:A4>")

xTextTable~getCellByName("B5")~setFormula("mean <B2:B4>")

xTextTable~getCellByName("C5")~setFormula("mean <C2:C4>")



OpenOffice.org Automatisation Page 32

/*set style properties of the table*/

xTableRow = xTextRows~getbyIndex(0)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "e6e6fa"x ~c2d))

xTableRow = xTextRows~getbyIndex(4)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "66cdaa"x ~c2d))

::requires UNO.cls    -- get UNO support

The result can be seen in figure.12.

About the Texttable:

Simply speaking, a text table is a set of rows and columns of text...Each column 
is  labeled  asphabatically  starting  with  the  letter  A...each  row  is  labled  
numerically starting with the number 1. The object method getCellByName()  
uses  this  name  to  return  the  spcified  cell.  A  similar  object  method,  
getCellByPosition(),  returns  the cell  based on the column and number.  The  
column and row number are zero-based numbers, so requesting (1,2) returns the  
cell named „B3“.[Pito04] (Chapter 13, Writer Documents, p.308)

The table below shows the names and index numbers which can be used to adress the 
cells:

A1 (0,0) B1 (1,0) C1 (2,0) ...

A2 (0,1) B2 (1,1) C2 (2,1) ...

figure 12: Insert Text Table



OpenOffice.org Automatisation Page 33

A1 (0,0) B1 (1,0) C1 (2,0) ...

... ... ... ...

The lines of code explained in more detail:

First a new swriter document will be initialised. All steps which are necessary for this 
were alread described in Example 01 (p.30). 

Cutout.1

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

Furthermore a TextCorsur is needed (cutout.1) to traverse the text object and to place 
the Texttable which will be created in the following lines of code (cutout.2): 

Cutout.2

xDMsf = xTextDocument~XMultiServiceFactory

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable

xTextTable~initialize(3,3 )

The next  step initialise  a  XMultiServiceFactory which was already described in  the 
beginning of this chapter. Using this factory it is now possible to create a text content 
named TextTable. The passed attributes used from the method initialize() specify the 
number of columns and rows (cutout.3)

Cutout.3

xText~insertTextContent(xTextCursor, xTextTable, .false)

Using the statement above the text table will be inserted into the text (cutout.4). For this 
the TextCorsur is used to place the table. The last attribute defines if the current text 
will be overwritten or not. 

Cutout.4

xCellText = xTextTable~getCellByName("A1")~XText

xCellText~setString("first column")

Inserting  text  the  XCell  interface  has  to  be  requested.  For  this  the  method 
getCellbyName() is used described in the previous section „About the Texttable“. 

Cutout.5

xTextTable~getCellByName("A2")~setValue(random(0,500))

In the previous lines of code (cutout.5) random values are inserted. For initialising the 
cells the method getCellByName() is used described in the lines above. Now the values 
can be set with setValue(). The passed values are in this case random numbers created 
from a rexx routine. 

Cutout 6

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(3,2)

An additional  row can  be  inserted  (cutout.6)  using  the  XTextRows  interface  which 
offers the method insertByIndex(). 



OpenOffice.org Automatisation Page 34

Cutout 7

xTextTable~getCellByName("A5")~setFormula("mean <A2:A4>")

For setting new formulas (cutout.7) into the text table the setFormula() method is used 
passing the name and range of the formula using a string. 

Coutout.8

xTableRow = xTextRows~getbyIndex(4)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "66cdaa"x ~c2d))

In the last paragraph (coutout.8) of the source code the style properties of two rows are 
set. For this the XRow interface is initialised. Afterwards the XPropertySet interface 
will be requested which allows to pass property values. The method setPropertyValue() 
requires the name of the property and an integer value which spedifies the color. As 
described in section 2.2.3 Syntax Examples (p.10) Object Rexx uses only strings for 
variables. This makes it necessary to use the box routine which creates a Interger class 
containing  the  stated  value.  This  class  will  be  passed  and  makes  it  possible  that 
OpenOffice.org can identify the value.

5.1.3 Example 03 – Cursor Show

In this example different corsurs are created and used to set text and to change the view 
on the current document.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/originaldoc.odt"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps) 

/* create the TextObject */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

/*create a text corsur*/

xTextCursor = xText~createTextCursor

/*create a word corsur*/

xSentenceCursor = xTextCursor~xSentenceCursor

/* create a Screen Cursor */

xScreenCursor=xTextDocument~XModel~getCurrentController 
~XtextViewCursorSupplier~getViewCursor~XPropertySet~XScreenCursor

/* create a Page Cursor */

xPageCursor=xTextDocument~XModel~getCurrentController 
~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

/*create the cursor property*/

xTextCursorProps = xTextCursor~xPropertySet

xTextCursorProps~setPropertyValue("CharBackColor", box("int", "e6e6fa"x ~c2d))

Call syssleep 2

xTextCursor~gotoStart(.false)

xText~insertString(xTextCursor, "Additional Text ", .false)

Call syssleep 2



OpenOffice.org Automatisation Page 35

xSentenceCursor~gotonextSentence(.false)

xText~insertString(xSentenceCursor,"This is page number ", .false)

xSentenceCursor~gotoEndOfSentence(.false)

xText~insertString(xTextCursor, xPageCursor~getPage, .false)

Call syssleep 2

/*move the screen down*/

xScreenCursor~screenDown

Call syssleep 2

/*move the screen up*/

xScreenCursor~screenUp

xSentenceCursor~gotonextSentence(.false)

xText~insertString(xSentenceCursor,"Back again", .false)

::requires UNO.CLS   -- load UNO support for OpenOffice.org

The result can be seen in figure 13.

About cursors:

„The view cursor knows how the data ist displayed, but doesn't know about the 
data itself. Text cursors (non-view cursors), however, know a lot about the data 
but very little about how it is displayed. For example, view cursors do not know 
about words or paragraphs, and text cursors do not know about lines, screens 
or pages.“ [Pito04] (Chapter 13, Writer Documents, p.283)

The lines of code explained in more detail:

First  an  existing  swriter  document  is  loaded.  In contrast  to  the  examples  presented 
before the passed URL adresses an existing document.  

Cutout.1

/*create a text corsur*/

xTextCursor = xText~createTextCursor

figure 13: Cursor Show



OpenOffice.org Automatisation Page 36

/*create a word corsur*/

xSentenceCursor = xTextCursor~xSentenceCursor

/* create a Screen Cursor */

xScreenCursor=xTextDocument~XModel~getCurrentController 
~XtextViewCursorSupplier~getViewCursor~XPropertySet~XScreenCursor

/* create a Page Cursor */

xPageCursor=xTextDocument~XModel~getCurrentController 
~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

In the beginning part of the source code (cutout.1) cursors are created. The XTextCursor 
and the XSentenceCursor are called text (non-view) cursors and are used to traverse 
text. The XScreenCursor and the XPageCursor represents view cursors which are used 
to suport commands that are directly related to viewing. (See: „About corsurs" p.35) 

Cutout.2

xTextCursorProps = xTextCursor~xPropertySet

xTextCursorProps~setPropertyValue("CharBackColor", box("int", "e6e6fa"x ~c2d))

Generally it is possible to set property values for TextCursors as shown in the code lines 
above (cutout.2).  If one  use  now the  cursor  for  inserting  text,  the set  style will  be 
adopted.

In the code lines which following after setting the cursor properties, the text cursors are 
used to traverse the text and inserting strings.

Cutout.3

xText~insertString(xTextCursor, xPageCursor~getPage, .false)

In cutout 3 a method of the XPageCursor is used to get the current Page number. 

Cutout.4

xScreenCursor~screenDown

xScreenCursor~screenUp

At the end of the example (cutout.4) the XScreenCursor is used to move the screen up 
and down. As described above („About cursors“, p.35) view cursors can only be used 
for command related to viewing. They can not be used to work on the text object. 

5.1.4 Example 04 – Page Counter

This example shows how the page cursor can be used to count the number of pages of 
any swriter document. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop           -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/mydocument.odt"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, 
.UNO~noProps)

/*get the text of the document*/

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText



OpenOffice.org Automatisation Page 37

/*Creating a page cursor*/

xPageCursor=xTextDocument~XModel~getCurrentController 
~XTextViewCursorSupplier~getViewCursor~XPropertySet~XPageCursor

/*Creating a text cursor*/

xTextCursor = xText~createTextCursor

/*counts the number of pages*/

page = 1

Do While xPageCursor~jumpToNextPage = 1

        page = page + 1

End

xTextcursor~gotoEnd(.false)

xText~insertString(xTextcursor, "   This document has " || page || " pages", .false)

::requires UNO.CLS   -- load UNO support for OpenOffice.org

The result of this example can be seen in figure 14.

The lines of code explained in more detail:

First an existing document is loaded, in this example named mydocument. Afterwards a 
Page Cursor is created like in the example before (Example 03, p.34) 

Cutout.1

page = 1

Do While xPageCursor~jumpToNextPage = 1

        page = page + 1

End

The do while  loop shown in  cutout.1  uses the Rexx  variable  page.  This  variable is 
initialised with one because the page cursor resides at the first page at the beginning. 
During every loop the XPageCursor jumps to the next page and the counter is raised by 
one. If there are no more pages the jumpToNextPage() method returns zero and the loop 
will be interrupted. 

figure 14: Page Counter



OpenOffice.org Automatisation Page 38

Cutout.2

xTextcursor~gotoEnd(.false)

xText~insertString(xTextcursor, "   This document has " page " pages", .false)

At  the  end  of  the  example  (cutout.2)  the  page  counter  is  added  to  the  end  of  the 
document.

5.1.5 Example 05 – Insert Different Shapes

This example shows how different shapes can be inserted into a text document. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop           -- get the desktop (an XDesktop object)

oDoc=xScriptContext~getDocument      -- get the document service (an XModel object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create the MulitServiceFactory from the current document */

/* (otherwise the created objects cannot be inserted into the document) */

xDMsf = xTextDocument~XMultiServiceFactory

/* create a RectangleShape */

Shape = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xShape = Shape~xShape

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xShape~setSize(size)

xPropertySet=xShape~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0 C0 C0"x ~c2d))

xTextContentShape = Shape~xTextContent

/*insert the shape*/

xText~insertTextContent(xText~getEnd, xTextContentShape, .false)

/*insert text into the shape*/

xShapeText = Shape~xText

xShapeText~setString("The components of OpenOffice.org:")

/*create a GraphicObjectShape with picture*/

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xGraph~setSize(size)

xPropertySet=xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.bmp")

xTextContentShape2 = oGraph~xTextContent

/*Shape*/

xText~insertTextContent(xText~getEnd,xTextContentShape2 , .false)

::requires UNO.CLS   -- load UNO support for OpenOffice.org



OpenOffice.org Automatisation Page 39

The result of this example can be seen in figure.14.

The lines of code explained in more detail:

First  a  new text  document  is  opened in  the  same way like  it  could  be seen  in  the 
examples above. Moreover the XMultiServiceFactory is needed to create instances of 
different shapes. 

Cutout.1

Shape = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xShape = Shape~xShape

In cutout.1 a rectangle shape is created. To set needed values like size and position the 
XShape interface will be requested. 

Cutout.2

size = .bsf~new("com.sun.star.awt.Size")

size~Height = 2500

size~Width = 8000

xShape~setSize(size)

Next a com.sun.star.Size structure is needed which contains two integer values named 
Height and Weight. For this BSF is used like shown in chapter 2.5 BSF4Rexx, p.13. 
After  adding these two variables the size  structure is  passed to  the shape using the 
setSize() method (cutout.2). 

Cutout.3

xPropertySet=xShape~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0 C0 C0"x ~c2d))

As shown in  cutout.3  the XShape inteface includes  a  XPropertySet  interface  which 
allows to set properties like already done for a XTableRow interface in Example 02, 
cutout.8 (p.34) or Example 03, cutout.2 (p.36) for an XTextCorsur interface.

Figure 15: Insert Different Shapes



OpenOffice.org Automatisation Page 40

Cutout.4

xTextContentShape = Shape~xTextContent

To insert the shape into the text the XTextContent interface is needed (cutout.4). This 
interface enables objects to be inserted into a text and provide their location in text once 
they are inserted into it.

Cutout.5

xText~insertTextContent(xText~getEnd, xTextContentShape, .false)

A similar statement was already explained in Example 02, cutout.3 (p.33). Only the 
inserted object is different.

Cutout.5

xShapeText = Shape~xText

xShapeText~setString("The components of OpenOffice.org:")

The Shape object includes a XText interface which can be used like in Example 01, 
cutout.4 (p.30).

Cutout 6

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.bmp")

The second inserted object is a com.sun.star.drawing.GraphicObjectShape which can be 
filled with a graphic object. For this the GraphicURL property has to be set. 

5.1.6 Example 06 - Sending e-Mail with Attachement 

This program demonstrates how a text document can be attached to an e-mail which 
will be sent to a specific mail adress. 

/*NOTE! This example is tested with Thunderbird and Windows XP */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop           -- get the desktop (an XDesktop object)

oContext=xScriptContext~getComponentContext  

                                 -- get the context(an XComponentContext object)

/*get xMultiComponentFactory*/

xMcf = oContext~getServiceManager

xComponentLoader=oDesktop~XDesktop~XComponentLoader -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent=xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/*design a document*/

/*create TextFields to insert date and time*/

xDmsf = xTextDocument~xMultiServiceFactory

xTextFieldTime1 = 
xDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

xTextFieldTime2 = 
xDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

xTextFieldTime1~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))

xText~insertString(xTextCursor, "This is an attachement sent from Martin Burger, on the 
", .false)



OpenOffice.org Automatisation Page 41

xText~insertTextContent(xTextCursor, xTextFieldTime1, .false)

xText~insertString(xTextCursor, " at ", .false)

xText~insertTextContent(xTextCursor, xTextFieldTime2, .false)

/*save the document*/

xWriterComponent~xStorable~storeAsURL("file:///c:/attachement.odt", .UNO~noProps)

/*create xSimpleMailClient(for sending) and SimpleMailMessage(for adding Subject, 
Recipient and Attachement)*/

SimpleMailSystem=xMcf~createInstancewithContext("com.sun.star.system.SimpleSystemMail",
- oContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier

XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

mail = XSimpleMailClient~createSimpleMailMessage

/*set Recipient and Subject*/

mail~setRecipient("h0251293@wu-wien.ac.at")

mail~setSubject("mail from OpenOffice.org 2.0")

/*setAttachement*/

attach = bsf.createArray(.bsf4rexx~string.class, 1)

attach[1] = "file:///c:/attachement.odt"

mail~setAttachement(attach)

XSimpleMailClient~sendSimpleMailMessage(mail, 
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO_USER_INTERFACE"))

::requires UNO.CLS   -- load UNO support for OpenOffice.org

In figure.16 the Thunderbird e-mail programm requests if the mail should be sent. This 
happens during running the program. 

Figure 16: Confirm request 



OpenOffice.org Automatisation Page 42

In figure.17 the sent e-mail is shown with all added values and attachement. 

The lines of code explained in more detail:

Cutout.1

oContext=xScriptContext~getComponentContext 

-- get the context(an XComponentContext object)

xMcf = oContext~getServiceManager

In addition to  the XDesktop object the XComponentContext  object is  required.  The 
XComponentContext can be requested to get the XMultiComponentFactory (cutout.1) 
which will be needed later to create a mail instance.

In the following lines of code a XTextDocument is created like in the examples above. 
Afterwards com.sun.star.text.TextField.DateTime instances are added. Text fields can 
be described as following:

A text field is text content that is usually inserted into the existing text, but the actual  
content comes from elsewhere-for example, the total number of pages or a database  
field. [Pito04] (Chapter 13, Writer Documents, p.312)

Cutout.2

xTextFieldTime1 = 
xDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

xTextFieldTime2 = 
xDMsf~createInstance("com.sun.star.text.TextField.DateTime")~xTextField

xTextFieldTime1~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))

In our example the property „IsDate“ of TextField number one is set true. This means 
that it  will  contain the current date and not the time like the TextField number two 
(cutout.2). 

Figure 17: Received mail



OpenOffice.org Automatisation Page 43

Cutout.3

xWriterComponent~xStorable~storeAsURL("file:///c:/attachement.odt", .UNO~noProps)

Afterwards the document is saved using the XStoreable interface (cutout.3). 

Cutout.4

SimpleMailSystem=xMcf~createInstancewithContext("com.sun.star.system.SimpleSystemMail",
- oContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier

XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

mail = XsimpleMailClient~createSimpleMailMessage

In  cutout.4  the  XMultiComponentFactory  interface  is  used  to  create  a 
com.sun.star.system.SimpleSystemMail instance. This service would be also used if the 
e-mail button of the swriter application would be clicked, shown in figure.18. 

Now  different  methods  are  used  to  initialise  a  XSimpleMailMessage  which  offers 
methods to set recipient and subject (cutout.5). 

Cutout.5

mail~setRecipient("h0251293@wu-wien.ac.at")

mail~setSubject("mail from OpenOffice.org 2.0")

In cutout.6 a string array containing the URL of the attachement is created and passed to 
the interface.

Cutout.6

attach = bsf.createArray(.bsf4rexx~string.class, 1)

attach[1] = "file:///c:/attachement.odt"

mail~setAttachement(attach)

For  sending  the  e-mail  the  constant  SimpleMailClientFlag  is  defined  with 
„NO_USER_INTERFACE“ (cutout.7). Using this definition no user interaction will be 
necessary to sent the mail. 

Cutout.7

XSimpleMailClient~sendSimpleMailMessage(mail, 
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO_USER_INTERFACE"))

Figure 18: E-mail button



OpenOffice.org Automatisation Page 44

5.1.7 Example 07 – Using the Internet Explorer for Tracking Web-

Sites (Windows-only)

This example shows how the Microsoft Internet Explorer can be used to load web sites 
and request data. The requested information will be inserted in a text table which shows 
the actual loading status, the URL and the title. 

/* Internet Tracker */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop     -- get the desktop (an XDesktop object)

oContext=xScriptContext~getComponentContext 

-- get the context(an XComponentContext 
object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader 
interface

/* open the blank *.sxw - file */

url = "private:factory/swriter"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create and insert TextTable*/

xDMsf = xTextDocument~XMultiServiceFactory

xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable

xTextTable~initialize(1,3)

xText~insertTextContent(xTextCursor, xTextTable, .false)

/*creating xTextRows service, needed later for properties*/

xTextRows = xTextTable~getRows

xCellText = xTextTable~getCellByName("A1")~XText

xCellText~setString("Title")

xCellText = xTextTable~getCellByName("B1")~XText

xCellText~setString("URL")

xCellText = xTextTable~getCellByName("C1")~XText

xCellText~setString("loading status")

xTableRow = xTextRows~getbyIndex(0)

xProbRow = xTableRow~xPropertySet

xProbRow~setPropertyValue("BackColor", box("int", "e6e6fa"x ~c2d))

/*creating Internet Explorer*/

myIE = .OlEObject~New("InternetExplorer.Application.1")

myIE~Width= 1000

myIE~Height= 250

myIE~Visible= .true

myIE~Statusbar= .false

myIE~menubar= .false

myIE~toolbar= .false

Call loading myIE, xTextTable, "1", "http://www.OpenOffice.org"
Call loading myIE, xTextTable, "2", "http://www.oorexx.org"

http://www.oorexx.org/
http://www.OpenOffice.org/


OpenOffice.org Automatisation Page 45

Call loading myIE, xTextTable, "3", "http://www.ibm.com"
Call loading myIE, xTextTable, "4", "http://www.apache.org"
Call loading myIE, xTextTable, "5", "http://www.wu-wien.ac.at"

::requires UNO.CLS   -- load UNO support for OpenOffice.org

::routine loading

use arg myIE, xTextTable, rownr, url

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(rownr ,1)

myIE~Navigate(url)

DO WHILE myIE~Busy = .true

        CALL syssleep 0.01

        xCell = xTextTable~getCellByName("C" || rownr+1)

        xCellText = xCell~XText

        xCellText~setString("loading.....")

        xCellProbs = xCell~xPropertySet

        xCellProbs~setPropertyValue("BackColor", box("int", "ff0000"x ~c2d))

END

xCell = xTextTable~getCellByName("C" || rownr+1)

xCellText = xCell~XText

xCellText~setString("fertig")

xCellProbs = xCell~xPropertySet

xCellProbs~setPropertyValue("BackColor", box("int", "adff2f"x ~c2d))

title = myIE~document~title

url = myIE~document~url

xCellText = xTextTable~getCellByName("A" || rownr+1)~XText

xCellText~setString(title)

xCellText = xTextTable~getCellByName("B" || rownr+1)~XText

xCellText~setString(url)

In figure.19 It can be seen how the „Internet Tracker“ loads and shows different Web 
Sites. 

Figure 19: Loading Web Sites

http://www.wu-wien.ac.at/
http://www.apache.org/
http://www.ibm.com/


OpenOffice.org Automatisation Page 46

In the first part of the example a new swriter document is created. Afterwards a text 
table is inserted which provide for each tracked web site a  row divided into three co-
lumns named loading status, url and title. 

About OLE Object:

OLE Objects (Objects Linking and Embedding) are based on the Microsoft developed 
Component Object Model (COM). 

Microsoft  COM  (Component  Object  Model)  technology  in  the  Microsoft  
Windows-family  of  Operating  Systems  enables  software  components  to  com
municate. COM is used by developers to create re-usable software components, 
link components together to build applications, and take advantage of Windows 
services. The family of COM technologies includes COM+, Distributed COM  
(DCOM) and ActiveX® Controls.[IBM06]

A Microsoft ActiveX control is essentially a simple OLE object that supports the 
IUnknown interface.[IBM06]

Summarising  the  statements  above OLE(ActiveX)  can  be  described  as  COM based 
interfaces providing the possiblity to link different programs34.

The lines of code explained in more detail:

In our example ObjectRexx uses java which is able to access windows applications 
using the technology described in the paragraph „About OLE Object“.

Cutout.1

myIE = .OlEObject~New("InternetExplorer.Application.1")

myIE~Width= 1000

myIE~Height= 250

myIE~Visible= .true

myIE~Statusbar= .false

myIE~menubar= .false

myIE~toolbar= .false

In cutout.1 an new OLEObject instance named myIE is created. Afterwards attributes 
are set to define the window appearance. 

After opening the Internet Explorer the loading routine is used which implements the 
following functionalities:

Cutout.2/loading routine.1

xTextRows = xTextTable~getRows

xTextRows~insertByIndex(rownr ,1)

Before  initialising  the  loop  a  new  row  is  created  an  added  to  the  table  
(cutout.2/loading routine.1). 

34 The usage of the COM technologiy with OpenObjectRexx is explained in more detail in the  [Flat06] 
course slides. 

file:///library/en-us/com/htm/cmi_q2z_9dwu.asp


OpenOffice.org Automatisation Page 47

Cutout.3/loading routine.2

DO WHILE myIE~Busy = .true

        CALL syssleep 0.01

        xCell = xTextTable~getCellByName("C" || rownr)

        xCellText = xCell~XText

        xCellText~setString("loading.....")

        xCellProbs = xCell~xPropertySet

        xCellProbs~setPropertyValue("BackColor", box("int", "ff0000"x ~c2d))

END

Afterwards the DO While loop checks if the Internet Explorer is still loading the 
web site until the busy method returns false (cutout.3/loading routine.2). During 
the last step values which are requested from the IE instance are inserted into  
the new row. 

5.1.8 Example 08 – Using a Search Descriptor

The  example  of  this  section  demonstrates  how a  search  descriptor  can  be  used  to 
traverse text and mark all occurences of a spedifed word. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop           -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader interface

/* open the blank *.odt - file */

url = "file:///c:/articel.odt"

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* create the TextObject and the TextCursor */

xTextDocument = xWriterComponent~XTextDocument

xText = XTextDocument~getText

xTextCursor = xText~createTextCursor

/* create SearchDescriptor*/

xSearchabel = xTextDocument~xSearchable

xSearchDescriptor = xSearchabel~createSearchDescriptor

xSearchDescriptor~setSearchString("OpenOffice.org")

xFound = xSearchabel~findFirst(xSearchDescriptor)

if xFound = .nil 

then 

xText~insertstring(xText~End, "nothing found", .false)

else

xFoundProbs = xFound~xPropertySet

xFoundProbs~setPropertyValue("CharWeight", -

box("float", bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD")))

found = "true"

counter = 1

DO WHILE found = "true"

        

xFound = xSearchabel~findNext(xFound, xSearchDescriptor)

         if xFound = .nil

         then do



OpenOffice.org Automatisation Page 48

                     found = "false"

                     leave

              end

         else 

do

        found = "true"

        xFoundProbs = xFound~xPropertySet

xFoundProbs~setPropertyValue("CharWeight", -

box("float", bsf.getConstant("com.sun.star.awt.FontWeight","BOLD")))

counter = counter + 1

end

END

xText~insertString(xText~End, "In this text part " || counter || " occurences of  " || 
xSearchDescriptor~getSearchString || " could be found"  , .false)

::requires UNO.CLS   -- load UNO support for OpenOffice.org

In figure.20 the output of this program can be seen. 

The lines of code explained in more detail:

During  the  first  steps  an  existing  word  document  containing  an  articel  is  opened. 
Afterwards  the  XTextDocument  is  requested  for  the  xSearchable  interface  stated  in 
cutout.1. 

Cutout.1

xSearchabel = xTextDocument~xSearchable

Now a search descriptor is created (cutout.2). A search descriptor can be described as 
following:

Figure 20: Using Search Descriptor



OpenOffice.org Automatisation Page 49

„..A  search  descriptor  supports  the  string  property  SearchString,  which  
represents the string  to  search.  The xSearchDescriptor  interface defines the  
methods getSearchString() and setSearchString() to get and set the property....“ 
[Pito04] (Chapter 13, Writer Documents, p.296)

Cutout.2

xSearchDescriptor = xSearchabel~createSearchDescriptor

xSearchDescriptor~setSearchString("OpenOffice.org")

Then  the  the  method  findFirst()  is  used  to  check  if  any  occurrences  of  the  word 
„OpenOffice.org“ can be found. If not, the string „nothing found“ is added to the end of 
the text. Otherwise the found variable is set to true to initalise the Do While loop. In 
addition the founded expression is set bold. 

The  Do  While  loop  uses  the  method  findnext()  to  find  the  next  occurence  of  the 
searched string. If no new occurrence is found the loop is interrupted using the leave 
statement.  In  the  case  of  the  XFound  variable  returns  an  object  it  is  marked bold. 
Furthermore the counter is increased by one. 

In the last lines of code a string is set at the end of the traversed text including the 
counter and SearchString. 



OpenOffice.org Automatisation Page 50

5.2 „scalc“ Examples

The Spreadsheet Document Model is similar structured as the Writer Document Model. 
The definition of a model was already given in chapter 5.1 swriter, p.27. This definition 
can be understood in the same way for this context. 

The Spreadsheet Document Model consits of five major architectural areas:

• spreadsheet container

• service manager (document internal)

• drawPages

• content properties

• Objects for Styling

Figure 21: Spreadsheet Document Model [Open05, p.584]



OpenOffice.org Automatisation Page 51

The core  of  the  spreadsheet  document  model  are  the  spreadsheets  contained  in  the 
spreadsheet container. 

The service manager of the spreadsheet document model can be used to create shape 
objects, text fields and controls which can be added to the spreadsheet. 

Each sheet in a spreadsheet document can have a drawpage which is used for drawing 
contents.

Different  contents,  like  ranges,  can  be  accessed  through  content  properties  at  the 
document model. In contrast to the text documents no suppliers are provided. 

Finally,  there  are  services  which  allow  styling  and  structuering  of  spreadsheets 
documents. 

In  addtion  to  the  five  main  architectural  areas,  document  and  calculation  aspects 
provided from the spreadsheet document model can be found. They are shown in the 
bottom left corner of figure.21.

5.2.1 Example 09 - „Hello World“

In this example a simple string is inserted. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop           -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader 

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps) 

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "Hello World"

::requires UNO.cls    -- get UNO support

The result of this program can be seen in figure.22.

Figure 22: Hello World calc



OpenOffice.org Automatisation Page 52

About the data structure of scalc documents:

The primary purpose of a spreadsheet document is to act as a container for  
individual  sheets  through  the  xSpreadsheetDocument  interface.  The  
xSpreadsheetDocument interface defines the single method getSheetcollecting() 
that  returns  Spreadsheet  objects  used  to  manipulate  the  individual  sheets.  
[Pito04] (Chapter 14, Calc Documents, p.326)

A spreadsheet document contsists of individual sheets that are composed of rows  
and columns of cells.  Each column is labled alphabetically starting with the  
letter A, and each row is labeled numerically startin with the number 1. A cell 
can be identified by its name, which uses the column letter an the row number, 
or by its position. The upper-left cell is „A1“ at position (0,0) and cell „B3“ 
is at location (1,2). [Pito04] (Chapter 14, Calc Documents, p.327)

The lines of code explained in more detail:

Cutout.1

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

First  a  new scalc  document  is  created  in  the  same  way like  the  swriter  document 
(cutout.1). 

Cutout.2

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) - 
~XSpreadSheet

Now the XSpreadSheetContainer, described above during introducing the spreadsheet 
document model, is requested for the spreadsheet with index number zero, which is the 
first element (cutout.2).

Cutout.3

CALL UNO.setCell xSheet, 0, 0, "Hello World"

Now the UNO module is used to set the „Hello World“ string. For this the spreadsheet 
document and the cell coordinates are passed (cutout.3). 

5.2.2 Example 10 - Insert Values and Formulas

This example inserts different values and a formula which summerizes them. 
/* basic cell operations */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet



OpenOffice.org Automatisation Page 53

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "4"

CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

/*insert formula into table*/

xCell = xSheet~getCellByPosition(0, 5)

xCell~setFormula("=sum(A1:A5)")

/*set Property values*/

xCell~XPropertySet~setPropertyValue("CellBackColor", box("int", "ff 00 00"x ~c2d))

::requires UNO.cls    -- get UNO support

In figure.23 The resulting spreadsheet of this program can be seen. 

About cell data:

A cell can contain four types of data named „empty“, „value“, „text“ and „formula“. For 
example, using the text type it would be possible to insert a text field which contains the 
current  date.  In  our  example  a  new formula  is  inserted.  The  formula  type  can  be 
described as following:

„...A cell can contain a formula. The methods getFormula() and setFormula() 
get and set a cell's formula....when setting a cell's formula, you must include the 
leading equals (=) and the formula must be in English....“  [Pito04]  (Chapter  
14, Calc Documents, p.328)

The lines of code explained in more detail:

First different values are inserted like in Example 09, cutout.3 (p.52).

Cutout.1

xCell~setFormula("=sum(A1:A5)")

xCell~XPropertySet~setPropertyValue("CellBackColor", box("int", "ff 00 00"x ~c2d))

Figure 23: Values and Formulas



OpenOffice.org Automatisation Page 54

In  the  last  cell  a  formula  is  inserted  which  adds  up  th  cell  values  inserted  before. 
Furthermore the CellBackColor is set to red (cutout.1). 

5.2.3 Example 11 - Copy Cell Ranges

This example copies a cell range and insert it into a second sheet. 

/* setting and using cell area */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop   -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps) 

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "original"

xCell = xSheet~getCellByPosition(0, 0)

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

CALL syssleep 1

/*working with secound sheet*/

xSheet2=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(1) - 
~XSpreadSheet

xSheetview=xCalcComponent~XSpreadSheetDocument~XModel~getCurrentController~xSpreadsheet
View

xSheetview~setActiveSheet(xSheet2)

/*coping cell ranges*/

CALL UNO.setCell xSheet2, 0, 0, "copied"

xCell = xSheet2~getCellByPosition(0, 0)

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A6")

rangeaddress = xCellRange~XCellRangeAddressable~getRangeAddress

xCell = xSheet2~getCellByPosition(0, 1)

celladdress = xCell~xCellAddressable~getCellAddress

xMovement = xSheet2~xCellRangeMovement

xMovement~copyRange(celladdress, rangeaddress)

::requires UNO.CLS   -- load UNO support for OpenOffice.org



OpenOffice.org Automatisation Page 55

In figure.24 the result of this example can be seen. 

About cell ranges:

„....In Writer documents, continous text can be grouped in a text range. In a  
spreadsheet,  cells  can  be  grouped  in  rectangular  regions  with  a  
SheetCellRange.  Grouping  cells  together  allows  multiple  cells  to  be  
operated on at one time. The SheetCellRange service supports many of the same 
interfaces  and  properties  as  a  SheetCell.....“  [Pito04]  (Chapter  14,  Calc  
Documents, p.333)

About cell adresse:

„....a cell's adress is specified by the sheet that contains the cell, and the row 
and  column  in  which  the  cell  is  located....“  [Pito04]  (Chapter  14,  Calc  
Documents, p.328)

About the xCellRangeMovement interface:

„...The interface  com.sun.star.sheet.XCellRangeMovement  of  the  Spreadsheet  
service supports inserting and removing cells from a spreadsheet, and copying 
and moving cell contents....“ [Open05, p.609]

The lines of code explained in more detail:

In the first part of the example a new Spreadsheet document is created. Then different 
values are inserted into the first sheet. 

Cutout.1

xSheetview=xCalcComponent~XSpreadSheetDocument~XModel~getCurrentController -

~xSpreadsheetView

xSheetview~setActiveSheet(xSheet2)

Figure 24: Copy Cell Ranges



OpenOffice.org Automatisation Page 56

After  the  second  sheet  was  requested  the  code  lines  above  initialise  the  current 
controller (cutout.1). The current controller provides access to the current view status 
and makes it possible to change the view using the XSpreadsheetView interface and the 
method setActiveSheet(). In this case the view is set to the second sheet. 

Cutout.2

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A6")

rangeaddress = xCellRange~XCellRangeAddressable~getRangeAddress

In cutout.2 first a cell range is defined representing a group of cells. Now it is possible 
to get the address object of the cells which is needed for the copyRange() method. 

Cutout.3

xCell = xSheet2~getCellByPosition(0, 1)

celladdress = xCell~xCellAddressable~getCellAddress

Furthermore a cell adress for inserting the copied range is needed (cutout.3). 

Cutout.4

xMovement = xSheet2~xCellRangeMovement

xMovement~copyRange(celladdress, rangeaddress)

In  cutout.4  the  XCellRangeMovement  interface  provides  the  method  copyRange() 
which is used to copy the range passing the cell adress.

5.2.4 Example 12 - Merging Cells

In this example different cells are merged to show one of different functionalaties of 
XCell Ranges. 

/* mergin cells */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader

                                     -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

/* insert values into tables*/

CALL UNO.setCell xSheet, 0, 0, "merging"

xCell = xSheet~getCellByPosition(0, 0)

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

CALL UNO.setCell xSheet, 0, 1, "1"

CALL UNO.setCell xSheet, 0, 2, "5"

CALL UNO.setCell xSheet, 0, 3, "11"

CALL UNO.setCell xSheet, 0, 4, "55"

CALL syssleep 2

/*mergin cells*/

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A5")

xMergRang = xCellRange~xMergeable

xMergRang~merge(.true)

::requires UNO.CLS   -- load UNO support for OpenOffice.org



OpenOffice.org Automatisation Page 57

In figure.57 the result of this code snippet can be seen.

About merging cells:

„ ....A range of cells can be merged and unmerged using the merge (Boolean) 
method  –  merge(True)  merges  the  range  merge(False)  unmerges  the  
range...merging cells causes the top-left cell to use the entire merged area.“  
[Pito04] (Chapter 14, Calc Documents, p.342)

The lines of code explained in more detail:

After  creating  a  new  Spreadsheet  document  different  values  are  inserted  like  in 
Example 09, cutout.3 (p.52).

Cutout.1

xCellRange = xSheet~xCellRange~getCellRangeByName("A2:A5")

xMergRang = xCellRange~xMergeable

xMergRang~merge(.true)

Using the xMergeable interface for a defined range it is possible to merge all cells of the 
XCellRange (cutout.1). 

5.2.5 Example 13 - Identify Row Differences

This example loads an existing spreadsheet document with already inserted values. First 
a cell range is defined. From this cell range a XCellRangesQuery interface is requested. 
This interface provides different query statements like the queryColumnDifferences() 
method. [Api06c]

/* comparing rows */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader 

 -- get componentLoader interface

Figure 25: Merging Cells



OpenOffice.org Automatisation Page 58

/* open the blank *.sxw - file */

url = "file:///c:/compare.ods"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

                                                       

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:C4")

xCell = xSheet~getCellByPosition(4,1)

xAdress = xCell~xCellAddressable~getCellAddress

xCellQuery = xCellRange~XCellRangesQuery

differentCells = xCellQuery~queryColumnDifferences(xAdress)

adresses = differentCells~getCells

enum = adresses~createEnumeration

CALL UNO.setCell xSheet, 0, 6, differentCells~getRangeAddressesAsString

DO WHILE enum~hasMoreElements

        xCell = enum~nextElement

        xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff0000"x 
~c2d))

END

::requires UNO.CLS   -- load UNO support for OpenOffice.org

In figure.26 the result of this example can be seen. 

The lines of code explained in more detail:

Cutout.1

adresses = differentCells~getCells

enum = adresses~createEnumeration

In  cutout.1  the  returned  object  of  the  method  createEnumeration()  is  a 
XEnumerationAccess  container  which  can  be  traversed  through  using  the 
XEnumeration interface used in a loop as following (cutout.2):

Figure 26: Identify Row Differences



OpenOffice.org Automatisation Page 59

Cutout.2

DO WHILE enum~hasMoreElements

        xCell = enum~nextElement

        xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff0000"x~c2d))

END

The loop shown above traverses all XCell objects of the container and markes them red 
through setting the property „CellBackColor“. 

5.2.6 Example 14 - Chart Show

In this example an existing spreadsheet document providing data for a chart is opened. 
Afterwards a rectangular shape is created which is needed to insert the chart into the 
document. In addtion a XCellRange is defined which covers the data used for the chart.

/* inserting different charts */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "file:///c:/chartbase.ods"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

                                                       

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

oRect = .bsf~new("com.sun.star.awt.Rectangle")

oRect~X = 300

oRect~Y = 5000

oRect~Width = 10000

oRect~Height = 8000

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:C5")

Addr = xCellRange~xCellRangeAddressable~getRangeAddress

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"

oAddr = bsf.createArray(.UNO~CellRangeAddress, 1)

oAddr[1] = Addr

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xTableCharts~addNewByName("FirstChart", oRect, oAddr, .true, .true)

xChartObj = xTableCharts~xNameAccess~getByName("FirstChart")

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xChartDocument = xComponent~XChartDocument

xMsf = xChartDocument~XMultiServiceFactory

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.PieDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.LineDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)



OpenOffice.org Automatisation Page 60

CALL syssleep 2

xDiagram = xMsf~createInstance("com.sun.star.chart.AreaDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

CALL UNO.setCell xSheet, 0, 7, "fertig"

::requires UNO.CLS   -- load UNO support for OpenOffice.org

Figure.27 shows the result of this example. 

The lines of code explained in more detail:

Cutout.1

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xTableCharts~addNewByName("FirstChart", oRect, oAddr, .true, .true)

In  cutout.1  the  XTableCharts  container  is  requested.  Using  the  method 
addNewByName() a new chart provided from the XTableCharts interface is created. For 
creating  a  chart  different  attributes  are  needed.  The  first  attribute  contains  a  string 
representing the name. Furthermore the rectangle shape and the adress of the text range 
defined above are passed. [Api06d]

Cutout.2

xChartObj = xTableCharts~xNameAccess~getByName("FirstChart")

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xChartDocument = xComponent~XChartDocument

xMsf = xChartDocument~XMultiServiceFactory

In cutout.2  the Service Manager of  the chart  document  created before is  initialised. 
Using the XMultiServiceFactory it is possible to create different diagram types. 

Cutout.3

xDiagram = xMsf~createInstance("com.sun.star.chart.PieDiagram")~xDiagram

xChartDocument~setDiagram(xDiagram)

Using the method setDiagram() the new created diagram type can be set for the chart 
(cutout.3). In the example this is done several times using always the same data base.

Figure 27: Chart Show



OpenOffice.org Automatisation Page 61

5.2.7 Example 15 - Using a Replace Describtor 

This example creates and Replace Describtor to search and replace values in cells. 

/* setting and using cell area */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps) 

                                                     

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

CALL UNO.setCell xSheet, 0, 0, "33"

CALL UNO.setCell xSheet, 0, 1, "44"

CALL UNO.setCell xSheet, 0, 2, "66"

CALL UNO.setCell xSheet, 0, 3, "23"

CALL UNO.setCell xSheet, 0, 4, "0"

CALL UNO.setCell xSheet, 0, 5, "67"

xCellRange = xSheet~xCellRange~getCellRangeByName("A1:A6")

Replace = xCellRange~XReplaceable

xReplaceDescriptor = Replace~createReplaceDescriptor

xReplaceDescriptor~setSearchString("0")

xReplaceDescriptor~setReplaceString("zero")

Replace~replaceAll(xReplaceDescriptor)

CALL UNO.setCell xSheet, 0, 6, "fertig"

::requires UNO.CLS   -- load UNO support for OpenOffice.org

About searching and replacing in a spreadsheet document:

„The  thing  that  I  find  most  interesting  about  searching  in  a  spreadsheet  
document is that searching is not supported by the document object. Cell object 
and cell range objects support searching, however....“  [Pito04]  (Chapter 14,  
Calc Documents, p.341)

The lines of code explained in more detail:

Figure 28: Using a Replace Descriptor



OpenOffice.org Automatisation Page 62

In this example a simple new spreadsheet document is created and different values are 
inserted. These values are traversed using a replace descriptor which replace a specific 
value with a defined string. 

For this  a XCellRange has to be defined to cover the data and make searching and 
replacing possible. This range is used to create a Replace Descriptor (cutout.1). 

Cutout.1

xReplaceDescriptor~setSearchString("0")

xReplaceDescriptor~setReplaceString("zero")

Replace~replaceAll(xReplaceDescript)

Now the search and replace string are set and the replace query is executed (cutout.1). 

5.2.8 Example 16 - Inserting a Shape 

In this example a rectangular shape is inserted into a spreadsheet document. 

/* setting and using cell area */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

 oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XspreadSheet

/*creating Multi Service Factory*/

xCalcFactory = xCalcComponent~xMultiServiceFactory

/*creating draw page*/

xDrawPages = xSheet~xDrawPageSupplier

xDrawPage = xDrawPages~getDrawPage~xDrawPage

/*creating scalc shape*/

calcShape = xCalcFactory~createInstance("com.sun.star.drawing.RectangleShape")

xcalcShape = calcShape~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 8000

point~x = 1000

point~y= 1000

xcalcShape~setSize(size)

xcalcShape~setPosition(point)

xPropertySet=xcalcShape~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0 C0 C0"x ~c2d))

xDrawPage~add(xCalcShape)

textShape = calcShape~xText

textShape~setString("This is a Rectangle Shape")



OpenOffice.org Automatisation Page 63

::requires UNO.CLS   -- load UNO support for OpenOffice.org

In figure.29 the result of this code snippet can be seen. 

The lines of code explained in more detail:

In this example, first it is necessary to get the Service Manager of the current document, 
like shown in cutout.1. 

Cutout.1

xCalcFactory = xCalcComponent~xMultiServiceFactory

xDrawPages = xSheet~xDrawPageSupplier

xDrawPage = xDrawPages~getDrawPage~xDrawPage

During the introduction  scalc documents it was already mentioned that the DrawPage is 
needed to insert shapes (5.2 scalc examples, p.48). For this the XDrawPageSupplier is 
used to get one. 

After initialising a shape using the XMultiServiceFactory the rectangle is added to the 
draw page. 

At the end of the example some text is inserted into the shape using its XText interface. 

5.2.9 Example 17 – Changing the Cell Format 

The next example shows how a cell format can be changed.

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop  -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

                                                      

/* open the blank *.sxw - file */

url = "private:factory/scalc"

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

                                                      

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

Figure 29: Inserting a shape



OpenOffice.org Automatisation Page 64

~XSpreadSheet

/*change cell type*/

xCell = xSheet~getCellByPosition(0, 0)

CALL UNO.setCell xSheet, 0, 0, "38748"

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "000080"x ~c2d))

Call syssleep 3

xCell~xPropertySet~setPropertyValue("NumberFormat", box("short", 84))

xCell~xPropertySet~setPropertyValue("CellBackColor", box("int", "ff7f50"x ~c2d))

::requires UNO.CLS   -- load UNO support for OpenOffice.org

In figure.30 the original and the format changed cell can be seen. 

In this  example,  first  the value „38748“ is  inserted.  This value can represent a date 
within OpenOffice.org which can be seen after changing the format.

Cutout.1

xCell~xPropertySet~setPropertyValue("NumberFormat", box("short", 84))

For changing the format of a cell the PropertyValue „NumberFormat“ has to be set. In 
cutout.1  the format is changed to the date format of ISO 850135. 

To find out which value is needed to set a specified format two ways are possible:

The easiest way to get the value is to format the cell first manually. Afterwards 
you can request the property using the method getPropertyValue(). 

The more professional way would be to use the xNumberFormats service. A 
describtion of this theme can be found in chapter 6.2.5 NumberFormats of the 
Developers Guide [Open05, p.472].

35ISO  (International  Organization  for  Standardization)  describes  an  international  organisation  for 
standardization which defined a standard for dates called ISO 8501. For more detailed information use 
following link: http://www.w3.org/TR/NOTE-datetime

Figure 30: Changing the Cell Format



OpenOffice.org Automatisation Page 65

5.3 „simpress“ and „sdraw“ Examples

„Simpress“ and „sdraw“ are vector oriented applications which can create drawings and 
presentations. Both programs have similar abilities to create different shape types, such 
as rectangle, text, curve, or graphic shapes. In contrast to the draw application, simpress 
offers in addition presentation functionalaties like enhanced page structure, presentation 
objects,  slide  transition  and  object  effects.  figure.31 show  the  impress  and  draw 
document structure:

The box in the bottom left corner of the drawing model above represents the additional 
presentation aspects of the impress model.[Open05, p.692]

Figure 31: Drawing and Impress model [Open05]



OpenOffice.org Automatisation Page 66

5.3.1 Example 18 - Using Different Shapes 

In this example first a new draw page document is opened. Afterwards different shapes 
are inserted.

/* Inserting Graph */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader interface

/* open the blank *.sxd - file */

url = "private:factory/sdraw"

xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

                                                       

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */

xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -

~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 6000

point~y= 3000

xGraph~setSize(size)

xGraph~setPosition(point)

xPropertySet=xGraph~xPropertySet

xPropertySet~setPropertyValue("FillColor", box("int", "C0C0C0"x ~c2d))

xPropertySet~setPropertyValue("LineColor", box("int", "FFFF99"x ~c2d))

xDrawPage~add(xGraph)

oGraph = xDMsf~createInstance("com.sun.star.drawing.EllipseShape")

xGraph2 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 2500

point~x = 9000

point~y= 5000

xGraph2~setSize(size)

xGraph2~setPosition(point)

xPropertySet=xGraph2~xPropertySet

xDrawPage~add(xGraph2)

GraphText2 = xGraph2~xText

xShapeProps2 = xGraph2~XPropertySet

xShapeProps2~setPropertyValue("CircleKind", 
bsf.getConstant("com.sun.star.drawing.CircleKind", "SECTION"))

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 18000))

xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

oGraph = xDMsf~createInstance("com.sun.star.drawing.TextShape")

xGraph3 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 2500

size~Width = 2500

point~x = 9000

point~y= 5000



OpenOffice.org Automatisation Page 67

xGraph3~setSize(size)

xGraph3~setPosition(point)

xDrawPage~add(xGraph3)

graphtext3 = xGraph3~xText

xShapeProps3 = xGraph3~xPropertySet

xShapeProps3~setPropertyValue("TextFitToSize", 
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

graphtext3~setString("1")

call syssleep 1

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 27000))

xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

xDrawPage~add(xGraph2)

graphtext3~setString("2")

call syssleep 1

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 36000))

xShapeProps2~setPropertyValue("FillColor", box("int", "FFFFFF"x ~c2d))

xDrawPage~add(xGraph2)

graphtext3~setString("3")

call syssleep 1

xShapeProps2~setPropertyValue("CircleKind", 
bsf.getConstant("com.sun.star.drawing.CircleKind", "FULL"))

xDrawPage~add(xGraph2)

graphtext3~setString("4")

call syssleep 1

xDrawPage~remove(xGraph2)

xDrawPage~remove(xGraph3)

/* set the properties of the rectangle shape */

xShapeProps = xGraph~XPropertySet

xShapeProps~setPropertyValue("TextAnimationKind", 
bsf.getConstant("com.sun.star.drawing.TextAnimationKind", "SCROLL"))

graphtext = xGraph~xText

graphtext~setString("The animation showed was created with a Text Shape and a Ellipse 
Shape")

::requires UNO.CLS   -- load UNO support for OpenOffice.org

figure 32: Using Different Shapes



OpenOffice.org Automatisation Page 68

In figure.32 a screen shot of the running program can be seen. 

The lines of code explained in more detail:

The interesting part of this program will be to set different properties for the shapes. 

Cutout.1

xShapeProps3~setPropertyValue("TextFitToSize", 
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

As shown in cutout.1 the property value „TextFitToSize“ is set „PROPORTIONAL“ 
using a bsf routine to  get the correct  constant  type. The value „PROPORTIONAL“ 
defines that if the shape is scaled, the text character size is scaled proportionally. 

Moreover the following properties are set during executing the code:

Cutout.2

xShapeProps2~setPropertyValue("CircleStartAngle", box("int", 9000))

xShapeProps2~setPropertyValue("CircleEndAngle", box("int", 27000))

In cutout.2 Integer values are passed defining the start and end point of the circle shape. 

Cutout.3

bsf.getConstant("com.sun.star.drawing.CircleKind", "FULL"))

bsf.getConstant("com.sun.star.drawing.TextAnimationKind", "SCROLL"))

In cutout.3 the first line sets the com.sun.star.drawing.CircelKind property, the second 
adds a text animation named scroll to the rectangle shape.  

5.3.2 Example 19 - Organigram

This example shows how Connector Shapes can be set to connect shapes. 

/* Inserting Pictures */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader interface

/* open the blank *.sxd - file */

url = "private:factory/sdraw"

xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

                                                       

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */

xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -

~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 5000

point~y= 3000

xGraph~setSize(size)

xGraph~setPosition(point)

xPropertySet=xGraph~xPropertySet



OpenOffice.org Automatisation Page 69

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org_01.gif")

xDrawPage~add(xGraph)

Call syssleep 2

/*set transparency*/

xPropertySet~setPropertyValue("Transparency", box("short", 50))

xGraphText = xGraph~xText

xGraphText~setString("OpenOffice.org - Automatisierung")

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph2 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 3000

size~Width = 4000

point~x = 3000

point~y= 12000

xGraph2~setSize(size)

xGraph2~setPosition(point)

xPropertySet=xGraph2~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/oorexx.gif")

xDrawPage~add(xGraph2)

oGraph = xDMsf~createInstance("com.sun.star.drawing.ConnectorShape")

xGraphconn = oGraph~xShape

oGraph2 = xDMsf~createInstance("com.sun.star.drawing.ConnectorShape")

xGraphconn2 = oGraph2~xShape

xDrawPage~add(xGraphconn)

xDrawPage~add(xGraphconn2)

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph3 = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 3000

size~Width = 4000

point~x = 11000

point~y= 12000

xGraph3~setSize(size)

xGraph3~setPosition(point)

xPropertySet=xGraph3~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/bsf_logo.jpg")

xDrawPage~add(xGraph3)

xConnProps = xGraphconn~xPropertySet

xConnProps2 = xGraphconn2~xPropertySet

xConnProps~setPropertyValue("StartShape", xGraph)

xConnProps~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps~setPropertyValue("EndShape", xGraph2)

xConnProps~setPropertyValue("EndGluePointIndex", box("int", 4))

xConnProps2~setPropertyValue("StartShape", xGraph)

xConnProps2~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps2~setPropertyValue("EndShape", xGraph3)

xConnProps2~setPropertyValue("EndGluePointIndex", box("int", 4))

::requires UNO.CLS   -- load UNO support for OpenOffice.org



OpenOffice.org Automatisation Page 70

The result of this example can be seen in figure.33.

The lines of code explained in more detail:

First the header shape is inserted. After a short break it is set transperant and all other 
shapes are added. 

Cutout.1

xConnProps~setPropertyValue("StartShape", xGraph)

xConnProps~setPropertyValue("StartGluePointIndex", box("int", 2))

xConnProps~setPropertyValue("EndShape", xGraph2)

xConnProps~setPropertyValue("EndGluePointIndex", box("int", 4))

In cutout.1 the start and end shape are defined. Next the glue points are set which are 
available by default through the properties StartGluePointIndex and EndGluePointIndex 
passing  an  index  number.  The  Glue  Points  define  the  connecting  postion  of  the 
Connector Shape and the Start or End Shape. The four index numbers represent a top, 
bottom, left and right placed glue point of the shape. [Open05, p.728]

5.3.3 Example 20 - Using Layer for Shapes

This  example  shows how layer can be created  and added to  a  shape.  In Draw and 
Impress, each shape uses exactly one layer. This layer has different properties which 
defines if the shape is visible, printable or editable. 

/*use Layer for sdraw documents*/

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxd - file */

url = "private:factory/sdraw"

xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0,.UNO~noProps)

figure 33: Organigram



OpenOffice.org Automatisation Page 71

xDMsf = xDrawComponent~XMultiServiceFactory

/* get draw page by index */

xDrawPage=xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0) -

~XDrawPage

oGraph = xDMsf~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 6000

size~Width = 8000

point~x = 5000

point~y= 3000

xGraph~setSize(size)

xGraph~setPosition(point)

xPropertySet=xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org_01.gif")

oGraph = xDMsf~createInstance("com.sun.star.drawing.RectangleShape")

xGraphtext = oGraph~xShape

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 1000

size~Width = 8000

point~x = 6000

point~y= 10000

xGraphtext~setSize(size)

xGraphtext~setPosition(point)

xDrawPage~add(xGraph)

xDrawPage~add(xGraphtext)

layersupplier = xDrawComponent~xLayerSupplier

xNameAccess = layersupplier~getLayerManager

xLayerManager = xNameAccess~XLayerManager

/*Layer 1*/

xNotVisibleAndEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)

xPropsLay = xNotVisibleAndEditable~XPropertySet

xPropsLay~setPropertyValue("Name", "NotVisibleAndEditable")

xPropsLay~setPropertyValue("IsVisible", box(boolean, false))

xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

/*Layer 2*/

xNotEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)

xPropsLay = xNotEditable~XPropertySet

xPropsLay~setPropertyValue("Name", "NotEditable")

xPropsLay~setPropertyValue("IsVisible", box(boolean, true))

xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

xLayerManager~attachShapeToLayer(xGraph, xNotVisibleAndEditable)

xGraphText = xGraphtext~xText

xGraphText~setString("NotVisibleAndEditable")

Call syssleep 2

xLayerManager~attachShapeToLayer(xGraph, xNotEditable);

xPropertySet~setPropertyValue("Transparency", box("short", 50))

xGraphText~setString("NotEditable")

::requires UNO.CLS   -- load UNO support for OpenOffice.org



OpenOffice.org Automatisation Page 72

In figure.34 The result of this example can be seen. 

The lines of code explained in more detail:

The  Layer  can  be  accessed  through  using  the  com.sun.star.drawing.XLayerSupplier 
giving access to the XlayerManager interface. 

Cutout.1

layersupplier = xDrawComponent~xLayerSupplier

xNameAccess = layersupplier~getLayerManager

xLayerManager = xNameAccess~XLayerManager

In cutout.1 the XLayer Manager is initalised. 

Cutout.2

xNotVisibleAndEditable = xLayerManager~insertNewByIndex(xLayerManager~getCount)

xPropsLay = xNotVisibleAndEditable~XPropertySet

xPropsLay~setPropertyValue("Name", "NotVisibleAndEditable")

xPropsLay~setPropertyValue("IsVisible", box(boolean, false))

xPropsLay~setPropertyValue("IsLocked", box(boolean, true))

Next a new Layer is created. As mentioned above it is now possible to set different 
properties. In this example two layers are created and set (cutout.2).

5.3.4 Example 21 - Creating a Master Page

In this  example first  a master page36 is created.  Into this page different contents are 
inserted. To show that these contents are used for all linked draw pages a new slide is 
added afterwards. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load 

36 A master page in this context describes a slide of a „simpress“ presentation which design is added to 
other draw pages linked with it.

figure 34: Using Layer for Shapes



OpenOffice.org Automatisation Page 73

-- a new document

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/simpress"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank",0,.UNO~noProps)

-- need document's factory to be able to insert created objects

xImpressFactory = xImpressComponent~XMultiServiceFactory

/*creating a master Page*/

xMasterPagesSupplier = xImpressComponent~XMasterPagesSupplier

xMasterPages = xMasterPagesSupplier~getMasterPages

xMasterPage = xMasterPages~getByIndex(0)~XDrawPage

/*create a GraphicObjectShape with picture*/

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.GraphicObjectShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 2500, 8000, 1000, 1000)

xPropertySet = xGraph~xPropertySet

xPropertySet~setPropertyValue("GraphicURL", "file:///C:/OpenOffice.org_02.jpg")

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.TextShape")

xGraph4 = oGraph~xShape

xGraph4 = setshape(xGraph4, 1800, 21000, 4500, 9500)

props4 = xGraph4~xPropertySet

props4~setPropertyValue("TextFitToSize", 
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

xMasterPage~add(xGraph4)

graphtext = xGraph4~xText

graphtext~setString("This is the Master Slide")

xMasterPage~add(xGraph)

xTextFieldPage=xImpressFactory~createInstance("com.sun.star.text.TextField.PageNumber")
~XTextField

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.TextShape")

xGraph3 = oGraph~xShape

xGraph4 = setshape(xGraph3, 5000, 5000, 23000, 19000)

graphtext3 = xGraph3~xText

xMasterPage~add(xGraph3)

TextCursor = graphtext3~createTextCursor

graphtext3~insertString(TextCursor, "Folie Nr.: ", .false)

graphtext3~insertTextContent(TextCursor, xTextFieldPage, .false)

/*Inserting Text Shapes into documents*/

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage0 = xDrawPages~insertNewByIndex(0)~XDrawPage

xSlideProps = xDrawPage0~xPropertySet

xSlideProps~setPropertyValue("Effect", -

bsf.getConstant("com.sun.star.presentation.FadeEffect",  "RANDOM"))

xSlideProps~setPropertyValue("Speed", 
bsf.getConstant("com.sun.star.presentation.AnimationSpeed", "MEDIUM"))

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.TextShape")

xGraph5 = oGraph~xShape

xGraph5 = setshape(xGraph5, 1800, 21000, 4000, 8000)

props = xGraph5~xPropertySet

props~setPropertyValue("TextFitToSize", 
bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))

xDrawPage0~add(xGraph5)

graphtext = xGraph5~xText

graphtext~setString("This is an example DrawPage")



OpenOffice.org Automatisation Page 74

/* start the presentation */

xPresentation = xImpressComponent~XPresentationSupplier~getPresentation

-- "start" is a method in ooRexx class "Object", hence using message

-- "bsf.invoke()" to dispatch "start" on the Java sid

xPresentation~bsf.invoke("start")

::requires UNO.CLS   -- load UNO support for OpenOffice.org

::routine setshape

use arg xGraph, h, w, x, y

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = h

size~Width = w

point~x = x

point~y= y

xGraph~setPosition(point)

xGraph~setSize(size)

return xGraph

In figure.35 A draw page using the master page can be seen.

About impress documents:

„The PresentationDocument service implements the DrawingDocument service. 
This means that every presentation document looks like a drawing document. To 
distinguish  between  the  two  document  types,  you  must  first  check  for  a  
presentation (Impress) document and then check for a drawing document.....

• A master page, unlike a regular draw page, may not link to a master page

• A master page may not be removed from a document if any draw page links 
to it

• Modifications made to a master page are immediately visible on every draw  
page that uses that master page.....“ [Pito04] (Chapter 15, Calc Documents,  
p.375)

figure 35: Creating a Master Page



OpenOffice.org Automatisation Page 75

The lines of code explained in more detail:

Cutout.1

xMasterPagesSupplier = xImpressComponent~XMasterPagesSupplier

xMasterPages = xMasterPagesSupplier~getMasterPages

xMasterPage = xMasterPages~getByIndex(0)~XDrawPage

In the cutout.1 the XMasterPageSupplier is requested and used to retrieve the master 
page. Now it is possible to use the method getMasterPages() which returns a indexed 
container accessable with the service MasterPages. This service can be used like the 
XDrawPages  interface.  Furthermore  the  XDrawPage  interface  can  be  requested  and 
used to design the MasterPage. 

In this program different shapes and text fields are added, which was already shown in 
Example.19 and 20. 

Cutout.2

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage0 = xDrawPages~insertNewByIndex(0)~XDrawPage

The XDrawPages of the Impress document are used like the DrawPages of the Draw 
document, which can be seen in cutout.2.

At the end of the example some additional text is inserted to show that the last side is a 
normal Draw Page. 

5.3.5 Example 22 - Insert chart 

In this  example an existing chart  from a scalc document is  inserted into an impress 
document. For this an ole2shape object is used. This means that this example runs only 
using a Windows operating system. 

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load 

-- a new document

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

/* open the blank *.sxw - file */

url = "private:factory/simpress"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank",0,.UNO~noProps)

/* open the blank *.sxw - file */

url = "file:///c:/chartbase_impress.ods"

props = bsf.createArray(.UNO~propertyValue, 1)

props[1] = .UNO~PropertyValue~new

props[1]~Name  = "Hidden"

props[1]~Value = box("boolean", .true)

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

/* get first sheet in spreadsheet */

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

~XSpreadSheet

xTableCharts = xSheet~xTableChartsSupplier~getCharts



OpenOffice.org Automatisation Page 76

xChartObj = xTableCharts~xIndexAccess~getByIndex(0)

xChart = xChartObj~xTableChart

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xDiagram = xComponent~XChartDocument~getData

-- need document's factory to be able to insert created objects

xImpressFactory = xImpressComponent~XMultiServiceFactory

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xDrawPage = xDrawPages~getByIndex(0)~XDrawPage

ole2shape = xImpressFactory~createInstance("com.sun.star.drawing.OLE2Shape")~xShape

xDrawPage~add(ole2shape)

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = 14000

size~Width = 18000

point~x = 6000

point~y= 3000

ole2shape~setSize(size)

ole2shape~setPosition(point)

msChartClassID = "12dcae26-281f-416f-a234-c3086127382e"

oleShapeProps = ole2shape~xPropertySet

oleShapeProps~setPropertyValue("CLSID", msChartClassID)

model = oleShapeProps~getPropertyValue("Model")

xChartDocument = model~xChartDocument

xChartDocument~attachdata(xDiagram)

::requires UNO.CLS   -- load UNO support for OpenOffice.org

In figure.36 the inserted chart can be seen. 

figure 36: Insert Chart



OpenOffice.org Automatisation Page 77

The lines of code explained in more detail:

First the scalc document is openend using a property array (cutout.1). 

Cutout.1

props = bsf.createArray(.UNO~propertyValue, 1)

props[1] = .UNO~PropertyValue~new

props[1]~Name  = "Hidden"

props[1]~Value = box("boolean", .true)

In  the  former  examples  always an  empty array was  passed.  In  the  lines  above  the 
proberty value „Hidden“ is set true (cutout.1). For this the scalc document is not visible. 

Cutout.2

xTableCharts = xSheet~xTableChartsSupplier~getCharts

xChartObj = xTableCharts~xIndexAccess~getByIndex(0)

xChart = xChartObj~xTableChart

Now the XTableCharts container is accessed like in Example 14, cutout.2 (p.60). In the 
second line it would also be possible to use the interface XNameAccess providing the 
method getByName(). 

Cutout.3

xComponent = xChart~xEmbeddedObjectSupplier~getEmbeddedObject

xDiagram = xComponent~XChartDocument~getData

In  coutout.3  the  xChartDocument  interface  is  accessed  which  provides  the  method 
getData(). 

After retrieving the diagram data of the chart a sdraw document is opened. Using the 
Service Manager of this document an ole2shape object is created. To use this shape for 
charts it is necessary to set a unique class-id.[Open05, p.749]

Cutout.4

msChartClassID = "12dcae26-281f-416f-a234-c3086127382e"

The class id of chart objects is shown above set as a string value (cutout.4). 

Cutout.5

oleShapeProps = ole2shape~xPropertySet

oleShapeProps~setPropertyValue("CLSID", msChartClassID)

The class id is simply passed using the setPropertyValue() method (cutout.5).

Cutout.6

model = oleShapeProps~getPropertyValue("Model")

xChartDocument = model~xChartDocument

Now we need the XChartDocument of the chart used in the ole2shape object (cutout.6). 
Afterwards the data from the chart document opend before is set (cutout.7). 

Cutout.7

xChartDocument~attachdata(xDiagram)



OpenOffice.org Automatisation Page 78

5.3.6 Example 23 - Animations and click actions

In this example different shapes are created with animation effects and onClick actions.

/* Presentation Events */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

-- Retrieve the Desktop object, we need its XComponentLoader interface to load 

-- a new document

xComponentLoader = oDesktop~XDesktop~XComponentLoader  -- get componentLoader interface

                                                      

/* open the blank *.sxw - file */

url = "private:factory/simpress"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank",0,.UNO~noProps) 

                                                          

-- need document's factory to be able to insert created objects

xImpressFactory = xImpressComponent~XMultiServiceFactory

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

DO WHILE xDrawPages~getCount < 3

        xDrawPages~insertNewByIndex(0)

END

xDrawPage0 = xDrawPages~getByIndex(0)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 1000, 1000)

xDrawPage0~add(xGraph)

xSlideProps =  xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "WAVYLINE_FROM_BOTTOM"))

xSlideProps~setPropertyValue("DimHide", box(boolean, false))

xSlideProps~setPropertyValue("DimPrevious", box(boolean, true))

xSlideProps~setPropertyValue("DimColor", box("int", "C0 C0 C0"x ~c2d))

xDrawPage0 = xDrawPages~getByIndex(1)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 21000, 15000)

xDrawPage0~add(xGraph)

xSlideProps =  xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "HIDE"))

xDrawPage0 = xDrawPages~getByIndex(2)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 1000, 8000)

xDrawPage0~add(xGraph)

xSlideProps =  xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM"))

xSlideProps~setPropertyValue("OnClick", 
bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE"))

xDrawPage0 = xDrawPages~getByIndex(2)~xDrawPage

oGraph = xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")

xGraph = oGraph~xShape

xGraph = setshape(xGraph, 5000, 5000, 22000, 8000)

xDrawPage0~add(xGraph)



OpenOffice.org Automatisation Page 79

xSlideProps =  xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM"))

xSlideProps~setPropertyValue("OnClick", 
bsf.getConstant("com.sun.star.presentation.ClickAction", "BOOKMARK"))

xNamed = xDrawPages~getbyIndex(1)~xNamed

xNamed~setName("page - two")

xSlideProps~setPropertyValue("Bookmark", xNamed~getName)

::requires UNO.CLS   -- load UNO support for OpenOffice.org

::routine setshape

use arg xGraph, h, w, x, y

size = .bsf~new("com.sun.star.awt.Size")

point = .bsf~new("com.sun.star.awt.Point")

size~Height = h

size~Width = w

point~x = x

point~y= y

xGraph~setPosition(point)

xGraph~setSize(size)

return xGraph

The resulting slides of this program can be seen in figure.37

About presentation shapes:

„Shapes  contained  in  Impress  documents  differ  from  shapes  in  Draw  
documents in that they support the com.sun.star.presentation.Shape service. The  
presentation Shape service provides properties that define special behavior to  
enhance presentations.“  [Pito04] (Chapter 15, Draw and Impress, p.403)

In this example the following two properties are used:

figure 37: Animation and Click Actions



OpenOffice.org Automatisation Page 80

– OnClick, Specify an action if the user clicks on the shape

– Effect, Animation effect for this shape

The lines of code explained in more detail:

In the example first three draw pages are created. Afterwards in the first slide a shape is 
inserted to add some animation effects.

Cutout.1

xSlideProps =  xGraph~xPropertySet

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "WAVYLINE_FROM_BOTTOM"))

xSlideProps~setPropertyValue("DimHide", box(boolean, false))

xSlideProps~setPropertyValue("DimPrevious", box(boolean, true))

xSlideProps~setPropertyValue("DimColor", box("int", "C0 C0 C0"x ~c2d))

In cutout.1 an animation effect is added through setting properties. Afterwards an ellipse 
shape, again with animation effect, is inserted into the second draw page. To the third 
draw page two shapes are set with following properties (cutout.2):

Cutout.2

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM"))

xSlideProps~setPropertyValue("OnClick", 
bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE"))

xSlideProps~setPropertyValue("Effect", 
bsf.getConstant("com.sun.star.presentation.AnimationEffect", "FADE_FROM_BOTTOM"))

xSlideProps~setPropertyValue("OnClick", 
bsf.getConstant("com.sun.star.presentation.ClickAction", "BOOKMARK"))

xNamed = xDrawPages~getbyIndex(1)~xNamed

xNamed~setName("page - two")

xSlideProps~setPropertyValue("Bookmark", xNamed~getName)

The code shows the adding of animations  effects  and click actions.  The first  shape 
points to the first page if the click action is triggered. To the second shape a bookmark is 
set as click action refering to the second page. 



OpenOffice.org Automatisation Page 81

5.4 General Examples 

The following examples can not be dedicated to a specific document structure like the 
examples  before.  In  contrast  they  show  generally  functionalaties  provided  from 
OpenOffice.org.  First  a  database  example  will  be  described  followed  by a  printing 
program. At the end Object Rexx will be used to create message boxes. 

5.4.1 Example 24 - Access Internal Database

In this example first the Thunderbird adress book is imported into OpenOffice.org. After 
doing this the macro requests data using a SQL statement. In the following this data is 
used to send e-mails.  

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

xContext=xScriptContext~getComponentContext 

                                 -- get the context(an XComponentContext object)

XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory

-- first we create our RowSet object and get its XRowSet interface

oRowSet = xMcf~createInstanceWithContext("com.sun.star.sdbc.RowSet", xContext)

xRowSet = oRowSet~XRowSet

-- set the properties needed to connect to a database

xProp = xRowSet~XPropertySet

-- the DataSourceName can be a data source registered with [PRODUCTNAME],

-- among other possibilities

xProp~setPropertyValue("DataSourceName", "adresses")

-- the CommandType must be TABLE, QUERY or COMMAND - here we use COMMAND

xProp~setPropertyValue("CommandType", -

     box("int", bsf.getStaticValue("com.sun.star.sdb.CommandType", "COMMAND")))

-- the Command could be a table or query name or a SQL command, depending on

-- the CommandType

xProp~setPropertyValue("Command", 'SELECT' ' "E-Mail" ' 'FROM addressmozilla' )

xRowSet~execute -- prepare the XRow interface for column access

xRow = oRowSet~XRow

/*sending e-mail to every address listed in the table addressmozilla*/

SimpleMailSystem=XMcf -

~createInstancewithContext("com.sun.star.system.SimpleSystemMail", xContext)

XSimpleMailClientSupplier = SimpleMailSystem~XSimpleMailClientSupplier

XSimpleMailClient = XSimpleMailClientSupplier~querySimpleMailClient

DO WHILE xRowSet~next > 0

        email = xRow~getString(1)

        mail = XSimpleMailClient~createSimpleMailMessage

        /*set Recipient and Subject*/

        mail~setRecipient(email)

        mail~setSubject("mail from OpenOffice.org 2.0")

        XsimpleMailClient~sendSimpleMailMessage(mail, - 
bsf.getConstant("com.sun.star.system.SimpleMailClientFlags", "NO_USER_INTERFACE"))

END

::requires UNO.CLS   -- load UNO support for OpenOffice.org



OpenOffice.org Automatisation Page 82

First  you have to import  the Thunderbird adress book into OpenOffice.org. For this 
open the Adress Data Source assistent which can be found in File/Wizards/Adress Data 
Source...... There you have to choose Thunderbird, as shown in figure.38.

Now it is possible to choose a adress book which you will load into OpenOffice.org. 
Next one have to define a name for the database. In this example the data source is 
named addresses. Now just press finish and the new data source is available. I

To access  the  data  source the service RowSet  is  used.  The RowSet  is  described as 
following:

„RowSet is a client side ResultSet, which combines the characteristics of a Statement  
and a ResultSet...Before you use the RowSet, you have to specify a set of properties like  
a DataSource and a Command and other properties known Statement. Afterwards, you  
can populate the RowSet by its execute method to fill the set with data....can be used to  
retrieve the data of a DataSource....“ [Api06e] 

The lines of code explained in more detail:

As described above the RowSet needs different properties for requesting a data source. 
First the Name of the data source has to be set as property. This happens in this example 
through using the setPropertyValue() method (cutout.1):

Cutout.1

xProp~setPropertyValue("DataSourceName", "adresses")

The command, in this case a SQL-statement, is set in the same way (cutout.2):

Cutout.2

xProp~setPropertyValue("Command", 'SELECT' ' "E-Mail" ' 'FROM addressmozilla' )

Figure 38: Select type of external adress book



OpenOffice.org Automatisation Page 83

After executing the query a row of data is returned containing all e-mail adresses of the 
accessed adress book. At the end of the example this  row is  traversed using a loop 
which  sends  an  e-mail  to  every  adress.  Before  the  e-mail  is  sent  a  message  box 
(figure.39) asks you for confirming the process. 

5.4.2 Example 25 - Printing Different Documents 

In this example different document types are printed. 

/* Printing Files */

xScriptContext = uno.getScriptContext() -- wrap first argument into an UNO-proxy object

oDesktop=xScriptContext~getDesktop -- get the desktop (an XDesktop object)

xComponentLoader = oDesktop~XDesktop~XComponentLoader  

-- get componentLoader interface

/*printing swriter file*/

/* open the swriter - file  */

url = "file:///C:/articel.odt"  -- get the document from the current folder

props = bsf.createArray(.UNO~propertyValue, 1)

props[1] = .UNO~propertyValue~new

props[1]~Name  = "Hidden"

props[1]~Value = box("boolean", .true)

xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

/* set the printer */

xPrintable = xWriterComponent~XPrintable

props[1]~Name  = "Name"

props[1]~Value = "Brother HL-5030 series" -- the name of your printer

xPrintable~setPrinter(props1)

/* set the print-options */

props[1]~Name  = "Pages"

props[1]~Value = "1"

/* print current file */

xPrintable~print(props2)

/*Printing scalc-File*/

url = "file:///C:/compare.ods"  -- get the document from the current folder

props[1] = .UNO~propertyValue~new

props[1]~Name  = "Hidden"

Figure 39: Confirm Box

http://www.ooRexx.org/


OpenOffice.org Automatisation Page 84

props[1]~Value = box("boolean", .true)

xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

xSheet=xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0)-

~XSpreadSheet

/* create a cell range, then get the CellRangeAddress */

myRange = xSheet~XCellRange~getCellRangeByName("A1:C5")

myAddr = myRange~XCellRangeAddressable~getRangeAddress

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"

oAddr = bsf.createArray(.UNO~CellRangeAddress, 1) -- create Java array

oAddr[1] = myAddr                                 -- assign CellRangeAddress

xSheet~XPrintAreas~setPrintAreas(oAddr)           -- set PrintAreas

xPrintable = xCalcComponent~XPrintable

xPrintable~setPrinter(props1)

xPrintable~print(props2)

/*modifying props*/

props = bsf.createArray(.UNO~propertyValue, 2)

props[1] = .UNO~propertyValue~new

props[1]~Name  = "Hidden"

props[1]~Value = box("boolean", .false)

props[2] = .UNO~propertyValue~new

props[2]~Name  = "IsPrintHandout"

props[2]~Value = box("boolean", .true)

url="file:///c:/handout.odp"

xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)

xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier

xDrawPages = xDrawPagesSupplier~getDrawPages

xPrintable = xImpressComponent~XPrintable

xPrintable~setPrinter(props1)

props = bsf.createArray(.UNO~propertyValue, 2)

props[1] = .UNO~propertyValue~new

props[1]~Name  = "IsPrintHandout"

props[1]~Value = box("boolean", .true)

props[2] = .UNO~propertyValue~new

props[2]~Name  = "Pages"

props[2]~Value = "1-" || xDrawPages~getCount

xPrintable~print(props)

::requires UNO.CLS   -- load UNO support for OpenOffice

The lines of code explained in more detail:

First  a  swriter  document  is  opened  hidden.  Afterwards  the  XPrintable  interface  is 
requested  which  offers  the  method  setprinter()  and  print().  The  setprinter()  method 
allows to define a printer which is used for printing. This method requires an property 
array which contains the name. Afterwards the printer() function can be used to print the 
file. The number of pages can be set passing the property value page. 

Cutout.1

xSheet~XPrintAreas~setPrintAreas(oAddr)  

Next a scalc document is printed. For this it is necessary to set printAreas, shown in 
cutout.1. The method setPrintAreas() uses in this case a cell range adress. The next steps 
for printing are the same like described above for the swriter document. 



OpenOffice.org Automatisation Page 85

At the end of the example an impress presentation is printed. For this it is necessary to 
find out how many documents are used within the presentation to cover all slides. For 
this two ways are possible. First, one can open the file and look how many slides are 
within  the  presentation.  Maybe  this  way  is  not  really  effecient  in  the  face  of 
automatisation. The secound way is used in this example and can be seen in the line 
below, where the getCount() method returns the number of documents contained in the 
XDrawPages container (cutout.2). This value is inserted into the PropertyArray which is 
passed for the printing. 

Cutout.2

xDrawPages~getCount



OpenOffice.org Automatisation Page 86

6 Conclusion 

At the beginning of this paper the following question was defined:

„Software is generally expensive to buy, especially commercial applications for 
firms and other organisations.  In addition, software is often not independent  
from the operating system. These arguments bring up the question, if there are 
other possibilities to use software which supports working processes.

The first step toward a more independent way of using software is to identify 
approaches which can answer this question.“(1.2 Problem Discussion, p.6).

This  question  should  be  know  answered  through  the  explanation  of  the  software 
elements and examples which were used in this work. These parts form together the 
approach which is supposed as answer for the problem discussion.

It could be seen that all components of the introduced architecture are freely available 
and  thus  correspond  to  the  statement  that  commercial  software  is  expensive  and 
alternatives should be found. Furthermore the different examples underline the ability of 
this architecture to support working processes efficient. 

The last two paragraphs should give an short overview of some experiences made by the 
author:

During the work it was sometimes not easy to find the information which was needed to 
create some examples. The main information resources (Api Project homepage[Ajp05], 
Developer's Guide [Open05], Macros Explained [Pito04]) were very helpfull, but would 
can provide better support if some aspects would be more considered. Especially the 
Api Projekt homepage describes often interfaces or other objects only in a short way. In 
addition it was often very difficult to find out the sequence of interfaces which you have 
to retrieve to get the interface you need. 

Finally there seems to be a great potential for further developments on this issue, and 
thus students and other people who will deal with this context.  The author hopes to 
provide some helpfull findings for them.  



OpenOffice.org Automatisation Page 87

7 References
[Ajp05]      Apache Jakarta Project homepage, URL (2006-01-18):
                  http://www.openoffice.org/

[ApiOOo06] Api Project homepage, URL (2005-01-16):
 http://api.openoffice.org/

[Api06a] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
XComponentLoader

[Api06b] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

[Api06c] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/-
XCellRangesQuery.html

[Api06d] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/table/
XTableCharts.html

[Api06e] Api Project homepage, URL (2005-01-16):
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/
RowSet.html

[Augu05] Augustin, Walter: Examples for Open Office Automation with Scripting 
Languages (2005), 
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/-
bsf.ooffice/     
retrieved on 2005-11-10

[BSF4Rexx] BSF4Rexx home, URL (2006-03-13):
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/

[Flat06]   Flatscher,  Rony  G.:  Java  Automation  -  Course  slides  (in  German),  
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/folien/
2004; retrieved on2005-11-10

[Flat05] Flatscher, Rony G.: “Automating OpenOffice.org with OORexx: 
OORexx nutshell exmaples for write and calc”,
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell_OOo.pdf;  
retrieved on 2005-11-10

[Hane05]   Hahnekamp, Rainer: Extending the scripting abilities of OpenOffice.org 
with BSF and JSR-223; course paper, Vienna University of 
Economics and Business Administration, Information Systems and 
Operations (Flatscher, Rony G.); January, 2005

http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell_OOo.pdf
http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/folien/
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/-
http://wi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/-
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/-
http://api.openoffice.org/
http://www.openoffice.org/


OpenOffice.org Automatisation Page 88

[IBM06] Microsoft homepage, URL (2006-01-22):
http://www.microsoft.com/  com/default.mspx  

[OOo06]  OpenOffice.org homepage, URL (2006-01-18):
                   http://www.microsoft.com/com/default.mspx

[Open05] OpenOffice.org: OpenOffice.org 1.1 - Developer's Guide, 
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
retrieved on 2005-11-10

[Oorex05]  OpenObjectRexx homepage, URL (2006-01-18):
                   http://www.oorexx.org/

[Osat06]    OpenSource.co.at homepage, URL (2006-01-18): 
http://www.opensource.co.at/content.php?cid=5

[Osorg06]  OpenSource.org homepage, URL (2006-01-18): 
 http://opensource.org/

[Pito04] Pitonyak, Andrew: OpenOffice.org Macros Explained (2004)

[Sun06] Sun homepage, URL (2006-01-18)
http://java.sun.com/

[Wiki06]    Wikipedia homepage, URL (2006-01-18):
                   http://de.wikipedia.org/wiki/Rexx

[WikiOOo06] Wikipedia homape, URL (2006-01-18):
                   http://de.wikipedia.org/wiki/OpenOffice.org

http://de.wikipedia.org/wiki/OpenOffice.org
http://de.wikipedia.org/wiki/Rexx
http://opensource.org/
http://www.opensource.co.at/content.php?cid=5
http://www.oorexx.org/
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://www.openoffice.org/
http://www.openoffice.org/
http://www.microsoft.com/

	1 Introduction
	1.1 Abstract
	1.2 Problem Discussion
	1.3 Approach
	1.4 Keywords

	2 Discribing the main elements
	2.1 Open Source Definition
	2.2 Open Object Rexx
	2.2.1 History3
	2.2.2 Open Object Rexx6
	2.2.3 Syntax Examples

	2.3 OpenOffice.org
	2.3.1 History9
	2.3.2 The OpenOffice Product13

	2.4 The Bean Scripting Framework
	2.4.1 History
	2.4.2 Technical Concept17

	2.5 BSF4Rexx18
	2.6 The Architecture of OpenOffice.org19
	2.6.1 Universal Network Object concept 
	2.6.2 UNO Service Components
	2.6.2.1 Service Manager
	2.6.2.2 Services,Interfaces and Properties
	2.6.2.3 UNO Java Access



	3 Interaction of Elements
	3.1 UNO.CLS
	3.1.1 Java:ObjectRexx25
	3.1.2 UNO.CLS26


	4 Installation Guide 
	5 Examples 
	5.1 Wordprocessor („swriter“) Examples
	5.1.1 Example 01 – Hello World
	5.1.2 Example 02 – Insert Texttable 
	5.1.3 Example 03 – Cursor Show
	5.1.4 Example 04 – Page Counter
	5.1.5 Example 05 – Insert Different Shapes
	5.1.6 Example 06 - Sending e-Mail with Attachement 
	5.1.7 Example 07 – Using the Internet Explorer for Tracking Web-Sites (Windows-only)
	5.1.8 Example 08 – Using a Search Descriptor

	5.2 „scalc“ Examples
	5.2.1 Example 09 - „Hello World“
	5.2.2 Example 10 - Insert Values and Formulas
	5.2.3 Example 11 - Copy Cell Ranges
	5.2.4 Example 12 - Merging Cells
	5.2.5 Example 13 - Identify Row Differences
	5.2.6 Example 14 - Chart Show
	5.2.7 Example 15 - Using a Replace Describtor 
	5.2.8 Example 16 - Inserting a Shape 
	5.2.9 Example 17 – Changing the Cell Format 

	5.3 „simpress“ and „sdraw“ Examples
	5.3.1 Example 18 - Using Different Shapes 
	5.3.2 Example 19 - Organigram
	5.3.3 Example 20 - Using Layer for Shapes
	5.3.4 Example 21 - Creating a Master Page
	5.3.5 Example 22 - Insert chart 
	5.3.6 Example 23 - Animations and click actions

	5.4 General Examples 
	5.4.1 Example 24 - Access Internal Database
	5.4.2 Example 25 - Printing Different Documents 


	6 Conclusion 
	7 References

