
But I don't use objects, or do I?

Using Open Object Rexx to solve Classic Rexx
problems

An altogether too common
statement:

● “these needs arise from trying not to use the
oo features of oorexx since i'm creating a
way for some users who know no program-
ming language to use the minimal features
of rexx.”
– Recent comment on the REXXLA mailing list

(emphasis added)

This frequently results in
rejecting the easiest solution

● The discussion from the previous statement
ended up as a discussion of whether
interpret or value() provided the better
solution.
– did not meet the minimal features of rexx goal
– ooRexx solution would have been much smaller

and easier for the target users to understand

Goals of Object Rexx Features

● Features were added with an eye toward
providing easier ways to solve problems that
users frequently asked about.

● Mike Cowlishaw's “top ten” list.
● Object orientation in many cases was the so-

lution, not the end goal of the design.

Typical Questions

● How do I pass/return a stem to/from a
procedure

● How do I expose a variable without having to
expose through all call levels

● How do I drop a sub-stem
● How do I copy a sub-stem
● How do I reuse more of my code
● How do I get stem.0 to be automatically set
● How do I implement callbacks within my

program

A simple example

emp.i.name = “Rick McGuire”
emp.i.location = “Sandy Hook”
....
call print_employees
....
print_employees: procedure expose emp. empcount

do i = 1 to empcount

end

Common problems with using
the classic approach

● The “accidental simple variable” problem.
● Writing code to deal with multiple collec-

tions.
● The external function variable scope.
● The embedded “.” problem
● Some problem solutions require use of in-

terpret or value().

But wait...

● Structured data...
● A series of functions that operate on that

data....

SOUNDS LIKE AN OBJECT TO ME!

An ooRexx equivalent

::class employee public
::method name attribute
::method location attribute
::method print
 say self~string
::method string
 expose name, location
 return name “at” location

An ooRexx equivalent
employees = .array~new
....
employee = .employee~new
employee~name = “Rick”
employee~location = “Rick”
employees[i] = employee
....
do employee over employees
 employee~print
end

Key differences

● Separation of the “object” from the “collec-
tion of objects”

● Not dependent upon exposing callers vari-
ables through multiple levels of call.

● Code is easily reused in other programs.
● Immune to the “constant tail element” prob-

lem.
● Error reporting for mistyped names.
● No interpret or value() required.

Building beyond stems and
strings

Adding more structure to your programs:

::method init
expose managed
managed = .set~new

::method addManaged
expose managed
use arg employee
managed~put(employee)

::method getManaged
expose managed
return managed

All we are saying, is give peace
a chance...

● Allow the ooRexx language to help you with
what you're already trying to do!

● Using ooRexx features doesn't require a
complete reshaping of your mind
set...immediately rejecting these features
frequently means you're working too hard!

