NetRexx and Prolog

René Vincent Jansen, 2012 International Rexx Language Symposium Raleigh, NC.

May 15th, 2012

zaterdag 16 juni 12

Why Prolog

What's a Prolog?

* Prolog is a general purpose logic programming language associated
with artificial intelligence and computational linguistics.

* Prolog has its roots in first-order logic, a formal logic, and unlike
many other programming languages, Prolog is declarative: the
program logic is expressed in terms of relations, represented as facts
and rules. A computation is initiated by running a query over these
relations.

* The language was first conceived by a group around Alain
Colmerauer in Marseille, France, in the early 1970s and the first
Prolog systems were developed in 1972 by Colmerauer with Philippe
Roussel, in Algol-W and FORTRAN.

zaterdag 16 juni 12

http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Computational_linguistics
http://en.wikipedia.org/wiki/Computational_linguistics
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/Formal_logic
http://en.wikipedia.org/wiki/Formal_logic
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Rules_of_inference
http://en.wikipedia.org/wiki/Rules_of_inference
http://en.wikipedia.org/wiki/Alain_Colmerauer
http://en.wikipedia.org/wiki/Alain_Colmerauer
http://en.wikipedia.org/wiki/Alain_Colmerauer
http://en.wikipedia.org/wiki/Alain_Colmerauer
http://en.wikipedia.org/wiki/Marseille
http://en.wikipedia.org/wiki/Marseille
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/France

What happened to Prolog?

* It lost steam
* The Japanese 5th generation computer project (remember that) was its "OS/2"

* It was hyped by recent converts in the 5th generation project and bogged
down in hardware Prolog machines that never ran well

* As a rule, progress in specialized hardware is generally overtaken by progress
in general computer hardware

* QOther declarative languages ate its lunch - SQL in the first place

+ It is coming back though - IBM's Watson is purported to run on Java and
Prolog.

zaterdag 16 juni 12

Rationale

* In the course of writing * a large percentage of the code
applications, over the years, consisted of a series of logic
that handle meta models, operations and set-matching
models and instance data, the and reducing code that is
perspective on the strengths already and more completely
and weaknesses of a purely implemented in the Prolog
relational and post-relational language;
implementation led to two
insights: * some of the relationships in the

data models are better stored as
rules than as instances of those
relationships.

zaterdag 16 juni 12

Rules

* Rules prevent combinatorial
explosions in the data store

* For example, if we have a simple
model of an IT infrastructure with
entity types as servers, lpars, queue
managers, channels, queues and
applications, we can model
relationships between these entity
types and store instances of these.
applications, queues, channels, queue
managers and server machines.

* If we store a queue as belongs to a

queue manager, and and an
application as using a specific queue
belonging to that queue manager,
without rules, we also have to store the
relationship between the queue manager
and the application as a separate fact, or
capture this in some ad-hoc code.

With Prolog, we can easily define a
rule that determines that if an
application uses a specific queue, it
also uses a specific queue manager on
a specific server. We define this rule by
declaring it as data in the model, and
not in (procedural) code.

zaterdag 16 juni 12

S Om (: (:Xampl (: S (from Learn Prolog Now!)

* woman(mia). * state facts

* woman(jody). * woman: predicate

* woman(yolanda). * names are called atoms

* loves(vincent,mia). * another predicate + facts
loves(marcellus,mia).

(
(
loves(pumpkin,honey_bunny).
loves(honey_bunny,pumpkin).

+ will state all the women's
* woman(X). names

zaterdag 16 juni 12

Ask another question

* loves(marcellus,X),woman(X).

* means:is there any individual X
such that Marcellus loves X and X
1S a woman?

* the Comma (,) means and

zaterdag 16 juni 12

A rule

* jealous(X,Y) :- loves(X,Z),loves(Y,Z).

* to be read as: an individual X will be jealous of an individual Y if there is
some individual Z that X loves, and Y loves that same individual Z too.

* So the query:
* jealous(marcellus,W).

* means: can you find an individual W such that Marcellus is jealous of
W?

* The answer is: vincent.

zaterdag 16 juni 12

Which Prolog

Good comparison i Wikipedia

Platform
Name 0S
Unix, Windows
BProl : :
i Mac OS X
Clao Unix, Windows,
Mac OS X
. MS-DOS
PROLOG &
Unix, Windows
GNU Prol : '
e Mac OS X
Jolojels | ;M, Dalvik
Prolog &7
JLog JVM

JScriptLog & Web Browser

jTrolog & JVM

Licence

Free for academic
uses

GPL, LGPL

Shareware

GPL, LGPL

w/o Toolkit
Distributable
otherwise
Evaluation

GPL
GPL

LGPL

Native
Graphics

Yes

Yes
(via Java)

Yes

Compiled
Code

Yes

Yes

Yes

Yes

Yes

Features
Unicod Ptijedt N:)t:e
o - Oriented
Control
Yes Yes
Yes Yes
Yes Yes
Yes
Yes (16- Yes
bit) (via Java)
Yes

Executable

Yes

Yes

Yes

Yes

C Java

Yes Yes
Yes Yes
Yes
Yes
Yes
Yes

Interactive

Interface®’ Interface’™ Interpreter

Yes

Yes

Yes

Yes

Yes

Yes

Yes

zaterdag 16 juni 12

Started out with SWI Prolog pglzg

+ Stable and free, source available. Written in C(++). From Amsterdam.
* JPL interface to JVM
* Implemented in native library (dll) per platform

* Works very well but consistent installation trouble and complaints
from associates

* Decided to simplify the architecture by choosing a Prolog
implementation in pure Java

zaterdag 16 juni 12

Prolog implementations in Java

Free and Open Source

* Jlog
* tuProlog

* jIrolog

zaterdag 16 juni 12

Jl.og

* Good performance reviews

* Source available; very C++ like implementation in Java; needs
separate text based configuration file for predicates - hmm

Can also interface using BSF
* Initial Theory load has a bad (exponential) performance bug

* Did not try to fix due to ugliness and hermetical quality of source
code

zaterdag 16 juni 12

tuProlog

* Jtalian implementation from University of Turin
* Source available and nice architecture

* (Good documentation of Java intertace

* Actively developed

* General performance qualm: not blindingly fast

zaterdag 16 juni 12

| Trolog

* Performance oriented re-write of (parts of) tuProlog by Ivar Orstavik
* Lightning fast load of initial Theory

* No real documentation, but:

* Source code very approachable

* http:/ /java.net/projects/jtrolog

* not very active as a project, unfortunately

zaterdag 16 juni 12

http://java.net/projects/jtrolog
http://java.net/projects/jtrolog

| chose jlrolog

* In spite of its strange name (Trollgatan, Norway?)
* For speed and modifiability
* Rebuilt own version of it

* Added (and sometimes took out) some NetRexx specific features

zaterdag 16 juni 12

What did I add to jTrolog?

+ Having the source available it was tempting to add some functionality
to make life easier (most of this probably would have been possible
without the source, but it made the implementation much more
understandable)

+ I am considering to translate the whole package to NetRexx for clarity
and easy access - using Marc Reme's Nrx2Java

* Added an RMI based server for instant access to larger theories
* Added a REPL that does not need semicolons entered after every query

+ (Added a server based SREPL - to query over the network)

zaterdag 16 juni 12

JL.ine to the rescue

* JVM programs under Unix shells lack one facility that Windows
cmd.exe does have: up-arrow for command history

* This is absolutely critical when doing interactive, accumulative
development

* T employed the excellent JLine library to accomplish this - just add a
batch file to the java main class

zaterdag 16 juni 12

RMI Server

* Loads the Prolog engine, reads the initial theory, waits for requests
* Optionally use ssl and user authentication
* Tried and true code

* Implemented Request and Response classes to marshal queries and
output

zaterdag 16 juni 12

KBRequest

‘:*Class KBRequest implements... .

.
 Make sure a request is of type Rexx
* Created on: za, 20, feb 2010 17:23:43 +0100 . g

ci;ss KBRequest implements Serializable SO 1t ea811y can be massaged

properties indirect
request

properties constant
serialVersionUID = long 99192042232348439

_/,t.v(
* Default constructor
*/

method KBRequest()

method KBRequest(s)
this.request = s

method toString() returns String
return request.toString()

zaterdag 16 juni 12

KBResponse

At
* Class KBResponse implements...
*

* Created on: za, 20, feb 20
* /

class KBResponse implements Serializable
properties indirect
result = boolean 1

response = ArrayList()

b—

0 17:25:29 +0100

properties constant
serialVersionUID = long 991920422323224356

/ ok
4

* Default constructor
g ,/

method KBResponse()

method KBResponse(a=ArrayList)
this.response = a

method KBResponse(b=boolean)
this.result = b

method size() returns int
return response.size()

method toString() returns String
return response.toString()

A response needs to be a list of Map

zaterdag 16 juni 12

KBServer

Ve 2
* Method main establishes the RMI server part of this application
* and constructs the Knowledge Base. We have a non standard RMI port
* (1199) because we might not be able to control the J2EE container.
* @param args is a String([]
*/
| method main(args=String[]) static
logger .info("KBServer starting.")
do
java.rmi.registry.LocateRegistry.createRegistry(1199)
catch e = Exception
e.printStackTrace()
logger .error(e.getMessage())
exit
end
listener = KBServer()
do
addr = Rexx InetAddress.getLocalHost().toString()
addr = addr.substr(addr.pos('/')+1)
catch java.net.UnknownHostException
addr = '127.0.0.1°

end
addr = addr":1199"
do
Naming.rebind('rmi://'addr'/KBServer',listener) -- bind Listener

logger .info('Control is being given to KBServer.')
catch e=Exception

logger .error('Exception (' e ') caught:')
logger .error(e.getMessage())
end

loop forever
Thread.sleep(10000000) -~ keep the server alive
end

zaterdag 16 juni 12

KBServer: load Theory in ctor

VA S
* Method KBserver constructs the Knowledge Base.
* It first writes the facts.prolog file from persistent storage (here: dbms table)
* Then it fires up the prolog engine by consulting the load.pl file
* and checks for a result. After that it returns to main that will wait
* for incoming requests over the RMI port.
>
* In relaxed mode, it can write out the prolog database to disk using the checkpoint() call,
* while in production mode, it implements integrity by writing an update first to the dbms storage,
* and only asserting after a succesful commit. When the subsequent assertion fails, the tuple is
* deleted so the prolog database is matched. In production mode the startup has to be from a
* serialized database table.
*/

method KBserver()
-- dump the sql table to a file
-- not yet db.dumpToFile()
-- load the prolog part including data and code
PropertyConfigurator.configure(”log4j.properties”)
logger .info("KBserver Constructing Repository: start load")

do
consultedFileName = 'facts.prolog’
t = TimelIt()
api.solve("consult('“consultedFileName"').")

api.solve("consult('code.prolog').")

logger .info('KBServer load took' t.getDiff())
catch FileNotFoundException

logger .error('KBServer file not found' consultedFileName)
end

zaterdag 16 juni 12

Modified the way jlrolog writes

* method checkPoint writes out the current set of facts and then adds in the single quotes that
* the engine seems to lose along the way
* @param time s is a timestamp to be infixed into the saved checkpoint file.
* /
method checkPoint(time s) signals IOException
filename = 'facts.'||time s

out = PrintWriter(Bufferedwriter(FileWriter(filename)))
theory = api.getTheory()
out.print(theory)
out.close()
in = BufferedReader(FileReader(filename))
out = PrintWriter(FileWriter(filename||'.prolog'))
f = Fact()
loop forever
r = f.readFix(in)
if r = null then leave
if f.getPred = '' then iterate
f.write(out)
end
in.close
out.close
file = File(filename)
file .delete()

zaterdag 16 juni 12

How to interface

Solving a query

VA £
* Method request is the gateway to the clients. It receives a prolog query and
* returns a List of Map packaged in a KBResponse that comprises the result set
* @param s is a Rexx containing the query
* @return ArrayList containing the resultset
*/
method request(s=KBRequest) protect returns KBResponse
a = ArrayList()
logger .trace("Request” s.getRequest() "started")
if s.getRequest().pos('assertz’') = 1 then logger .info(s.getRequest())
if s.getRequest().pos('retract') = 1 then logger .info(s.getRequest())
do
X = api.solve(s.getRequest())
loop while x .toString() <> "no"
a.add(x_.getBindings())
X_ = api.solveNext()
end
logger .trace("Request ended")
return KBResponse(a)
catch t=Throwable
if t.toString() = 'jTrolog.errors.NoMorePrologSolutions' then nop
else do
if s.getRequest() = null then 1logger .warn(t.getMessage() 'in' s.getRequest)
else logger .warn(t.getMessage())
end
logger .trace("Request ended")
return KBResponse(a)
end -- do

zaterdag 16 juni 12

First added a toRexx on
StructAtom

package jTrolog.terms;
public class StructAtom extends Struct {

public StructAtom(String name) {
super(name, new Term([0]);
type = Term.ATOM;

}

public boolean equals(Object t) {
return t instanceof StructAtom && name == ((StructAtom) t).name;

}

public String toString() {
return name;

}

public netrexx.lang.Rexx toRexx() {
return new netrexx.lang.Rexx(name.toString());

}

public String toStringSmall() {
return name.length() < 25 ? name : name.substring(0, 23) + "

}
}

But later decided that full collection class support in NetRexx
with automatic conversion to Rexx would be more desirable

zaterdag 16 juni 12

Using «-level NetRexx collection
class support

Elient = KBClient()
ERIEY
count = 0
i = client.request("nm(X,Y).").iterator
loop while i.hasNext
r.putAll(Map i.next)
loop index over r
say index r[index].lower
count = count+l
end
end

say count

put all the values of a Map to an indexed Rexx string and loop over
its contents

this saves you from the drudge work of repeating all the map keys

The can be even shorter when all collection classes are supported

zaterdag 16 juni 12

Added OO meta model constructs
to the Prolog theory

* Added predicates for object, classifier, schema, subtypes, domains so
post-relational modeling is supported

* Honey, I shrunk the code base!

* A huge negative KLOC score achieved over the last decade - must
have lost 50 over a number of years. Partly because source is not
generated for concrete NetRexx classes any more.

+ Still looking to generate these on-the-fly using the interpreter

zaterdag 16 juni 12

Short Demonstration

+ Start the KBServer
* treeTest: list the model hierarchy
* connect with srepl

* list names: nm(X,Y).

* list Queue Managers and Lpars

zaterdag 16 juni 12

Laterature

Prolog Programming

ywripnesdl [van Bratko, Prolog Programming for Artificial
Intelligence

Patrick Blackburn et al, Learn Prolog Now!

Texgs in
COTJ;\Q

Learn Prolog Now/!

Patrck Backburn, Johan Bos
and Kraunsa Stregnitz

zaterdag 16 juni 12

Thank you for your attention

Q? rvjansen@xs4all.nl

mailto:rvjansen@xs4all.nl
mailto:rvjansen@xs4all.nl

