
24th International Rexx
Language Symposium

5-8 May 2013
Durham, NC USA

Sponsored by
Rexx Language Association

You're Not Paranoid If...
Defensive Programming In Rexx

A User Experience

Les Koehler
6 May 2013

Table of Contents
Abstract

The environment and the problem

First attempt - Using the MSG command

Writing to a file

Log Results

Zeroing In On The Problem

Saved Again

Progress messages and logging

Summary and Conclusion

Abstract
I define "Defensive Programming" as the ability to
preserve run time data so that problem
determination in case of failure is straight
forward.

Thus, I will present techniques I've learned to use
in my code that make it easier to debug problems
after the fact.

The environment and the problem
When I first started using The Hessling Editor
(THE) with my Windows 2000 Gateway pc, I was
puzzled by some behavior after I had made some
(I thought) simple changes to its profile.the

First attempt - Using the MSG command
Initially, I used a msg? flag and the msg
command:

 if msg? then 'msg whatever'

However, it soon became apparent that what was
really needed was a file that could be examined
later.

Writing to a file
Here is the subroutine used to write to the file:
LOGIT: Procedure Expose sigl
 mysigl=sigl
 Parse Arg logargs
 If logargs='' Then logargs=Sourceline(mysigl+1)
 Parse Value Right(Space(Date(),0),9,0) Time('L') With ds ts
 logfile='C:\MyTHEstuff\msglog.log'
 .stream~new(logfile)~~lineout(ds ts logargs '@' mysigl)~close
 Return

An entry in the file would look like this:
19Mar2013 23:37:24.416000 -- Initial @ 53

when created by the following snippet of code:
If initial() Then Do
 If log? Then Call logit
-- Initial

An arbitrary string can also be passed to LOGIT:
 If log? Then Call logit 'PROFILE Starting.' ,
 Initial()='initial() 'ctr='ctr ,
 'fid='fid '@' thisline()

Here I was capturing the initial() flag that

indicates that this is the first execution of the
profile, as well as an internal ctr variable to count
the number of executions.

The same methodology was used in several
place to record various information so I could find
out what was wrong with the changes I had
made.

Log Results
The file showed me:
PROFILE Starting. Initial()=1 ctr=1
USERPROF starting!: EDITV CTR= 1 Passed CTR= 1
 Passed initial?= 1 INITIAL()=1
PROFILE Starting. Initial()=1 ctr=2
USERPROF starting!: EDITV CTR= 2 Passed CTR= 2
 Passed initial?= 1 INITIAL()=1
USERPROF ending!: EDITV CTR= 2 Passed CTR= 2
 Passed initial?= 1 INITIAL()=1
PROFILE Ending. Initial()=1 ctr=2
USERPROF ending!: EDITV CTR= 2 Passed CTR= 1
 Passed initial?= 1 INITIAL()=1
PROFILE Ending. Initial()=1 ctr=1

clearly showing that something was causing the
profile to recursively execute!

Zeroing In
I added some more calls to LOGIT which
produced:

PROFILE Starting. Initial()=1 ctr=1 fid=C:\DIR DIR
PROFILE Starting. Initial()=1 ctr=2 fid=C:\DIR DIR
PROFILE: reprof on, defsort set.
 Initial()=1 ctr=2 fid=C:\DIR DIR
PROFILE Ending. Initial()=1 ctr=2 fid=C:\DIR DIR

which clearly showed that there was a tie-in
between the reprof on and defsort commands.

The fix was astonishingly simple: change the
order of the commands so that defsort executed
before reprof on!

Saved Again
Recently I wanted to make some improvements
to the smart_enter macro, so I edited defkeys,
which only executes when THE initially starts,
and commented out the definition of
smart_enter:
/* Define my keys */
'linend on #'
'define C-PLUS REFRESH'
--'define ENTER macro smart_enter'
"define A-R macro ringlist"
"define C-R macro ringlist"
"define C-T hit ~"
"define A-K cmdline top"

and manually reset it with define enter and got
some of the work done. I then hibernated the pc
and resumed work the next day, manually

redefining the ENTER key as needed while I did
various tests and made imrovements to
smart_enter.
Finally satisfied with my testing, I removed the
comment, saved the defkeys file, closed THE
and restarted it.

To my total surprise, THE went into a loop, and
didn't present me with the opening view of its
directory. So I closed it and started the thumb
drive version to examine defkeys and it seemed
fine so I Quit the file.

Next, I opened profile turned on the log? flag,
saved the file and restarted the disk version of
THE. As expected, it looped so I closed it and
used the thumb drive version to examine the log
file where I found:
PROFILE Starting. Initial()=1 ctr=2
 fid=C:\REXX $$$ @ 73 @ 73
'EDITV GETF PROFILE' @ 83
not userprof @ 93
PROFILE continues... Initial()=1 ctr=2
 fid=C:\REXX $$$ @ 94 @ 94
 'set msgline on +3 * overlay' @ 102
-- Call setpfkeys '_default shn s' @ 105
 'macro defkeys' @ 108

so it looked like defkeys was the problem, but it
doesn't run any other macros, it just has define

statements!

Very puzzled, I then used the ‘Cut the problem in
half’ approach. That's when I determined that
making the first line an exit statement made no
difference, so it wasn't the code that was causing
the loop.

That led me to re-examine the log file, where the
implications of:
 fid=C:\REXX $$$ @ 73 @ 73

hit me: That's the name of of the trace file that
THE produces when trace is turned on!

I began to suspect a corrupted defkeys file, so I
switched to the DIR.DIR file and deleted
defkeys. Then I saved and quit the copy I was
editing, closed THE and restarted it... problem
solved!

Progresss messages and logging
With a little planning you can integrate progress
messages with the logging facility to get twice the
payback, which is what I've done with all the
code I use to process Membership Applications

and Symposium Registrations.

For example:

Call msg 'PayPalDate and Transaction ID on one line'

MSG: Procedure Expose sme logfile log? msg? me
 trace o
 If msg? Then 'command msg' me Arg(1)
 If log? Then Call log Arg(1)
 Return

Which might produce a log file like this:
SYMREG<<<<< 24Feb2013 04:43:11 Started with:
SYMREG 24Feb2013 04:43:11 = NOUPDATE TEST PROGRESS NOQUIET DETAILS
LOG NOHELP NO/? NO--HELP NO?
SYMREG 24Feb2013 04:43:11 File: C:\Symposium_Registration_2013\Symposium
Registration for Les Koehler II (vmrexx@womewhere.com).eml.txt
SYMREG 24Feb2013 04:43:11 Parsing Registration
SYMREG 24Feb2013 04:43:11 Checking flags
SYMREG 24Feb2013 04:43:11 error?=0. Checking variables
SYMREG 24Feb2013 04:43:11 TEST MODE! Here's what *would* have happened:
SYMREG 24Feb2013 04:43:11 Saving Properties for vmrexx@somewhere.com
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Name,Les Koehler II)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Addr,8450 Programmer Lane)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
City,TAMPA)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
State,FL)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Zip,33634)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Country,USA)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Email,vmrexx@somewhere.com)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Phone,DoN-otC-all1)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Affiliation,)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com

Nickname,No)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
AmountDue,50)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Payby,Mail)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Sent,2/3/2013 9:31 PM)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Symp,Daily Sessions)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Days,Monday Wednesday)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
ApplID,E196700EF69068)
SYMREG 24Feb2013 04:43:11 props~setproperty(vmrexx@somewhere.com
Symposium registration added
SYMREG 24Feb2013 04:43:11 props~save(C:\Symposium_Registration_2013)
SYMREG 24Feb2013 04:43:32 vmrexx@somewhere.com saved in:
C:\Symposium_Registration_2013
SYMREG 24Feb2013 04:43:32 Symposium registration added
SYMREG>>>>> 24Feb2013 04:43:32 Finished with rc=0 at line 299

Quite obviously I've mixed the code from one
program with the log file from another, but you
get the idea.

Summary and Conclusion

Summary

You've seen:

• The environment and the problem.
• The first debugging attempt using the msg command.
• A simple subroutine, LOGIT for accumulating data to a file
• Some of the entries in the log file.
• How the details in the log file helped me find the problem.
• A recent experience where the log file helped me find a corrupted file.

• How progress messages and logging can be combined

Conclusion

It is well worth the minimum effort required to
include a logging capability in your code. The
benefits are:

• It makes analysis and debugging easier
• It provides a record of significant events

	Table of Contents
	Abstract
	The environment and the problem
	First attempt - Using the MSG command
	Writing to a file
	Log Results
	Zeroing In
	Saved Again
	Progresss messages and logging
	Summary and Conclusion
	Summary
	Conclusion

