
Enhanced Rexx
Arithmetic

RexxLA, Austin ― 10 April 2006

Mike Cowlishaw
IBM Fellow

2

Overview

• Why is Rexx arithmetic decimal?

• Adoption by other standards and languages

• Enhancements and differences

• Adding the new type(s) to Rexx?

Copyright © IBM Corporation 2006. All rights reserved.

3

Origins of decimal arithmetic

• Decimal (base 10) arithmetic has been
used for thousands of years

• Algorism (Indo-Arabic
place value system)
in use since 800 AD

• Calculators and many
computers were decimal …

4

IBM 650 (in Böblingen)

Bi-quinary digit

5

Binary computers

• In the 1950s binary floating-point was
shown to be more efficient
– minimal storage space
– more reliable (20% fewer components)

• But binary fractions cannot exactly
represent most decimal fractions
(e.g., 0.1 requires an infinitely long binary
fraction: 0.00011001100110011…)

6

Where it costs real money…

• Add 5% sales tax to a $ 0.70 telephone
call, rounded to the nearest cent

• 1.05 x 0.70 using binary double is exactly
0.73499999999999998667732370449812151491641998291015625

(should have been 0.735)

• rounds to $ 0.73, instead of $ 0.74

7

Hence…

• Binary floating-point cannot be used for
commercial or human-centric applications
– cannot meet legal and financial requirements

• Decimal data and arithmetic are pervasive

• 55% of numeric data in databases are
decimal (and a further 43% are integers,
often held as decimal integers)

8

Why decimal hardware?

software penalty

add 210x – 560x

quantize 90x – 200x

multiply 40x – 190x

divide 260x – 290x
penalty = Java BigDecimal cycles ÷ DFPU clock cycles

Software is slow: typical Java BigDecimal add
is 1,708 cycles, hardware might take 8 cycles

9

Effect on real applications

• The ‘telco’ billing application
1,000,000 calls (two minutes)
read from file, priced, taxed,
and printed

Java
BigDecimal

C, C#
packages

Itanium
hand-tuned

% execution
time in decimal
operations

93.2% 72 – 78% 45% *

* IntelTM figure

10

The path to hardware…

• A 2 x (maybe more) performance
improvement in applications makes
hardware support very attractive

• Standard formats are essential for
language and hardware interfaces
– IEEE 754 is being revised (since 2001)
– incorporates IEEE 854 (radix-independent)

11

IEEE 754 agreed draft (‘754r’)

• Now has decimal floating-point formats
with decimal significands and arithmetic
– suitable for mathematical applications, too

• Fixed-point and integer decimal arithmetic
are subsets (no normalization)

• Compression maximizes precision and
exponent range of formats

12

IBM Product Plans

• Future processors will have decimal
floating-point units in hardware, compliant
with current 754r draft

• Appropriate software support:
– operating system
– compiler (GCC, IBM)
– database
– etc.

13

Other standards, etc.

• Java 5 BigDecimal (compatible arithmetic)

• C# and .Net ECMA and ISO standards
– arithmetic changed to match, and now allow

use of 745r decimal128

• ISO C and C++ are jointly adding decimal
floating-point as first-class primitive types
– work on adding to GCC almost complete

14

Other standards, etc.

• COBOL already has floating-point decimal,
adding new type for 2008 standard

• ECMAScript (JavaScript/JScript) edition 4
will add decimal type

• XML Schema 1.1 draft now has pDecimal

• New SPEC benchmarks (SPECjbb, etc.)

15

Other standards, etc. [2]

• Other languages are adding decimal
arithmetic (Python, Eiffel, etc.)

• ANSI/ISO SQL … new types accepted in
principle (draft about to be submitted)

• Strong support expressed by Microsoft,
SHARE, academia, and many others

16

Differences from Rexx arithmetic

• The IEEE types are fixed size, encoded to get
maximum range and precision

… edge effects at the exponent extremes

Format precision normal range

32-bit 7 -95 to +96

64-bit 16 -383 to +384

128-bit 34 -6143 to +6144

17

Other differences [1]

• Full floating-point value set, including –0,
±infinity, and NaNs (Not-a-Number).

• Positive exponents are not forced to
integers (2E+3 + 0 is 2E+3, not 2000)

• Zeros have exponents (just like other
numbers) so can affect the exponent of
results (1 + 0.000 is 1.000, not 1)

18

Other differences [2]

• Trailing zeros are preserved for divide and
power operators (2.40/2 is 1.20, not 1.2)

• Subtraction rounds to length of result, not
lengths of operands (with numeric digits
5, 12222 – 10000.5 is 2221.5, not 2222)

• 0 ** 0 is an error (not 1), but n ** 0.5 is OK

19

IEEE 754r support in Rexx

• The differences are very minor, but are
sufficiently obscure that they could be
surprising

• Support would allow exact emulation of
other languages using the IEEE 754r
types (and potentially exploit hardware)

• Built-in much easier to use than a library

20

IEEE 754r support in Rexx

• Support could be very simple:

scientific
numeric form engineering

ieee

• Sets digits=16 (?), only digits 7, 16, 34
then allowed (or digits must already be
one of these three values)

21

Infinities and NaNs

• String: “Infinity” (etc.) could be a valid
number – but this could ‘surprise’ some
algorithms (a+b not an error)
– this really mostly affects the datatype BIF

• Could use original idea: ‘!’ = Infinity, ‘?’ =
NaN – and these are valid symbols now
– perhaps ‘??’ = sNaN (signaling NaN)
– ‘payloads’ on NaNs?

22

Ordering

• IEEE 754r has a total order for numbers
– –0 is ‘lower’ than +0
– 1.000 is ‘lower’ than 1.0
– +Infinity is ‘lower’ than ‘NaN’
– etc.

• Could define the strict comparison
operators to work this way on numbers
– risky … probably better to provide a BIF

23

Useful BIFs

• IsNaN, IsInfinite

• Quantize (shorthand for format(x,,n))

• Normalize (strip trailing zeros)

• Num2ieeebits (convert actual bits)
– and vice versa

24

BIF changes

• DataType(x, ‘N’)
– could accept Infinities/NaNs
– or a new option (‘E’?) for extended numbers

• Format() would probably need some work
– (reduced exponent range)

• Sign(x) … need to be careful about –0

25

Implementation

• The decNumber C package supports both
IEEE 754r arithmetic and formats and the
ANSI X3.274 (Rexx) arithmetic
– and it’s open source (in GCC tree)…

• Includes enhanced power function, exp,
log10, ln (loge), square-root, quantize

26

Questions?

Google: decimal arithmetic

27

28

Format details

29

IEEE 754r: common ‘shape’

• Sign and combination field fit in first byte
– combination field (5 bits) combines 2 bits of

the exponent (0−2), first digit of the coefficient
(0−9), and the two special values

– allows ‘bulk initialization’ to zero, NaNs, and
± Infinity by byte replication

Sign Comb. field Exponent Coefficient

30

Exponent continuation

Format exponent
bits bias normal range

32-bit 2+6 101 -95 to +96

64-bit 2+8 398 -383 to +384

128-bit 2+12 6176 -6143 to +6144

(All ranges larger than binary in same format.)

Sign Comb. field Exponent Coefficient

Simple concatenation

31

Coefficient continuation

Sign Comb. field Exponent Coefficient

• Densely Packed Decimal – 3 digits in
each group of 10 bits (6, 15, or 33 in all)

• Derived from Chen-Ho encoding, which
uses a Huffman code to allow expansion
or compression in 2–3 gate delays

	Enhanced Rexx Arithmetic��RexxLA, Austin ― 10 April 2006�
	Overview
	Origins of decimal arithmetic
	IBM 650 (in Böblingen)
	Binary computers
	Where it costs real money…
	Hence…
	Why decimal hardware?
	Effect on real applications
	The path to hardware…
	IEEE 754 agreed draft (‘754r’)
	IBM Product Plans
	Other standards, etc.
	Other standards, etc.
	Other standards, etc. [2]
	Differences from Rexx arithmetic
	Other differences [1]
	Other differences [2]
	IEEE 754r support in Rexx
	IEEE 754r support in Rexx
	Infinities and NaNs
	Ordering
	Useful BIFs
	BIF changes
	Implementation
	Questions?
	Format details
	IEEE 754r: common ‘shape’
	Exponent continuation
	Coefficient continuation

