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Overview

• Why is Rexx arithmetic decimal?

• Adoption by other standards and languages

• Enhancements and differences

• Adding the new type(s) to Rexx?

Copyright © IBM Corporation 2006.  All rights reserved.
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Origins of decimal arithmetic

• Decimal (base 10) arithmetic has been 
used for thousands of years

• Algorism (Indo-Arabic
place value system)
in use since 800 AD

• Calculators and many
computers were decimal …
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IBM 650  (in Böblingen)

Bi-quinary digit
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Binary computers

• In the 1950s binary floating-point was 
shown to be more efficient
– minimal storage space
– more reliable (20% fewer components)

• But binary fractions cannot exactly 
represent most decimal fractions  
(e.g., 0.1 requires an infinitely long binary 
fraction:  0.00011001100110011… )
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Where it costs real money…

• Add 5% sales tax to a  $ 0.70 telephone 
call, rounded to the nearest cent

• 1.05 x 0.70 using binary double is exactly
0.73499999999999998667732370449812151491641998291015625

(should have been 0.735)

• rounds to  $ 0.73, instead of  $ 0.74
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Hence…

• Binary floating-point cannot be used for 
commercial or human-centric applications
– cannot meet legal and financial requirements

• Decimal data and arithmetic are pervasive

• 55% of numeric data in databases are 
decimal (and a further 43% are integers, 
often held as decimal integers)
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Why decimal hardware?

software penalty

add 210x – 560x

quantize 90x – 200x 

multiply 40x – 190x

divide 260x – 290x
penalty = Java BigDecimal cycles  ÷ DFPU clock cycles

Software is slow: typical Java BigDecimal add 
is 1,708 cycles, hardware might take 8 cycles
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Effect on real applications

• The ‘telco’ billing application
1,000,000 calls (two minutes) 
read from file, priced, taxed, 
and printed 

Java 
BigDecimal

C, C# 
packages

Itanium 
hand-tuned

% execution 
time in decimal 
operations

93.2% 72 – 78% 45% *

* IntelTM figure
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The path to hardware…

• A  2 x (maybe more) performance 
improvement in applications makes 
hardware support very attractive

• Standard formats are essential for 
language and hardware interfaces
– IEEE 754 is being revised (since 2001)
– incorporates IEEE 854 (radix-independent)
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IEEE 754 agreed draft  (‘754r’)

• Now has decimal floating-point formats 
with decimal significands and arithmetic
– suitable for mathematical applications, too

• Fixed-point and integer decimal arithmetic 
are subsets (no normalization)

• Compression maximizes precision and 
exponent range of formats
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IBM Product Plans

• Future processors will have decimal 
floating-point units in hardware, compliant 
with current 754r draft

• Appropriate software support:
– operating system
– compiler  (GCC, IBM)
– database
– etc.
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Other standards, etc.

• Java 5 BigDecimal (compatible arithmetic)

• C# and .Net ECMA and ISO standards
– arithmetic changed to match, and now allow

use of 745r decimal128

• ISO C and C++ are jointly adding decimal 
floating-point as first-class primitive types
– work on adding to GCC almost complete
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Other standards, etc.

• COBOL already has floating-point decimal, 
adding new type for 2008 standard

• ECMAScript (JavaScript/JScript) edition 4 
will add decimal type

• XML Schema 1.1 draft now has pDecimal

• New SPEC benchmarks (SPECjbb, etc.)
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Other standards, etc. [2]

• Other languages are adding decimal 
arithmetic (Python, Eiffel, etc.)

• ANSI/ISO SQL … new types accepted in 
principle (draft about to be submitted)

• Strong support expressed by Microsoft, 
SHARE, academia, and many others
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Differences from Rexx arithmetic

• The IEEE types are fixed size, encoded to get 
maximum range and precision

… edge effects at the exponent extremes 

Format precision normal range

32-bit 7 -95 to +96

64-bit 16 -383 to +384

128-bit 34 -6143 to +6144
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Other differences [1]

• Full floating-point value set, including –0,  
±infinity, and NaNs (Not-a-Number).

• Positive exponents are not forced to 
integers (2E+3 + 0  is  2E+3, not 2000)

• Zeros have exponents (just like other 
numbers) so can affect the exponent of 
results (1 + 0.000  is  1.000, not  1)
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Other differences [2]

• Trailing zeros are preserved for divide and 
power operators  (2.40/2 is 1.20, not 1.2)

• Subtraction rounds to length of result, not 
lengths of operands  (with numeric digits 
5, 12222 – 10000.5  is 2221.5, not  2222)

• 0 ** 0 is an error (not 1), but  n ** 0.5 is OK
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IEEE 754r support in Rexx

• The differences are very minor, but are 
sufficiently obscure that they could be 
surprising

• Support would allow exact emulation of 
other languages using the IEEE 754r 
types (and potentially exploit hardware) 

• Built-in much easier to use than a library
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IEEE 754r support in Rexx

• Support could be very simple:

scientific
numeric form engineering

ieee

• Sets digits=16 (?), only digits 7, 16, 34 
then allowed  (or digits must already be  
one of these three values)
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Infinities and NaNs

• String:  “Infinity” (etc.) could be a valid 
number – but this could ‘surprise’ some 
algorithms (a+b not an error)
– this really mostly affects the datatype BIF

• Could use original idea:  ‘!’ = Infinity, ‘?’ = 
NaN – and these are valid symbols now
– perhaps ‘??’ = sNaN (signaling NaN)
– ‘payloads’ on NaNs?    
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Ordering

• IEEE 754r has a total order for numbers
– –0 is ‘lower’ than +0
– 1.000 is ‘lower’ than 1.0
– +Infinity is ‘lower’ than ‘NaN’
– etc.

• Could define the strict comparison 
operators to work this way on numbers
– risky … probably better to provide a BIF
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Useful BIFs

• IsNaN, IsInfinite

• Quantize  (shorthand for format(x,,n))

• Normalize (strip trailing zeros)

• Num2ieeebits  (convert actual bits)
– and vice versa
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BIF changes

• DataType(x, ‘N’)
– could accept Infinities/NaNs
– or a new option (‘E’?) for extended numbers

• Format() would probably need some work
– (reduced exponent range)

• Sign(x) … need to be careful about –0 
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Implementation

• The decNumber C package supports both 
IEEE 754r arithmetic and formats and the 
ANSI X3.274 (Rexx) arithmetic
– and it’s open source (in GCC tree)…

• Includes enhanced power function, exp, 
log10, ln (loge), square-root, quantize
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Questions?

Google: decimal arithmetic
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Format details
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IEEE 754r:  common ‘shape’

• Sign and combination field fit in first byte
– combination field (5 bits) combines 2 bits of 

the exponent (0−2), first digit of the coefficient 
(0−9), and the two special values

– allows ‘bulk initialization’ to zero, NaNs, and 
± Infinity by byte replication

Sign Comb. field Exponent Coefficient
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Exponent continuation

Format exponent   
bits bias normal range

32-bit 2+6 101 -95 to +96

64-bit 2+8 398 -383 to +384

128-bit 2+12 6176 -6143 to +6144

(All ranges larger than binary in same format.)

Sign Comb. field Exponent Coefficient

Simple concatenation
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Coefficient continuation

Sign Comb. field Exponent Coefficient

• Densely Packed Decimal – 3 digits in 
each group of 10 bits  (6, 15, or 33 in all)

• Derived from Chen-Ho encoding, which 
uses a Huffman code to allow expansion 
or compression in 2–3 gate delays
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