Rexx Objects, Part Deux

Dipping a toe 1n the object pool

Rick McGuire
2007 Rexx Symposium

I Object-oriented programming is

I easy as...
I Polymorphism
Inheritance

Encapsulation

What is an object?

277999977

A sample object

c'SET ALT 00O
c 'SET DISPLAY' On On
c 'SET SCOPE DISPLAY"

c 'BOTTOM /* GOTOP */
c 'EXTRACT/FLSCREEN/
If flscreen.1<1 then Signal AtTop
c 'TOP'
c 'EXTRACT/FLSCREEN/
do while (flscreen.1<1)

c 'DOWN T1'

c 'EXTRACT/FLSCREEN/

Another sample object

start =5

length = 5

data = 'Flying pigs have wings'

parse var data x1 =(start) x2 +(length) x3

I Encapsulation

* “Keep your paws off my data...”
I * Internal data is hidden (“Encapsulated”)
* Manipulations are only via an interface that
the object defines

I How do you write such a

I program in Rexx?

* Very difficult
I — Variable scoping rules require passing around of
“globals”
— Everything is open, everything is exposed
— Great care must be taken for naming variables,
procedures, etc., because all one shared
namespace.

I What is a Rexx object?

* An object is a bundle of Rexx variables
I (“instance variables”)
* PLUS a “trusted” set of code that's allowed to
directly access those variables (“methods”)
* Methods may be invoked by “outsiders”
* You can have as many instances of an object
active at one time.

A Classic Rexx program

Main program

sub1: sub3: Variables

procedure expose g. procedure expose g.

sub2:
procedure expose g.

The Object picture

name: rick
phone: 203-...

/ the object
dictionary

init rint

instance
variables

expose name expose name

A multiplicity of objects

name: rick
phone: 203-...

/ the object
method
N another
rint

init object

instance
variables

expose name expose name

name: david
phone: 607-...

Creating an object

* Objects are created by sending a “new”
method to a “Class” object

a = .array~new

* The class object allocates space, plugs in the
method dictionary, and calls “INIT” to finish
up construction.

I Calling methods

I * You call methods by “twiddling” the object

say a~at(3)
a~put(“Fred”, 4)

Creating your own objects

* Objects are created by making a Class object
factory, and defining methods associated
with the class

..class employee
::method init

expose name address
use arg name, address
.:method name attribute

I The Parser...

* A real example...an object based version of
I the PARSE instruction

I If it looks like a duck...

* ...and quacks like a duck, it's probably a
I duck.

I Is this an XEDIT macro?

I ° ...ora KEDIT macro, or a THE macro?

c'SETALTOO
c 'SET DISPLAY' On On
c 'SET SCOPE DISPLAY'

¢ 'BOTTOM' /* GOTOP */
¢ 'EXTRACT/FLSCREEN/
if flscreen.1<1 then Signal AtTop
c 'TOP'
¢ 'EXTRACT/FLSCREEN/
do while (flscreen.1<1)

c 'DOWN 1

I Polymorphism

* “many bodies”
I * In ooRexx terms, it means an object
responds to the message you send it.

Pipes

* How can all of these stages work together?

'PIPE (name LIST2SRC)',

'| <" fn 'listing *', /* Read the LISTING file */

'| mctoasa', /* Machine carriage ctl => ASA */

'| frlabel - LOC', /* Discard to start of program */

'| drop 1', /* Drop that '- LOC' line too */

'| tolabel - POS.ID', /* Keep only up to relocation */

'| tolabel -SYMBOL', /* dictionary or cross-ref */

'| tolabel 0THE FOLLOWING STATEMENTS', /* or diagnostics */
'| outside /1/ 2", /* Drop 1st 2 lines on each pg */

'| nlocate 5-7 /IEV/', /* Discard error messages */

'| nlocate 41 /+/', /* Discard macro expansions */

'| nlocate 40 / /', /* Discard blank lines */'| nlocate 5-7 /IEV/', /* Discard error messages */
'| nlocate 41 /+/', /* Discard macro expansions */

'| nlocate 40 / /', /* Discard blank lines */

'| specs 42.80 1', /* Pick out source "card" */

'| >' fn 'assemble a fixed' /* Write new source (RECFM F) */

I DO OVER
* How can DO OVER iterate over
I — An array
- A stem
- A stream?

* It really only understands arrays, but it sends
a ‘MAKEARRAY” message to the object to
get one.

* Any object can provide a MAKEARRAY
method and work with DO OVER.

I Never write this program again

select
when type = 1t
when type = 2 t
when type = 3 t
when type = 4 t

end

nen ca
nen Cca
nen ca

nen ca

printEmployee
printManager
printExecutive
printContractor

...do this instead

anEmployee~print

I The TreeTable

* The tree table is polymorphic with the
I ooRexx Directory class

* A totally new implementation
— Can be used interchangeably with directory
objects

I Standing on the shoulders of

I giants...

I * One of the major benefits of O-O

programming is code reuse

— Don't copy the code and modify...

— Use the original directly and extend and
override.

I Inheritance

* When you create a class, you can start by
I “subclassing” an existing class.
* You “inherit” the methods and data of the
existing class...
° ...and add some of your own.

| Why inherit?

* Extend existing function
I * Alter/extend the behavior of an existing class
to meet your requirements
* Complete the implementation of an abstract
concept (inherit from a “framework”)
* Another means of achieving polymorphism

I Enhancing the function

* Add additional capability to an existing class
I - Q: How hard would it be to add regular
expression support to the PARSE instruction
yourself?
- Q: How hard would it be to add regular
expression support to the Parser sample
yourself?

I The enhanced parser

* Same base parser, but additional function
I added

I Getting a little SELFish

* In any ooRexx method, the variable SELF
I will point to the object you use to invoke the

method
— This allows you to invoke “subroutines” using
your own context:

::method string
return self~name “living at” self~address

Before, after, and in between

* When you subclass, you can override
methods of the superclass, but still use those
methods

::method string
return “This Is my version of” self~string:super

Making callbacks

* Some classes define empty methods and
allow you to fill in the blanks:

::class myparser subclass xmlparser

::method start_element

use arg chunk

call charout , '<'chunk~tag

if chunk~attr <> .nil then do f over chunk~attr
call charout , ' 'f'="self~textxlate(chunk~attr[f])"™
end

say '>'

return

::method end_element
use arg chunk

say '</'chunk~tag'>'
return

::method passthrough
use arg chunk

say '<'chunk~text'>'
return

I Object-oriented programming is

I easy as...
I Polymorphism
Inheritance

Encapsulation

