
>

Writing CGI Scripts in REXX

By Steve Swift (aka "Swifty")

Tuesday, 19th May, 2009 13:30-14:30

http://www.swiftys.org.uk/symposium/P01-Introduction.html

http://www.swiftys.org.uk/symposium/P02-About.html
http://www.swiftys.org.uk/symposium/P01-Introduction.html

<>

About:

Steve Swift (aka "Swifty")

This Session

Mr Coopers's Law:

If you do not understand a particular word in a piece of technical writing,
ignore it.
The piece will make perfect sense without it.

http://www.swiftys.org.uk/wiz?263

http://www.swiftys.org.uk/symposium/P01-Introduction.html
http://www.swiftys.org.uk/symposium/P03-CGI-scripts.html
http://www.swiftys.org.uk/wiz?263

<>

CGI Scripts.

What are they?

HTML:

http://www.swiftys.org.uk/hello.html

<H2>Hello <U>world</U>!</H2>
Result:

Hello world!
CGI:

http://www.swiftys.org.uk/cgi-bin/hello.rex

#!/usr/bin/rexx
Say 'Content-type: text/html'
Say
Say '<H2>Hello <U>world</U>!</H2>'

Result:

Hello world!

http://www.swiftys.org.uk/symposium/P02-About.html
http://www.swiftys.org.uk/symposium/P04-Tracing.html
http://www.swiftys.org.uk/hello.html
http://www.swiftys.org.uk/cgi-bin/hello.rex

<>

Simple Rexx tracing
test.rex

/* Simple test */
Trace ?r
C = 'L'
-- lots of stuff here�
Say 'The time is' time(C)

Result:
 +++ "WindowsNT SUBROUTINE c:\Test.rex"
 3 *-* C = 'L'
 >>> "L"
+++ Interactive trace. "Trace Off" to end debug, ENTER to Continue. +++

 5 *-* Say 'The time is' time(C)
 >>> "L"
 >>> "The time is 13:17:10.328000"
The time is 13:17:10.328000

http://www.swiftys.org.uk/symposium/P03-CGI-scripts.html
http://www.swiftys.org.uk/symposium/P05-Problem.html

<>

Tracing CGI?

There is a problem:

CGI: STDOUT→Captured by webserver; sent to browser
STDERR→Captured by webserver; sent to error log

http://www.swiftys.org.uk/symposium/P04-Tracing.html
http://www.swiftys.org.uk/symposium/P06-Solution-1.html

<>

Solution #1:

Insert debugging into HTML

C = 'L'
-- lots of stuff here�
Say 'C='c
Say 'The time is' time(C)

Result:

C=L The time is 13:43:28.484793

Problems:

The debugging affects the structure of the webpage1.
You might not find it easily in a complex page2.
If the data contains an "<" then it will be interpreted as
HTML

3.

Once you've found the problem you have to take the
debugging out

4.

http://www.swiftys.org.uk/symposium/P05-Problem.html
http://www.swiftys.org.uk/symposium/P07-Solution-2.html

<>

Solution #2:

Defer the debugging to the end of the page

Debug.0 = 0
C = 'L'
-- lots of stuff here�
Call Debug 'C='c'
Say 'The time is' time(C)

If debug.0 > 0 then do
 Say '<H2>Debug:</H2>
 Do I = 1 to debug.0
 Say debug.i'
'
 End
 End
Exit

Debug:
Debug.0 = Debug.0 + 1; Debug.[debug.0] = arg(1)
Return

Result:

The time is 13:43:28.484793

Debug:

C=L

Problems:

The debugging is always on1.
If the data contains an "<" then it will be interpreted as
HTML

2.

Once you've found the problem you have to take the
debugging out

3.

http://www.swiftys.org.uk/symposium/P06-Solution-1.html
http://www.swiftys.org.uk/symposium/P08-Solution-3.html

<>

Solution #3:

Control the debugging with a cookie

Steps:

How to toggle the cookie on and off1.
How to check the cookie in REXX2.

http://www.swiftys.org.uk/symposium/P07-Solution-2.html
http://www.swiftys.org.uk/symposium/P09-Toggling.html

<>

Toggling a cookie (Zero REXX interest)
In your page header:

<HEAD>
<SCRIPT SRC=/debug.js></SCRIPT>
</HEAD>

In your HTML directory: (/debug.js)

function getCookie(c_name)
{
if (document.cookie.length>0) {
 c_start=document.cookie.indexOf(c_name + "=")
 if (c_start!=-1) {
 c_start=c_start + c_name.length+1
 c_end=document.cookie.indexOf(";",c_start)
 if (c_end==-1) c_end=document.cookie.length
 return unescape(document.cookie.substring(c_start,c_end))
 }
 }
return ""
}

function setCookie(c_name,value,expiredays)
{
var exdate=new Date()
exdate.setDate(exdate.getDate()+expiredays)
document.cookie=c_name+ "=" +escape(value)+
((expiredays==null) ? "" : ";expires="+exdate.toGMTString())
}

function toggle_Debug()
{
Debug = getCookie('Debug');
if (Debug==1) {
 setCookie('Debug',0)
 alert('Debugging is now off')
 }
else {
 setCookie('Debug',1)
 alert('Debugging is now on')
 }
return false

http://www.swiftys.org.uk/symposium/P08-Solution-3.html
http://www.swiftys.org.uk/symposium/P10-Checking.html

}

In your HTML:

Toggle Debug

<>

Checking a cookie in REXX

Functions:

::Routine Cookie public
Name = '; 'arg(1)'=' /* Cookie: */
Parse value '; 'value('HTTP_COOKIE',,'ENVIRONMENT')';' with (name) value ';'
Return value

::Routine Debugging public
Return cookie('Debug')=1

The effect on the debugging:

If debug.0 > 0 & 'debugging'() then do
 Say '<H2>Debug:</H2>
 Do I = 1 to debug.0
 Say debug.i'
'
 End
 End

http://www.swiftys.org.uk/symposium/P09-Toggling.html
http://www.swiftys.org.uk/symposium/P11-NoHTML.html

<>

Handling & and < in the debug data

Function:

::Routine NoHTML public
Return changestr('<',changestr('&',arg(1),'&'),'<')

The effect on the debugging:

If debug.0 > 0 & 'debugging'() then do
 Say '<H2>Debug:</H2>
 Do I = 1 to debug.0
 Say 'nohtml'(debug.i)'
'
 End
 End

http://www.swiftys.org.uk/symposium/P10-Checking.html
http://www.swiftys.org.uk/symposium/P12-Alldone.html

<>

Removing the debugging when you're done
There is now no need to remove the debugging.

Unless you click the "Toggle Debug" link, then it is invisible.

Questions and answers:

Q1.
Wouldn't it be better not to collect the debug information when debugging is off?

A1.
Probably not. If your code encounters a fatal error condition, it can set a flag which causes the debug information to come out anyway So when the
user reports the problem, and sends you a screenshot, you will have a traceback of what happened.

Q2.
Is it possible to trace external functions/subroutines as well?

A2.
Yes. read on!

http://www.swiftys.org.uk/symposium/P11-NoHTML.html
http://www.swiftys.org.uk/symposium/P13-External.html

<>

Tracing External routines
There are a couple of problems with the debug routines as developed:

They cannot be used to trace external functions and subroutines1.
You have to expose "debug." in every "Procedure" that contains debugging code, or a call to a routine which
does.

2.

The solution to this lies in using the "local environment object" (.local). If you are unfamiliar with this, then it can be seen as a way of creating variables
which are available across all of the rexx routines that are running under the same invocation of rexx. This means all subroutines and functions called from
your main program. If you execute external code by invoking a new copy of rexx then the .local object will not cross this boundary.

The following pages show the exact version of the debug routines that I'm currently using.

http://www.swiftys.org.uk/symposium/P12-Alldone.html
http://www.swiftys.org.uk/symposium/P14-Debug.html

<>

The current Debug routine
This code is in a file called "subroutines.rex" and is included from the main routine using ::Requires 'subroutines.rex'

-- Initialisation code
If .local~debug.state = .Nil then do /* If we have not initialised debug */
 Debug.0 = 0 /* Create the stem variable */
 .local['DEBUG'] = debug. /* Create pointer to it in .local */
 .local~debug.state = 0 /* Turn debugging off by default */
 End
Exit

::Routine Debug public
Parse arg text,line,email /* Debug: Save debug data */
If email<>'' then if .local~owner.email=.Nil then .local~owner.email=email /* Email to use if we hit a fatal error */
If text \== '' then do /* If a non null text is passed... */
 D = .debug[0]+1 /* Increment the line count */
 If line <> '' then .debug[D] = line text /* Record source line and comment */
 Else .debug[D] = text /* Record just the comment */
 .debug[0]=D /* Save new line count */
 End
Else .local~debug.state = 1 /* Null comment? Turn debugging on */
Return

http://www.swiftys.org.uk/symposium/P13-External.html
http://www.swiftys.org.uk/symposium/P15-Debug-list.html

<

The current Debug_List routine
This code is in a file called "subroutines.rex" and is included from the main routine using ::Requires 'subroutines.rex'
It uses a couple of routines, "Systrace" and "Threads" which are not included here. "Systrace" just creates entries in a system-wide trace log. "Threads"
works out the program being run under rexx in the parent thread. They are both highly specific to the system where the code is running.

::Routine Debug_List public
If .fatal.error = 1 then .local~debug.state = 1 /* Always debug fatal conditions */
If .debug[0] = 0 | .local~debug.state \== 1 then return /* Debug_List: Anything to do? */
Arg parms /* Get options: HTML LINES */
Parse arg ,efn /* Get callers filename */
If efn = '' then do
 Call SysTrace 'Something called Debug_List without argument 2 (efn)',word('env'('Remote_User') 'env'('Remote_Addr'),1) /* Blow whistle */
 Call 'Threads' 'Debug_List()' /* Try to work out how we got here */
 End
HTML = wordpos('HTML',parms) > 0 /* Do we want the list in HTML? */
Lines = wordpos('LINES',parms) > 0 /* Do we want line numbers? */
If html then say copies('</TABLE>',6)'hr'()'<H2 STYLE="border-width:0;padding:0;margin:0 0 0 0">Debug:</H2><TABLE CELLSPACING=0>'
Else say 'Debug:'
Trace = (.fatal.error = 1) & \'swifty'() /* SysTrace any fatal error except Swifty's */
Do I = 1 to .debug[0]
 Select
 When html & lines then say '<TR VALIGN=TOP><TD ALIGN=RIGHT>'word(.debug[I],1)'<TD>'nohtml(subword(.debug[I],2))/* HTML output with line numbers */
 When html then say '<TR VALIGN=TOP><TD>'nohtml(.debug[I]) /* HTML output */
 Otherwise say .debug[I] /* Plain text output */
 End
 If trace then call SysTrace .debug[I],efn
 End
If html then say '</TABLE>'
Return

http://www.swiftys.org.uk/symposium/P14-Debug.html

	Introduction
	About
	CGI Scripts
	Tracing
	Problem
	Solution 1
	Solution 2
	Solution 3
	Toggling a cookie
	Checking a cookie
	Suppressing HTML
	All Done
	Tracing External routines
	Debug Subroutine
	Debug_List Subroutine

