
Object Rexx Collection Classes

If all you have is a hammer...

Everything looks like a nail...

Understanding the collection
classes

● How to choose the different types of collec-
tion

● Understanding object indices
● Other language uses of collections

The different types of
collections

● Ordered collections
– Array, List, Queue

● Key-indexed collections
– Table, Relation, Directory

● Set-like collections
– Set, Bag

Ordered collections

● Elements are inserted in a particular order
● Element indexing is specific to the collection

type

Arrays

● Ordered list of references indexed by numer-
ic order
– Can be created with an initial size, but will grow

automatically
– Arrays can be sparsely populated, but “skipped”

elements still take up index positions

Array usage

a = .array~new(10) -- creates 10 initial slots
a = .array~of(“Fred”, “George”) -- fills array

a[1] = “Rick” -- assigns the first array position
a[a~last+1] = “McGuire” -- adds new last item
a[1,2,3] = “RexxLA” -- multi-dimensional

List and Queue

● Very similar collections. Queue is a list with
PUSH/PULL/PEEK methods

● Ordered collections using index values
assigned with an object is inserted

● Unbounded in size, never sparse. Removing
elements will “close up” the gap.

List/Queue examples

list~insert(“Fred”) -- adds to end of list
 -- inserts after first item of list
list~insert(“Rick”, list~first)

queue~push(“Fred”) -- insert at head of queue
queue~queue(“Lee”) -- add to the end
queue~pull -- get the head element

Key-indexed collections

● Items are stored in the collection using a
“key” value

● Key lookups are based on equality
● The Directory class has some useful extra

features

Object keys

● Table and Relation key lookups determine
equality using the “==” method
– If string objects are used for keys, string value

equality is used
– For other objects, equality is determined by

“object identity”
– BUT, it is possible to change this using a custom

“==” method

Overriding “==”

::method “==”
expose name
use arg other
-- override the hashcode form
if arg() = 0 then return name~”==”
-- compare the names of the two employees
return name == other~name

Overriding “==”

● The “==” method is used both to retrieve a
hash code for the object and perform
comparisons

● Table and Directory are implemented as
hash tables, so a constant hash code is
required

Directory keys

● Directories are indexed only by string keys
– Using non-string objects is an error

Table and Relation

● Table and Relation implement one-to-one
and one-to-many mappings.
– Table can have just a single value associated

with a key
– Relation can have multiple values associated

with a single key value

Using relations

byLocation = .relation~new

do employee over employees
 byLocation[employee~location] = employee
end

sandyHookers = byLocation~allAt(“Sandy Hook”)

Directories

● Keys must be strings
● Directory implements an UNKNOWN

method that allows values to be
set/retrieved using method invocations

– dir~fred = employee -- sets “FRED”
– This form uppercases the index

string.

Adding active code to
Directories

● SETMETHOD allows methods to be set as
directory keys:
– dir~setmethod(foo, “use arg key; return

value(key,,'ENVIRONMENT'”)
● SETMETHOD can also override the

UNKNOWN method.

Set and Bag

● Keyless collections (or more precisely,
the objects added are their own keys)

● Set will eliminate duplicates
● Bag allows duplicates to be added

– “duplication” is determined using
same rules used for Table/Relation
key matches

● Implement UNION, INTERSECTION,
XOR, DIFFERENCE, and SUBSET

unique = .set~new

do while text != “”
 parse var text word text
 unique~put(word)
end

do word over unique
 say word
end

Other collection facilities

● MAKEARRAY
● DO OVER
● Suppliers

MAKEARRAY

● All collections implement a MAKEARRAY
method. Each collections defines what that
operation means
– Array -- returns a non-sparse array with items in

order
– List, Queue -- returns array with items in list

order
– Table, Relation, Directory – returns array of

index objects (no defined order)
– Set, Bag – returns array with all contained

objects (no defined order)

DO OVER

● Sends a MAKEARRAY message to the
OVER expression result, then iterates over
each of the returned array items.

● DO OVER works off of a snapshot of the
object, so the iteration set is safe from
alterations to the base collection.

● Any object that implements a MAKEARRAY
method can be “done over”, not just stems or
collections.

Suppliers

● All collections implement a SUPPLIER
method

● Suppliers allow iteration over collections,
providing access to both the indices and the
values.

● Like MAKEARRAY, this works off of a
snapshot of the values.

Supplier example

sup = byLocation~supplier
while sup~available
 say sup~item~name “works at“ sup~index
 sup~next
end

Questions?

