
DBusooRexx

Short Introduction into DBus
How to connect your ooRexx class
Short Introduction into ooTest
Examples:
 spice up a presentation
 automatic backups on usb device

2015 Rexx Symposium, 31/02/15 Sebastian Margiol

 DBus is a powerful message-broker system.
Features broadcasting and receiving messages, emit
and receive signals, providing services and handle
properties.

enables easy-to-use interprocess communication
between different programs.

programs might be written in different programming
languages, run on different machines or different
operating systems.

DBus is an integrated part of almost every modern
Linux distribution.

 It enables a programmer to programming-language
independently orchestrate different programs.

Introduction into DBus

 DBus object types are strictly typed.
 Access to DBus is realized through so called Dbus-

language-bindings.
e-dbus, pybus, QTDBus, dbus-python, Java, Perl,
objective-c, Ruby, Tcl, DBusooRexx

 A good language-binding ..
 tries to bring DBus interaction in line with the

concepts of the programming language
 enables to circumvent the strict object type

definition, DBus demands.
 Should make the application of DBus

functionality as natural as possible.

Introduction into DBus

 13 different object types

 4 containers

 Array – ordered list of objects

 Variant – container that
carries the signature of the
transported value

 Struct – contains any object
type according its signature

 Dict – container with string as
index, carries any object type

 DBusooRexx makes automatic
translations

DBus Object Types
Object Type Indicator ooRexx view

array a .Array

boolean b Rexx String

byte y Rexx String

double d Rexx String

int16 n Rexx String

int32 i Rexx String

int64 x Rexx String

objpath o Rexx String

signature g Rexx String

string s Rexx String

uint16 q Rexx String

uint32 u Rexx String

uint64 t Rexx String

variant v Signature dependent

structure (...) .Array

map/dict a{s} .Directory

 DBus is most likely already running.
 ooRexx in Version 4.2 or higher

➔ DBusooRexx Package
➔ DBUS.CLS
➔ Linux Systems:

libdbusoorexx32.so (32-bit) or
libdbusoorexx64.so (64-bit)

➔ Windows Systems:
libexpat.dll (32-bit) or
expat.dll (64-bit)

Ready for programming!

Software Requirements

 Providing your ooRexx services over
DBus can be realized with few easy to
follow steps.

Create your ooRexx class and define its methods
and attributes.

Provide introspection data of your class' methods
and attributes.

Establish connection to DBus, instantiate your
application, connect it and announce it.

 Your application is ready to be used from any other
program that connects to DBus.

How to connect your
ooRexx class to DBUS

::class Demoservice
::attribute ServiceName
::attribute Info
::method init -- constructor
 expose ServiceName Info
 ServiceName = 'Version ...'

::method Greet -- the service method 'Greet' welcomes the audience
 return 'Welcome to Vienna!! Welcome to the 2015 RexxSymposium'

::method LotteryNumber -- needs the max range as input
 -- returns a number that will not win
 use arg maxrange
 return random(1,maxrange)

Create an ooRexx class

 Simple class with two methods & attributes
 Method Greet and LotteryNumber
 Attributes ServiceName and Info

 Different methods to provide Introspection
Version1 – method introspect

 Define a method called introspect and return the introspection
data through it.

Version2 – xml as string
 Define the introspection data as string and pass it over to the

class DBusServiceObject.

Version3 – external xml file
 Define the introspection data as external xml.file and pass it

over to DBusServiceObject.

Version4 - IntrospectHelper
 Use the class IntrospectionHelper and define introspection data

as instructions and pass it over to DBusServiceObject.

Provide Introspection
Information

Introspection data -
Method Introspect

::class Demoservice1
::method Introspect
 return '<!DOCTYPE node PUBLIC ' -
 '"-//freedesktop//DTD D-BUS Object Introspection 1.0//EN"' -
 '"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">' -
 '<node> ' -
 ' <interface name="org.freedesktop.DBus.Introspectable"> ' -
 ' <method name="Introspect"> ' -
 ' <arg name="data" direction="out" type="s"/> ' -
 ' </method> ' -
 ' </interface> ' -
 ' <interface name="rexxsymposium.oorexx.dbus.version1"> ' -
 ' <method name="Greet"> ' -
 ' <arg name="result" direction="out" type="s"/> ' -
 ' </method> ' -
 ' <method name="LotteryNumber"> ' -
 ' <arg name="maxrange" direction="in" type="i"/> ' -
 ' <arg name="magicnumber" direction="out" type="i"/> ' -
 ' </method> ' -
 ' <signal name="Exit"> ' -
 ' <arg name="result" type="s"> ' -
 ' </signal> ' -
 ' <property name="ServiceName" access="read" type="s"/> ' -
 ' <property name="Info" access="read" type="s"/> ' -
 ' </interface> ' -
 '</node> '

Method Introspect -
Pros and Cons

::method LotteryNumber -- needs the max range as input
 -- returns a number that will not win
 use arg maxrange
 number = random(1,maxrange)
 return dbus.box('i', number)

 Comes natural to a ooRexx programer
 Handling long strings is unhandy
 Finding errors is difficult
No tests for closed xml brackets

No tests for irregular DBUS syntax

If xml data is faulty, services are not available

 No automatic marshalling - return values need to
be boxed!!

Introspection Data -
XML as String

::class Demoservice2 subclass DBusServiceObject
::method init -- constructor
 expose info
 idata=' '<!DOCTYPE node PUBLIC ' -
 '"-//freedesktop//DTD D-BUS Object Introspection 1.0//EN"' -
 '"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">' -
 '<node> ' -
 ' <interface name="org.freedesktop.DBus.Introspectable"> ' -
 ' <method name="Introspect"> ' -
 ' <arg name="data" direction="out" type="s"/> ' -
 ' </method> ' -
 ' </interface> ' -
 ' <interface name="rexxsymposium.oorexx.dbus.version1"> ' -
 ' <method name="Greet"> ' -
 ' <arg name="result" direction="out" type="s"/> ' -
 ' </method> ' -
 ' <method name="LotteryNumber"> ' -
 ' <arg name="maxrange" direction="in" type="i"/> ' -
 ' <arg name="magicnumber" direction="out" type="i"/> ' -
 ' </method> ' -
 ' <signal name="Exit"> ' -
 ' <arg name="result" type="s"> ' -
 ' </signal> ' -
 ' <property name="ServiceName" access="read" type="s"/> ' -
 ' <property name="Info" access="read" type="s"/> ' -
 ' </interface> ' -
 '</node> '
 self~init:super(idata) -- let DBusServiceObject initialize

XML as String &
DBUSServiceObject
 Subclasses DBUSServiceObject
 Automatic marshalling according to the signature
 Handling long strings is unhandy
 Finding errors is difficult
No tests for closed xml brackets

No tests for irregular DBUS syntax

If xml data is faulty, services are not available

Introspection Data -
External XML File

::class Demoservice3 subclass DBusServiceObject
::method init -- constructor
 expose info
 idata='Service3.xml'
 self~init:super(idata) -- let DBusServiceObject initialize

File: Service3.xml

External XML File -
Pros and Cons
 Subclasses DBUSServiceObject
 Automatic marshalling according to the signature
 Cleaner, shorter code
 XML can be edited and displayed with a dedicated

application.
Good syntax highlighting & automated syntax checks

 External File needs always be available, changes on
the code have to be done on both files
 Finding errors is still difficult
No tests for irregular DBUS syntax

If xml data is faulty, services are not available

Introspection data -
IntrospectHelper

::class Demoservice4 subclass DBusServiceObject
::attribute ServiceName
::attribute Info
::method init -- constructor
 expose ServiceName Info

 ServiceName = 'Version with IntrospectHelper'
 node=.IntrospectHelper~new -- create root node
 if=node~addInterface('org.freedesktop.DBus.Introspectable')
 if~addMethod('Introspect',,'s')
 if=node~addInterface('org.freedesktop.DBus.Properties')
 if~addMethod('Get','ss','v')
 if~addMethod('Set','ssv','')
 if=node~addInterface('rexxsymposium.oorexx.dbus.version4')
 if~addMethod('Greet',,'s') -- name, in & out-signature
 if~addMethod('LotteryNumber','i','i')
 if~addProperty('ServiceName','s','read')
 if~addProperty('Info','s', 'readwrite')
 if~addSignal('Exit')

 idata=node~makeString
 self~init:super(idata) -- let DBusServiceObject initialize

IntrospectHelper -
Pros and Cons
 Subclasses DBUSServiceObject
 Automatic marshalling according to the signature
 Intuitiv coding, very clean code
 No worries about any line of XML code
 Automatic tests of generated code

Rexx code syntax checks
 number of arguments, brackets closed ..

Provides DBUS syntax checks !!

 Error label needs to be implemented

signal on syntax name halt -- make sure message loop gets stopped
signal on halt -- intercept ctl-c

halt:
 errormessage = (Condition('ADDITIONAL')) -- error information
 if errormessage[1]==.nil then do -- emit exit signal
 ds4~service.sendSignal(objectPath, interface, 'Exit', -
 'Goodbye, thanks for starting me')
 end
 else say errormessage[1]

 conn~close -- close, terminating message loop thread
 say 'connection closed ...'
 exit -1

Refinement for Error
Treatment
 IntrospectHelper throws errors if syntax rules are

violated.

...
if=node~addInterface('rexxsymposium.oorexx.dbus.version4')
 if~addMethod('Test' , ,'w')
 if~addMethod('Test2', ,'i“)
 if~addMethod('Test3','anna','i')
...

Error Treatment -
Example
 IntrospectHelper throws errors if syntax rules are

violated.

 * 'in'-signature: signature [w] contains unknown typecode 'w' at position 1
 * Error 6 running /rexxsymposium/Service4.rexx line 52: Unmatched "/*" or quote
 * 'in'-signature: signature [anna] Missing array element type

 Providing your ooRexx services over
DBus can be realized with few easy to
follow steps.

Create your ooRexx class and define its methods
and attributes.

Provide introspection data of your class' methods
and attributes.

Establish connection to DBus, instantiate your
class, connect it and announce it.

 Your application is ready to be used from any other
program that connects to DBus.

How to connect your
ooRexx class to DBUS

objectPath ="/rexxsymposium/oorexx/dbus/version4"
busName = "rexxsymposium.oorexx.dbus.version4"
interface = "rexxsymposium.oorexx.dbus.version4"

conn=.dbus~session -- get the session bus

conn~busName('request', busName)

ds=.Demoservice~new

conn~serviceObject('add', objectPath, ds)
 .IDBusPathMaker~publishAllServiceObjects(conn)

say 'Press any key to quit'
parse pull quit

Establish connection to
DBus – provide Services
 Define names according to DBUS syntax rules
 Establish a connection to the session bus
 Add an instance of your class to the connection

Making automated tests
for DBusooRexx with
ooTest

Part II: Introducing ooTest and provide examples

Myths: Testing the software …

 .. is not necessary for own programs
 .. is not worth the effort
 .. is only useful for a single application
 .. is extremly time consuming
 .. is extremly complicated

Testing your Program

Facts: automated tests ..

 .. can test thousands assertions in no time
 .. are executable in different environments
 .. can easily be modified
 .. are very useful for other persons as well
 .. are easy to implement

Testing your Program

What was tested

 Test DBus functionality
 Messages
 Signals

 Test creating services
 all different possibilities to provide introspection data
 all different possibilities to manage properties

 Test calling services
 Test accessability of services

 Test DBus object types
 Test marshalling of object types, in both directions

 Value ranges and their boundaries

 Wrong object types
 Missing values
 Appearance of (expected) errors

What was tested -
Examples

Objecttype Min value Max value

int16 -32.768 32.767

unit16 0 65.535

int32 -2.147.483.648 2.147.483.647

uint32 0 4.294.967.295

int64 -9.223.372.036.854.775.808 9.223.372.036.854.775.807

uint64 0 18.446.744.073.709.551.615

DBus and .nil Values

In order to assess .nil
values, the expected value
has to be converted to the
safe default value for the
given object type

select
when type='g' then null = ""
when type='y' then null = "00"x
when type='s' then null = ""
when type='o' then null= "/"
otherwise
 null=0
end

self~assertEquals(null, -
dbustest~ReplyObjectPath(.nil)

DBus Object Type DBusooRexx representation

array empty array

boolean 0

byte '00'x

double 0

int16 0

int32 0

int64 0

objectpath /

signature empty string ''

string empty string ''

uint16 0

uint32 0

uint64 0

variant empty string ''

structure carried object types converted to safe default

map/dict empty .Directory

ooTest
Logic is straigthforward:

 Programmer expects a certain answer
from a method call.
 The method call is effected.
 The expected result gets compared with

the actual result of the method call.
 After all tests have been effected,

ooTest sums up. Addressing Mode: 64
ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_4.0.0

Tests ran: 268
Assertions: 7599
Failures: 0
Errors: 0
Skipped files: 0

Test execution: 00:04:06.085926

Assertions:
 assertEquals(expected, actual, [msg])
 assertNotEquals(expected, actual,[msg])
 assertNull(actual,[msg])
 assertNotNull(actual, [msg])
 assertSame(expected, actual,[msg])
 assertNotSame(expected, actual,[msg])
 assertTrue(actual,[msg])
 assertFalse(actual,[msg])

Predefined methods to
test function calls

 Examples:
 assertSame „ooRexx“ and „ ooRexx “
 assertEquals „ooRexx“ and „ ooRexx “
 assertSame(1.5, dbustest~Replydouble(1.5)
 assertEquals(1.5, dbustest~Replydouble(1.5)
 assertSame(1.4, dbustest~Replydouble(1.4)
 assertEquals(1.4, dbustest~Replydouble(1.4)

AssertEquals vs.
AssertSame

TEST_DBUSOBJECTS_STRINGS_DIRECT
Class: DBUS.testGroup
File: /home/zerkop/MasterThesis/snipplets/DBUS.testGroup
Event: [SYNTAX 93.903] raised unexpectedly.
 Missing argument in method; argument 1 is required
 Program: /usr/bin/OOREXXUNIT.CLS
 Line: 282

Error Treatment

Intentional error: A method that returns
a string was called without an argument:

 Given the syntax number, it is possible to expect
this error.

 self~expectSyntax(93.903) prior to the
service call that produces this error.

Testimplementation -
Setup
Client-Server Architecture
 Testgroup resides on the client side

 Takes care of necessary setup and cleanup
afterwards
 Calls methods of the DBusooRexx services
 Effect all assertions

 ooRexx Script on the server side
 Instances multiple DBusooRexx services that

provide simple reply methods
 Informs the client upon it is ready
 DBusooRexx services reply the object type

they receive

::method setUp
 This method is always called first when the

testgroup is executed.
 This setup requires the serverscript to be started

and wait until the services are fully initialized

OoTest Suite

::method setUp
 .local~server.ready=.false -- set default value for "ready"

 conn=.dbus~session -- set up a connection to the session bus
 conn~listener("add",.rexxListener~new) -- add the Signal Listener
 conn~match("add","type='signal',interface='oorexx.dbus.ooTestService'")

 "rexx DBUStestServer.rexx &" -– start the external rexx program
 say "starting server"

 do while \.server.ready -- wait until server program sends Ready
 end
 say '.. setUp done, starting assertions'

::Class RexxListener
::method Ready -- changes the value .server.ready
 use arg text, boolean
 say 'server sent Ready signal'
 .local~server.ready = boolean -- set ready to .true

Listener of the Client

 Wait until Signal arrives
 Changes variable to .true
 Starts assertions

::method tearDown
 If all test are executed, the method tearDown

will be called automatically.
 This method is useful to reset everything

 The serverscript is instructed to terminate all
ooRexxDBus Services and closes its connection
to DBus
 The clientscript closes its DBus connections

Steps:
 Look if Okluar is connected to DBus.

 Lookup its unique name (and process-id).

 Look for interesting methods, signals and
properties.

 Think about how any of this can be useful.

 Think about what information can be useful
for another application.

 Connect them and enjoy ooRexx' ease
and your skills.

Example: Viewer Okular

 Create a script that spices-up a presentation.
 The viewer currently used is called Okular.

 Okular can be found
under the name
org.kde.okular

 The bus name reveals
that multiple instances
can be started
simultanously, as it has a
process-id added.

 Okular does not provide
any signal nor any
interesting property.

 We only have listed
methods at our
disposal.

D-Feet's view on Okular

 Not useful during presentation
 Document Metadata is of no interest
 No need to open another document
 Not useful to switch pages over DBus

 Possibly useful for triggering events

Investigate available
Methods
 We need some information that triggers an

action in order to create interactivity.

 Okular's unique DBus name uses a processID
Query the processID via shell command

Store this ID in the external Rexxqueue

::routine getProcId -- returns processid of current users newest instance
 cmd='pgrep -n -x -u "$USER" okular | rxqueue'
 proc=getProc(cmd) -- get proc id
 return proc -- return the proc id

 getProc: procedure -- execute the command, parse its output
 parse arg cmd
 cmd -- execute in the shell
 proc=""
 do while queued()>0
 parse pull proc -- pull the procid from the external Rexx queue
 end
 return proc

Connect to Okular

 Connect to DBus and to okular
Select a page that triggers the action & query for it

Connect to Okular

conn=.dbus~session -- get the session connection
actionPage=20
okularProcId=getProcId()

 busname='org.kde.okular-'okularProcId -- create unique bus name of okular
 okular=conn~getObject(busname,'/okular') -- get the okular object

 do forever
 call syssleep 4
 if (okular~currentPage==actionPage) then do
 say 'page' actionPage 'reached'
 leave
 end
 end

 conn~close -- closing connections, stop message loop thread
 exit -1

 Possibilities to spice up a presentation
Multimedia
Open webpages
Send Email notifications that the presentation will
last longer if page 20 was not reached in time...

This example starts a preselected audiofile in vlc
do forever
 call syssleep 4
 if (okular~currentPage==actionPage) then do
 say 'page' actionPage 'reached, starting audio clip'
 .dbus~session~message('call','org.mpris.MediaPlayer2.vlc', -
 '/org/mpris/MediaPlayer2','org.mpris.MediaPlayer2.Player','PlayPause')
 leave
 end
 end

Interact with Okular

 As demonstrated an ooRexx (client) program
is able to connect different programs.

 An ooRexx DBUS Service can be implemented
that provides the combined service by itself.

How to make more out
of this example

any DBus
program,
written in
any
language

::method defineaction
 use arg pagenumber, -
 audiofile

 It is possible to provide additional features,
even without interfacing with okular at all.

 When a word is marked in a presentation, our
service gets the information from klipper and
starts a websearch (for example translation)

How to make more out
of this example

Automated backup on USB device
Connects to system bus

1. Device is added
2. File is zipped
3. zipped File is copied on the
device

Interact with System Bus

1

2

3

	Slide 1
	PowerPoint-Präsentation
	Slide 3
	What is DBus
	Requirements
	How to Establish Connection to DBus for the own ooRexx Class
	Create your ooRexx Class and define its methods and attributes
	Edit the init method of your ooRexx Class
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Refinement for Error Threatment
	Slide 18
	Slide 19
	Establish connection to Dbus and connect your application and announce it.
	Slide 21
	Testing your Program
	Slide 23
	Slide 24
	What was tested
	Slide 26
	ooTest
	Predefined methods to test function calls and states
	Difference between assertequal and assertsame
	Error Treatment
	Test implementation
	ooTestSuite
	Slide 33
	Slide 34
	Nutshell-Example - Okular
	D-Feets view on Okular
	Investigate Methods
	Connect to Okular
	Slide 39
	Interact with Okular
	Possible application
	Slide 42
	Nutshell example

